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On testing for the mean ve
tor of a multivariatedistribution with generalized and { 2 }- inverses�Pierre DUCHESNEyDépartement de mathématiques et statistiqueUniversité de MontréalChristian FRANCQEQUIPPE-GREMARSUniversité Charles de Gaulle - Lille 3 De
ember 15, 2009Abstra
tGeneralized Wald's method 
onstru
ts testing pro
edures having 
hi-squared limiting distributionsfrom test statisti
s having singular normal limiting distributions by use of generalized inverses. Inthis arti
le, the use of f2g-inverses for that problem is investigated, in order to propose new teststatisti
s with 
onvenient asymptoti
 
hi-square distributions. Alternatively, Imhof-based test sta-tisti
s 
an also be de�ned, whi
h 
onverge in distribution to weighted sum of 
hi-square variables;The 
riti
al values of su
h pro
edures 
an be found using Imhof's (1961) algorithm. The asymptoti
distributions of the test statisti
s under the null and alternative hypotheses are dis
ussed. Under�xed and lo
al alternatives, the asymptoti
 powers are 
ompared theoreti
ally. Simulation studiesare also performed to 
ompare the exa
t powers of the test statisti
s in �nite samples. A data anal-ysis on the temperature and pre
ipitation variability in the European Alps illustrates the proposedmethods.Key words and phrases: f2g-inverses; generalized Wald's method; generalized inverses; multivariateanalysis; singular normal distribution.Mathemati
s subje
t 
lassi�
ation 
odes (2000): primary 62H10; se
ondary 62F05, 62H15.1. INTRODUCTIONLet Tn = (Tn1; : : : ; Tnp)>, n � 1, be a sequen
e of statisti
s, and introdu
e Zn(�) = n1=2(Tn � �),� = (�1; : : : ; �p)>. The 
lassi
al testing problem 
onfronts hypotheses H0 and H1:H0 : � = �0;H1 : � 6= �0: (1)�Abbreviated title: "Testing for the mean ve
tor of a multivariate distribution".Corresponding author: Pierre Du
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ien
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ilof Canada.



2Under the null hypothesis, it is assumed that the sequen
e of test statisti
s 
onverges toward a normaldistribution: Zn := Zn(�0) d! Np(0p;�) as n!1, where 0p = (0; : : : ; 0)> is the p-dimensional nullve
tor. The 
ovarian
e matrix � 6= 0, possibly singular, is supposed to be unknown. Based on sam-ple data, the hypothesis testing problem is to de
ide whether it seems likely that the null hypothesisto be true. To study limiting alternative distributions, under the �xed alternative H1 : � = �1, wesuppose that Zn(�1) d! Np(0;�) as n!1, and under any sequen
e of lo
al alternative hypothesesH1n : �n = �0 + n�1=2�n, �n ! �, we suppose instead that Zn(�0) d! Np(�;�), with � 6= 0.The problem des
ribed above represents a general framework for many statisti
al problems 
omingfrom multivariate analysis, non-linear regression models, and time series analysis.1.1 Leading examples of the testing problemLet Xi = (Xi1; : : : ;Xip)>, i = 1; : : : ; n, be a random sample from a multivariate distribution, whereE(Xi) = � and var(Xi) = Ef(Xi � �)(Xi � �)>g = �. The sequen
e of test statisti
s 
ould besimply based on the sample means, Tn = �Xn = n�1Pni=1Xi, and the asymptoti
 normal distributionunder the null hypothesis is found invoking the multivariate 
entral limit theorem. That frameworkgoes ba
k to the seminal work of Wald (1954). In fa
t, under the normality assumption, that isXi � Np(�;�), with the 
ovarian
e matrix � unknown but supposed positive de�nite, Hotelling'sT 2 test statisti
 represents the 
lassi
al test pro
edure for problem (1) and Wald (1954) simplydeveloped the large sample analog of Hotelling's method. See, e.g., Srivastava and Khatri (1979),Muirhead (1982) or Anderson (1984), among others. When the sample is obtained from a singularmultivariate distribution, Bhimasankaram and Sengupta (1991) proposed a methodology similar toHotelling's test statisti
. If X � Np(�;�) with det(�) = 0, it is well-known that X� � belongs tothe 
olumn spa
e of rank r, say, of the 
ovarian
e matrix � with probability one (w.p.1); visually,the data lies in the r-dimensional a�ne subspa
e of Rp , r < p. Furthermore, a 
ertain lineartransformation of X � � follows a nonsingular normal distribution (see, e.g., Bilodeau and Brenner(1999, p. 62) or Eaton (2007)). Thus the initial problem 
an be reformulated in a smaller dimensionusing a non-singular normal distribution. However, to work with the data in the transformed s
alemay be seen as a disadvantage from a pra
ti
al point of view, and, more importantly, the rank of �must be known a priori, whi
h 
an be a restri
tive assumption. Wald's method has been generalizedby Moore (1977) to sequen
es of test statisti
s having singular normal distributions by a natural useof generalized inverses.Multivariate sampling is just a simple example and the study of other test statisti
s may resultin asymptoti
 singular normal distributions. In parametri
 models, when � is the ve
tor of 
ellprobabilities in a multinomial model and Tn represents the ve
tor of observed relative frequen
ies,the 
ovarian
e matrix � is singular; that example has been studied in detail by Moore (1977). Innon-linear regression models, under 
ertain 
onditions, the asymptoti
 distribution of the regressionparameters in non-linear regression models is a singular normal distribution, see Robinson (1972). Seealso Hadi and Wells (1990), who give several examples of non-linear models with singular informationmatri
es. Another example is taken from time series analysis, where a 
entral problem is to test forserial 
orrelation. It is well-known that the asymptoti
 distribution of a ve
tor of �xed length of



3residual auto
orrelations is approximately a singular normal distribution, see Box and Pier
e (1970),Li and M
Leod (1981) and Ljung (1986), amongst others.1.2 Testing pro
eduresIn this paper, we 
onsider several test pro
edures whi
h 
an be used whether � is singular or non-singular, without assuming normality. More spe
i�
ally, we study the general 
lass of test statisti
s:Qn(Wn) = Z>nWnZn; (2)where Wn is a weight matrix. For the testing problem (1), the null is reje
ted for large values ofQn(Wn). We dis
uss in detail three testing pro
edures 
orresponding to the weighting matri
es: (i)Wn = Ip, where Ip denotes the p� p identity matrix, (ii) Wn = ��kn , where ��kn represents a f2g-inverse of �n, and �nally (iii)Wn = ��n , where ��n is the Moore-Penrose inverse (or pseudo-inverse)of �n. The estimator �n is assumed to be strongly 
onsistent for �, that is �n ! �, almost surely.Note that the strong 
onsisten
y of �n is assumed to be true under the null hypothesis, undersequen
es of lo
al alternatives and for �xed alternatives. Our framework is general, and the teststatisti
s 
an be applied for all the testing problems des
ribed above. For example, in multivariatesampling, natural 
andidates would be pro
edures based on sample means for Zn, and �n 
ouldbe the sample 
ovarian
e matrix Sn = n�1Pni=1(Xi � �Xn)(Xi � �Xn)>. The test statisti
s in 
lass(i) are simply based on the usual Eu
lidian norm of Zn. The test pro
edures in 
lass (ii) 
onsiderto use f2g-inverses for the weight matrix Wn. The literature on generalized and pseudo-inverses is
onsiderable, see, e.g., Rao and Mitra (1971) and Rao (1973), among others. On the other hand, theimportant role of f2g-inverses in statisti
s, more parti
ularly in the study of quadrati
 forms, seemsless well do
umented. Appli
ations of f2g-inverses in statisti
s are des
ribed in Getson and Hsuan(1988). Finally, the 
lass of test statisti
s (iii) is 
omposed of the generalized Wald's test statisti
sintrodu
ed in Moore (1977). See also Andrews (1987) and Hadi and Wells (1990). Du
hesne andFran
q (2008) investigated diagnosti
 
he
king time series models with portmanteau test statisti
srelying on generalized inverses and f2g-inverses. In their appli
ations, Zn was based on a ve
torof sample auto
orrelations and �n was a 
ertain 
onsistent estimator of the asymptoti
 
ovarian
ematrix of the sample auto
orrelations. Here the framework is 
onsiderably more general, and weinvestigate the theoreti
al and empiri
al properties of the test statisti
s Qn(Wn) under �xed andlo
al alternatives.The paper is organized as follows. In Se
tion 2, we dis
uss the asymptoti
 distributions of the teststatisti
s Qn(Id), Qn(��kn ) and Qn(��n ) under null and lo
al hypotheses. The asymptoti
 powersof these test statisti
s are 
ompared in Se
tions 3 and 4, under �xed and lo
al alternatives, respe
-tively. In Se
tion 5, some simulation experiments are 
ondu
ted. A data analysis is presented inSe
tion 6 on the monthly temperature and pre
ipitation variability in the European Alps for theperiod 1659-1999. Con
luding remarks are o�ered in Se
tion 7. An Appendix gives some te
hni
aldetails 
on
erning the 
onstru
tion of the test statisti
s based on f2g-inverses.



42. ASYMPTOTIC DISTRIBUTIONS UNDER THE NULL HYPOTHESISFor a reason that will be transparent in the next se
tion, the test statisti
 based on Qn(Id) will be
alled Imhof-based test.2.1 The Imhof-based test statisti
 (
ase Wn = Ip)A simple and natural test pro
edure leads to the study of the norm of Zn, namely jjZnjj2. Theasymptoti
 distribution of Qn(Ip) under the null hypothesis H0 follows easily invoking the multivari-ate 
entral limit theorem and a spe
tral de
omposition of �. Consider the spe
tral de
omposition� = P�P> =Ppi=1 �iviv>i with P>P = Ip, where � = diag(�1; : : : ; �p) and the 
olumns v1; : : : ;vpof the matrix P 
onstitute an orthonormal basis of Rp . The weights �1 � �2 � : : : � �r > 0and �r+1 = : : : = �p = 0 represent the eigenvalues of � and thus r = rank(�). The 
hi-squareddistribution with k degrees of freedom and non-
entrality parameter 
 is noted �2k(
). The ve
tor1p = (1; : : : ; 1)> 
orresponds to a p-dimensional ve
tor 
omposed only of ones.Proposition 1. If Zn = Zn(�0) d! Np(�;�) and �n ! � in probability as n!1, thenZ>nZn d! rXi=1 �i�21(��2i ) + �>0 �0 := rXi=1 �iN�2i + �>0 �0;where �0 = diag �0>r ;1>p�r�P>�. The non-
entrality parameters ��i satisfy �� = (��1; : : : ; ��p)> =�1=2�P>� with �1=2� = diag���1=21 ; : : : ; ��1=2r ;0>p�r�, and the normal random variables N�i are
omponents of the singular normal distribution N� = (N�1 ; : : : ; N�p )> � Np(��; I�rp ) with I�rp =diag �1>r ;0>p�r�.Proof: The proposition is a well known 
onsequen
e of the 
ontinuous mapping theorem and ofstandard results on quadrati
 forms of Gaussian ve
tors. See, e.g., Rao and Mitra (1971) or Rao(1973) for distributions of quadrati
 fun
tions in normal random variables. More pre
isely, it isobtained by noting that N�n := �1=2�P>Zn d! N� = Np(��; I�rp ) and that kZnk2 = kP>Znk2 =k�1=2N�n + �0k2. 2Under the null hypothesis � = 0p in Proposition 1 and it follows that:Qn(Ip) = jjZnjj2 d! rXi=1 �iN2i ; (3)where N1; : : : ; Nr 
orrespond to independent N (0; 1) random variables. In pra
ti
e, it is possibleto evaluate the distribution of the Gaussian quadrati
 form in (3) by means of the algorithm ofImhof (1961). More pre
isely, the test pro
edure based on the weight matrix Wn = Ip relies on thefollowing steps: 1) Compute the eigenvalues �̂1; : : : ; �̂p of �n, whi
h provides a 
onsistent estimator�. 2) Evaluate the (1��)-quantile 
�(�̂1; : : : ; �̂p) ofPpi=1 �̂iN2i using Imhof's algorithm, and �nally3) the null hypothesis is reje
ted when Qn(Ip) � 
�(�̂1; : : : ; �̂p). An interesting advantage of thatpro
edure is that the rank of � does not need to be known and the pro
edure is in all points thesame whether � is singular or non-singular.



5In a time series framework, a similar pro
edure has been 
onsidered in Fran
q, Roy and Za-koïan (2005) in testing for null auto
orrelations in the residuals from autoregressive-moving-average(ARMA) models. In their 
ontext, they spe
i�ed Zn = n1=2�̂, with �̂ = (�̂(1); : : : ; �̂(p))>, where �̂(h)denotes the lag-h residual auto
orrelation, h = 1; : : : ; p. In order to test null auto
orrelations, theirtest statisti
 redu
ed to the so-
alled Box-Pier
e test statisti
 jjZnjj2 = nPph=1 �̂2(h) proposed byBox and Pier
e (1970), whi
h relies on the sum of squared residual auto
orrelations. See for exampleLi (2004), among others. In their pro
edure, the quantiles were found estimating the eigenvalues ofa 
onsistent estimator of the asymptoti
 
ovarian
e matrix of the residual auto
orrelations. Thatstrategy has been adapted in Du
hesne and Fran
q (2008) for diagnosti
 
he
king non-linear timeseries models. Note that the use of the test statisti
 Qn(Ip) in the 
ontext of multivariate samplingseems to be absent from the literature, probably due to the non-standard limiting distribution ofthat test pro
edure.2.2 The test statisti
 based on f2g-inverses (
ase Wn = ��kn )A generalized inverse (g-inverse) of � is a matrix ~� satisfying the 
ondition:� ~�� = �: (4)It is also 
alled a f1g-inverse sin
e (4) is usually the �rst of the four 
onditions de�ning the (unique)Moore-Penrose inverse of � (see, e.g., Getson and Hsuan (1988)). On the other hand, a f2g-inverseof � is any matrix �� satisfying the se
ond relation de�ning the Moore-Penrose inverse of �, thatis: ����� = ��: (5)When requirements (4) and (5) are satis�ed, the resulting matrix is 
alled a f1; 2g-inverse or re�exiveg-inverse (see, e.g., Rao (1973, p. 25)).Note that the matrix �� = P��P> is the Moore-Penrose inverse (or pseudo-inverse) of �,where �� = diag(��11 ; : : : ; ��1r ;0>p�r). For k = 1; : : : ; r, de�ne the matrix ��k = P��kP>, where��k = diag(��11 ; : : : ; ��1k ;0>p�k): The matrix ��k is always a f2g-inverse, but this is not a g-inverseof � when k < r.Empiri
al versions are easily 
onstru
ted. Sin
e �n ! � almost surely, as n ! 1, a naturalestimator of ��k relies on ��kn , where the spe
tral de
omposition of �n is given by �n = Pn�nP>n .When all the non null eigenvalues of � are distin
t, the matrix ��k is uniquely de�ned. However,when some eigenvalues display multipli
ities, ��k is not uniquely de�ned, be
ause it depends onthe parti
ular 
hoi
e of the orthonormal basis in the spe
tral de
ompositions of �. That 
aveatis �xed using proje
tions and the Gram-S
hmidt orthogonalization pro
ess. Consider an arbitrarybasis B = fu1; : : : ;upg of Rp . For ea
h eigenvalue �k = �k(�) of multipli
ity mk(�), let V = Vk(�)be the asso
iated eigenspa
e with dim(V) = mk(�). Single eigenvalues do not pose problem; 
onse-quently suppose k > 1. The proje
tion on V is denoted PV , whi
h is uniquely de�ned. The ve
torsPV(u1); : : : ;PV(up) span V sin
e any ve
tor v 2 V 
an be expressed as v = Ppi=1 
iui = PV(v) =Ppi=1 
iPV(ui). From the ve
tors PV(u1); : : : ;PV(up), a basis BV = fPV (ui1); : : : ;PV(uik)g of Vis extra
ted as follows: let i1 be the smallest index of f1; : : : ; pg su
h that PV(ui1) 6= 0 and for



6̀ 2 f2; : : : ; kg, i` represents the smallest index of fi`�1 + 1; : : : ; pg su
h that PV(ui`) is not spannedby �PV(ui1); : : : ;PV (ui`�1)	. Using the Gram-S
hmidt pro
ess, the basis BV is transformed in anorthonormal basis of V. This pro
ess allows to de�ne a unique 
ommon basis of eigenve
tors forthe spe
tral 
omposition of � and ��k . More pre
isely, we de�ne a unique matrix PB su
h that� = PB�P>B and ��k = PB��kP>B for all k � r. The matrix PB will be 
alled the B-eigenve
tormatrix of �.A similar 
onstru
tion holds for �n with eigenvalues �̂1 � : : : � �̂p. Sin
e the B-eigenve
tor ma-tri
es PB and Pn;B of � and �n are uniquely de�ned, the f2g-inverses ��k = ��kB and ��kn = ��kn;Bare now uniquely de�ned by ��kB = PB��kP>B and ��kn;B = Pn;B��kn P>n;B : An algorithm is given inthe Appendix on the 
onstru
tion of the matri
es ��kB and ��kn;B. In pra
ti
e, a toleran
e is neededto estimate the rank of �, the multipli
ities, and to distinguish null and non null eigenvalues. Theproposed algorithm de�nes a fun
tion, noted AB;k;�(�), based on a toleran
e �. The following Assump-tion A(�) is ne
essary in order to spe
ify the minimum distan
e between the di�erent eigenvalues of�.Assumption A(�). Let B = fu1; : : : ;upg be an arbitrary basis of Rp . The toleran
e � > 0 is su
hthat:C1: minfj�i(�)� �j(�)j : �i(�) 6= �j(�)g > �,C2: For k � rank(�), the appli
ation AB;k;� su
h that AB;k;�(�) = ��kB is 
ontinuous at �.Condition C1 in Assumption A(�) ensures that the multipli
ities are 
onsistently estimated if � is
hosen small enough. It 
an be seen that C2 is satis�ed for all but a �nite number of basis B.The following lemma is useful for establishing the asymptoti
 distribution of Qn(Wn) in the 
aseWn = ��kn .Proposition 2. Suppose that Zn = Zn(�0) d! Np(�;�) and �n ! � almost surely, as n ! 1.Let B = fu1; : : : ;upg be a basis of Rp . Under Assumption A(�), if k � rank(�), it follows that:Z>n��kn;BZn d! �2k(�(k)1 );where �(k)1 =�>PB��kP>B�, and PB is the B-eigenve
tor matrix of �.Proof: Assumption C2 in A(�) and the almost sure 
onvergen
e of �n to � give:��knB = AB;k;�(�n)! ��kB = AB;k;�(�) a:s:; as n!1:The 
ontinuous mapping theorem then entails that Z>n��kn;BZn d! Z>��kB Z. The Ogasawara-Takahashi theorem establishes the 
hi-square limiting distribution (see, e.g., Rao and Mitra (1971) orRao (1973)): Sin
e ��kB is a f2g-inverse, the 
onditions (���kB )3 = (���kB )2 and�>��kB ���kB � =�>��kB � hold trivially. Finally, ���kB � belongs to the 
olumn spa
e of ���kB �, sin
e ���kB � =���kB ��, � = Ckdiag(��11 ; : : : ; ��1k )C>k�, where PB = (Ck Cp�k), with Ck and Cp�k of dimen-sions p� k and p� (p� k), respe
tively. The number of degrees of freedom is k = rank(���kB ) withnon-
entrality parameter �>��kB ���kB ���kB � =�>PB��kP>B�. This 
on
ludes the proof. 2Note that the 
ondition k � r = rank(�) appears to be essential (see Du
hesne and Fran
q(2008)). It follows immediately from Proposition 2 that, when k � r, the asymptoti
 distribution of



7Qn(��kn ) is �2k under the null. The tests based on the f2g-inverses are thus de�ned by the 
riti
alregions nQn(��kn ) > �2k;1��o, where �2k;� denotes the �-quantile of the �2k distribution.2.3 The test statisti
 based on the generalized inverse (
ase Wn = ��n )In order to test the null hypothesis, Hotelling's type pro
edure is based on the weightingWn = ��1nand thus the test statisti
 Qn(��1n ), provided that �n is invertible. When � is non-singular, �n willbe non-singular when n is 
hosen large enough. In the singular 
ase, the weighting Wn = ��n o�ersa natural 
hoi
e, sin
e the Moore-Penrose inverse is uniquely de�ned. Re
all that the generalizedinverse is obtained by inverting the non zero eigenvalues. In pra
ti
e, as for the f2g-inverses, atoleran
e � > 0 is required for assessing the non zero eigenvalues. The following proposition 
lari�esthe role of � and gives the asymptoti
 distribution of Qn(��n ).Proposition 3. Suppose that Zn = Zn(�0) d! Np(�;�) and �n ! � almost surely, as n ! 1.Let the spe
tral de
omposition �n = Pn�nP>n where �n = diag f�1 (�n) ; : : : ; �p (�n)g. For any� > 0, let �n;� = Pn�n;"P>n , where �n;� is the matrix obtained by repla
ing by zero the elements of�n whi
h are less than �. If � is su�
iently small, so that:Pr frank(�n;") = rank(�)g ! 1; (6)as n!1, it follows that: Z>n��n;"Zn d! �2r(�2);where r = rank(�) and �2 =�>���.Using similar arguments as in Proposition 2, Proposition 3 follows. See also the asymptoti
distribution theory in Moore (1977, 1978) or Tyler (1981, Lemma 2.4). The proposition shows that,if � is 
hosen su�
iently small, under the null hypothesis Qn(��n ) = Z>n��n;"Zn + oP (1) d! �2r.Be
ause �� = ��r , under the assumptions A(�) and (6), for � su�
iently small we havePr �Qn(��n ) = Qn(��rn )	! 1; (7)as n!1. In this sense, the generalized inverse statisti
 
an be 
onsidered as a parti
ular f2g-inversestatisti
. Note that in the 
ase where ��n is only supposed to be a f1g-inverse, additional hypothesesare required in order to have the stated result (in parti
ular � must be in the 
olumn spa
e of �).In view of Theorem 9.2.3 of Rao and Mitra (1971, p. 173), the 
on
lusion of Proposition 3 is alsotrue when the estimator ��n is a given symmetri
 re�exive g-inverse of the matrix �n and when �is a 
ontinuity point of the appli
ation whi
h gives this parti
ular symmetri
 re�exive g-inverse.The test statisti
 Qn(��n ) has been 
onsidered in a time series 
ontext for testing null auto
or-relations in time series analysis. In fa
t, Li (1992) investigated the use of Qn(��1n ) in non-lineartime series analysis. However, in the time series framework, it seems di�
ult to formulate pre
ise
onditions whi
h guarantee the invertibility of the asymptoti
 
ovarian
e matrix �. For example, thenon-linear time series model of Li (1992) rules out linear models su
h as the ARMA models, in whi
h
ase it is known that the asymptoti
 
ovarian
e matrix of the residual auto
orrelations is essentiallysingular. From the simulation results in Du
hesne and Fran
q (2008), to invert an approximately



8singular 
ovarian
e matrix may result in empiri
al levels far from the nominal levels. In order to havea test statisti
 well-de�ned in linear and non-linear models, Du
hesne and Fran
q (2008) investigatedthe use of Qn(��n ), with ��n the Moore-Penrose inverse of a 
ertain estimator of the asymptoti

ovarian
e matrix of the residual auto
orrelations.3. POWER UNDER FIXED ALTERNATIVESWe now examine the asymptoti
 powers under �xed alternatives, adopting the approa
h of Bahadur(1960). In this approa
h, the e�
ien
y of a test statisti
 is measured by its slope, de�ned as therate of 
onvergen
e of its p-value under a �xed alternative hypothesis H1 : � = �1 6= �0. Using thenotation in (3), letSI(t) = P rXi=1 �iN2i > t! ; S�k(t) = P ��2k > t� ; and S�(t) = P��2rank(�) > t�be the respe
tive asymptoti
 survival fun
tions of the test statisti
s Qn(Ip), Qn(��kn ) and Qn(��n )under the null hypothesis H0. Denote by V(f�i1 ; : : : ; �ijg) the linear ve
tor spa
e generated by the
olumns i1; : : : ; ij of P = PB . When, with obvious 
onventions, �i1�1 < �i1 � � � � � �ij < �ij+1then V(f�i1 ; : : : ; �ijg) denotes the eigenve
tor spa
e asso
iated to the eigenvalues �i1 ; : : : ; �ij of �.Proposition 4. Let a basis B and a toleran
e � su
h that A(�) and (6) hold true, and let k � rank(�).Under the alternative H1 : � = �1 6= �0, the (approximate) Bahadur slopes of the test pro
edure (2)with the weightings Wn = Ip, Wn = ��kn and Wn = ��n are given by:
I = limn!1� 2n log SI fQn (Ip)g = k�1 ��0k2�1 ; (8)
�k = limn!1� 2n log S�k �Qn ���kn �	 = (�1 � �0)>��k(�1 � �0); (9)
� = limn!1� 2n log S� �Qn ���n �	 = (�1 � �0)>��(�1 ��0); (10)respe
tively, where the 
onvergen
e in probability (9) and (10) hold, respe
tively, when:�1 � �0 62 V(f�k+1; : : : ; �r; 0g); (11)�1 � �0 62 V(f0g): (12)The 
onvergen
e in probability in formula (8) stands without further restri
tion.Note that, even when the varian
e is known, i.e. when �n = �, the test statisti
 based on thef2g-inverse (resp. the generalized inverse) is not 
onsistent when (11) (resp. (12)) does not holdtrue. Indeed, when �1 ��0 2 V(f�k+1; : : : ; �r; 0g) we have ��k(�1 ��0) = 0p, and it follows that:Qn ���k� = Z>n (�0)��kZn(�0);= nZn(�1) + n1=2(�1 � �0)o>��k nZn(�1) + n1=2(�1 ��0)o ;= Z>n (�1)��kZn(�1) 6! 1 in probability;as n ! 1. Similarly, when �1 � �0 2 V(f0g) the statisti
 Qn ���� = Z>n (�1)��Zn(�1) does notdiverge under the alternative hypothesis. Note also that, in view of the right-hand sides of (9) and



9(10), the previous derivations show that one 
an set, by 
ontinuity, 
�k = 0 when (11) is not satis�ed,and 
� = 0 when the relation (12) does not hold. The following 
orollary presents a 
omprehensive
omparison of the Bahadur slopes of the test statisti
s Qn (Ip), Qn ���kn � and Qn ���n �.Corollary 1. Under the assumptions of Proposition 4, the following 
omparisons 
an be made:i) The Imhof-based test is always 
onsistent (i.e. we always have 
I > 0);ii) The test based on the f2g-inverse ��kn is 
onsistent (i.e. 
�k > 0) if and only if (11);iii) The generalized-inverse based test is 
onsistent (i.e. 
� > 0) if and only if (12);iv) For all k � r := rank(�) we have 
� = 
�r � 
�k � 
�k�1 � � � � � 
�1 with 
�k = 
�k�1 i��1 � �0 2 V(f�kg
);v) When �1 � �0 2 V(f�1; : : : ; �kg) with k > 1 we have 
�k � 
I , with stri
t inequality i� thereexists k0 su
h that 1 < k0 � k, �k0 < �1 and �1 � �0 62 V (f�k0g
);vi) When �1 � �0 62 V(f�1; : : : ; �kg) we have 
I > 
�k ;vii) The Bahadur slope of Imhof-based test statisti
 is always larger than the one of the test statisti
based on ��1 , that is 
I � 
�1 , with equality i� �1 � �0 2 V(f�1g).The most noti
eable result of this 
orollary is that, 
ontrary to the other test pro
edures, theImhof-based test o�ers a stri
tly positive Bahadur slope for all �1 � �0 6= 0p. From that point ofview, Qn(Ip) represents the only omnibus test statisti
 with non trivial power under all alternativehypotheses, and is in the spirit of the so-
alled portmanteau test statisti
s in the time series literature.However, for an alternative hypothesis in the non-zero eigenspa
e of �, the slope of the Imhof-basedtest is smaller than that of the test based on the generalized inverse ��n . Note also that, in term ofthe Bahadur slope, the f2g-inverse test statisti
 based on ��kn dominates the test statisti
 based on��k0n when k > k0.Figure 1 displays the Bahadur slopes of the di�erent tests when � = diag(1; 1; 1=2; 1=2; 0; 0) andwhen �1��0 is a unit ve
tor with dire
tion d in the plane 
ontaining u1 = 1=p5 (1; 1; 1; 1; 0; 1)> andu2 = (0; 0; 0; 0; 1; 0)> . The length of the ve
tor going from the origin to the 
urve P k in the dire
tiond gives the Bahadur slope of the test statisti
 Qn(��kn ). In this example, the Bahadur slope ofQn(I6)is always one, sin
e �1 = 1 and the length of �1 � �0 is normalized to one. Sin
e u2 2 V(f0g), onlythe Imhof-based test is powerful for alternatives in the dire
tion of u2 and the slopes of the other tests
an
el for that alternative hypothesis. This �gure thus illustrates the points i)-iv) of Corollary 1.Figure 2 illustrates other points. In parti
ular, in this �gure, 
�3 = 
� be
ause the dire
tion d of thealternative belongs to V(f�4g
) and 
�3 � 
I be
ause d belongs to V(f�1; �2; �3g).Proof of Proposition 4: Under the null hypothesis, n�1=2Zn = n�1=2Zn(�0) p! 0 and under thealternative H1 : � = �1 we have n�1=2Zn = n�1=2fZn(�1) + n1=2(�1 � �0)g p! �1 � �0. A largedeviation result yields: logP  rXi=1 �iN2i > x! � �x2�1 ;



10 Figure 1. The Bahadur slopes 
�k of Qn(��kn ) and 
I of Qn(Ip) when � =diag(1; 1; 1=2; 1=2; 0; 0), for alternatives in the dire
tion �1 � �0 = d = a1u1 + a2u2,jjdjj = 1, where u1 = 1=p5 (1; 1; 1; 1; 0; 1)> and u2 = (0; 0; 0; 0; 1; 0)> . The Bahadurslope 
�k 
orresponds to the length of the ve
tor going from the origin to the 
urveP k in the dire
tion d. The slope of the Imhof-based test des
ribes a 
ir
le P be
auseit is 
onstant.
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as x!1, where N1; : : : ; Nr are independent N (0; 1) random variables (see Zolotarev (1961)). TheBahadur slope of the �rst test is thus given by:
I = limn!1� 2n logSI �kZnk2� = limn!1 jjZnjj2n�1 = jj�1 � �0jj2�1 :Now note that limn!1Qn ���kn � = limn!1n(�1 � �0)>��k(�1 � �0) =1 in probabilityunder the 
ondition (11), and that Qn ���n �!1 in probability under the 
ondition (12). Using thelarge deviation result logP (�2k > x) � �x=2 as x ! 1, under the 
ondition (11) (resp. (12)) theBahadur slope 
�k (resp. 
�) is then obtained by the arguments used to 
ompute 
I . 2Proof of Corollary 1: Points i) � iii) are dire
t 
onsequen
es of Proposition 4. To show iv),
onsider the spe
tral de
omposition � = P�P> where P>P = Ip and � = diag(�1; : : : ; �p), and



11Figure 2. The Bahadur slopes 
�k of Qn(��kn ) and 
I of Qn(Ip) when � =diag(1; 1; 1=2; 1=2; 0; 0), for alternatives in the dire
tion �1 � �0 = d = a1u1 + a2u2,jjdjj = 1, where u1 2 V(f�1g) and u2 = 1=p3(1; 1; 1; 0; 0; 0)> 2 V(f�1; �2; �3g). TheBahadur slope 
�k 
orresponds to the length of the ve
tor from the origin to the 
urveP k in the dire
tion d. The slope of the Imhof-based test des
ribes a 
ir
le P be
auseit is 
onstant.
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note that for 1 � k < k0 � r the di�eren
e 
� � 
�k is non-negative:
� � 
�k = (�1 � �0)>Pdiag�0>k ; ��1k+1; : : : ; ��1k0 ;0>p�r�P>(�1 � �0) � 0;with equality if and only if �1 � �0 2 V(f�k+1; : : : ; �k0g
). Points v)� vii) 
ome from
�k � 
I = (�1 � �0)>Pdiag �0; ��12 � ��11 ; : : : ; ��1k � ��11 ;���11 ; : : : ;���11 �P>(�1 � �0):This shows the result. 2Other 
omparisons between the test statisti
s 
an be performed under lo
al alternatives. In thenext se
tion, the so-
alled Pitman's approa
h is investigated.



124. POWER UNDER LOCAL ALTERNATIVESConsider a sequen
e of lo
al alternatives of the form H1n : �n = �0+n�1=2�n, where�n !� 6= 0p.The following proposition gives the Asymptoti
 Lo
al Power (ALP) of the test pro
edures.Proposition 5. When Zn(�0) d! Np(�;�), and with the notations and assumptions of Proposi-tions 1-3, the ALP of the test pro
edure (2) with the weighting Wn = Ip, Wn = ��kn and Wn = ��nunder the lo
al alternatives H1n are given by:ALPI(�) = Pr rXi=1 �i�21(��2i ) + �>0 �0 > 
�(�1; : : : ; �r)! ; (13)ALP�k(�) = Pr ��2k(�(k)1 ) > �2k;1��� ; (14)ALP�(�) = Pr ��2r(�2) > �2r;1��� : (15)The proof of Proposition 5 represents a dire
t 
onsequen
e of Propositions 1-3 and therefore it isomitted. The following 
orollary 
ompares the ALP of the di�erent test pro
edures.Corollary 2. Under the assumption of Proposition 5:i) The Imhof-based test is always lo
ally asymptoti
ally powerful (i.e. ALPI(�) > � 8�);ii) The test based on the f2g-inverse ��kn is lo
ally asymptoti
ally powerful (i.e. ALP�k(�) > �)if and only if � 62 V(f�k+1; : : : ; �r; 0g);iii) The generalized-inverse based test is lo
ally asymptoti
ally powerful (i.e. ALP�(�) > �) ifand only if � 62 V(f0g);iv) When � 2 V(f�1; : : : ; �kg) with k < r then ALP�k(�) > ALP�(�);v) When � 2 V(f�1g) we have ALP�1(�) > ALPI(�);vi) When � 2 V(f�1g) we have ALP�1(�) � ALP�2(�) � � � � � ALP�r�1(�) � ALP�(�).This 
orollary shows that, as for the Bahadur slopes, the ranking of the lo
al asymptoti
 powersof the di�erent tests depends on the position of the alternative with respe
t to the eigenspa
es of �.However, 
ompared to Bahadur's approa
h, Pitman's approa
h highlights the relative merits of thetest pro
edures with a di�erent viewpoint. In parti
ular, in term of ALP, the performan
e of the teststatisti
s based of the f2g-inverse does not ne
essarily in
reases with k (
ompare iv) in Corollary 1with vi) in Corollary 2).Figure 3 displays the ALP's for several dire
tions � of the lo
al alternative, and for the samematrix � as that used in Figures 1 and 2. From this �gure, writing ALP�k � ALP�k(�), thefollowing relations are satis�ed:ALP�1 > ALP�2 > ALPI > ALP�3 > ALP�; when � / (1; 0; 0; 0; 0; 0)> ;ALP� > ALP�3 ' ALPI > ALP�2 > ALP�1 ; when � / (1; 1; 1; 1; 0; 0)> ;ALP�2 > ALPI > ALP�3 > ALP� > ALP�1 ; when � / (1; 1; 0; 0; 0; 0)> ;ALP�3 > ALP� > ALPI > ALP�2 = ALP�1 � �; when � / (0; 0; 1; 0; 0; 0)> :To summarize, in term of ALP, the test based on ��k is very powerful for alternatives 
lose to thedire
tion of the �rst k eigenve
tors of�, but may be 
ompletely powerless for orthogonal alternatives.



13Figure 3. Asymptoti
 lo
al powers of the tests when � = diag(1; 1; 1=2; 1=2; 0; 0),for alternatives in di�erent dire
tions.
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The Imhof-based test statisti
 and the one relying on the generalized inverse o�er power for morealternatives, but it appears that none test is dominated by another one.Proof of Corollary 2: To show i) we note that k��k2 = �>�� = 0 i� � 2 V(f0g), and thatk�0k2 = 0 i� � 2 V(f�1; : : : ; �rg). The points ii) and iii) are obtained similarly. To show iv), �rstnote that �2 � �(k)1 =�>PBdiag�0>k ; ��1k+1; : : : ; ��1r ;0>p�r�P>B� � 0;



14with equality i� � 2 V(f�k+1; : : : ; �rg
). Thus �2 = �(k)1 > 0 when � 2 V(f�1; : : : ; �kg). Now iv) isimplied by the fa
t that P ��2k(�) > �2k;1��� stri
tly de
reases with k for all � > 0 and all � 2 (0; 1)(see Theorem 2 in Ghosh (1973)).In order to show v) and vi), we adapt arguments 
alled upon by Ghosh (1973). Let X1 be a�2k(�)-distributed random variable, and let X2 be a random variable independent of X1. Considerthe testing problem H0 : � = 0 against H0 : � > 0 based on the observations (X1;X2). Assume thatthe distribution of X2 is the same under the null and alternative hypotheses. Using the Neyman-Pearson lemma, the most powerful test statisti
 of H0 : � = 0 against H0 : � = �1, with �1 > 0,reje
ts the null hypothesis if the likelihood ratio is large. A straightforward but tedious 
omputationshows that this likelihood ratio is given by:L(X1;X2; �1)L(X1;X2; 0) = �(k=2) exp(��1=2) 1Xi=0(�1X1)i=f4ii!�(i+ k=2)g:Note that this ratio is an in
reasing fun
tion of X1. Consequently the 
riti
al region of the uniformlymost powerful (UMP) test is given by fX1 � �2k;1��g. We now apply this result when � 2 V(f�1g),setting � = ��21 , X1 = (N1 + �)2 and X2 =Pri=2 �i=�1N2i , with the notations of Proposition 1 and(N1; : : : ; Nr)> � Nr(0; Ir). Noting also that �(1)1 = ��21 when � 2 V(f�1g), we then obtain:ALP�1(�) = P �(N1 + �)2 > �21;1��	 ;> P ((N1 + �)2 + rXi=2 �i=�1N2i > 
�(�1; : : : ; �r)�1 ) = ALPI(�);whi
h shows v). Setting X1 = (N1 + �)2 +Pki=2N2i and X2 = N2k+1, the same argument entails:ALP�k(�) = P ((N1 + �)2 + kXi=2 N2i > �2k;1��) ;> P ((N1 + �)2 + k+1Xi=2 N2i > �2k+1;1��) = ALP�k+1(�);and point vi) follows. 2In the next se
tion, further 
omparisons and undertaken using Monte Carlo experiments.5. SIMULATION EXPERIMENTSIn the previous se
tions, we have presented the asymptoti
 null distributions of three 
lasses of teststatisti
s, and we have given some asymptoti
 properties under �xed and lo
al alternatives. It isnatural to inquire about their �nite sample properties, in parti
ular their exa
t levels and powers.Furthermore, the theoreti
al results obtained in Se
tions 3 and 4 need to be 
ompleted empiri
ally.The power 
omparisons between the weighting Wn = ��n and Wn = Ip seem also of parti
ularinterest. To partially answer these 
onsiderations, some Monte Carlo experiments were 
ondu
ted.The main 
omputer 
ode for the experiments des
ribed below has been written using the R language,and Imhof's (1961) algorithm has been implemented in the FORTRAN 90 language.



155.1 Des
ription of the simulation experimentsIn order to 
ompare the test statisti
s, we 
onsidered multivariate sampling from the multivariatenormal distribution, for several 
hoi
es of the 
ovarian
e matrix �. The test statisti
s in
luded inour simulation experiments used the weighting Wn = Ip, Wn = ��kn , k � r, r = rank(�), andWn = ��n , where �n = Sn represents the sample 
ovarian
e matrix. For ea
h random sampleof size n = 100, we examined the empiri
al frequen
ies of reje
tion of the null hypothesis H0 :� = 0 when the latter was true by using test statisti
s with three nominal levels (1, 5 and 10%).Multivariate sampling appears parti
ularly 
onvenient to study the power of the test pro
edures,given the analyti
al results demonstrated in the previous se
tions. Several �xed alternatives havebeen in
luded in the study, whi
h have been 
hosen by examining the spe
tral de
omposition of the
ovarian
e matrix � and their asso
iated eigenspa
es.Table 1. Mean ve
tors �(k)ij in multivariate sampling from the normal distributionN3(�(k)ij ;�(k)ij ), i = I; II, j = 1; 2, k = 1; : : : ; 4.Experiment i = I�(1)I;1 = ( 310 ; 0; 0)>, �(2)I;1 = ( 310 ; 310 ; 0)>, �(3)I;1 = ( 310 ; 310 ; 110)>, �(4)I;1 = ( 310 ; 0; 110)>,�(1)I;2 = (45 ; 0; 0)>, �(2)I;2 = ( 310 ; 310 ; 0)>, �(3)I;2 = ( 310 ; 310 ; 310)>, �(4)I;2 = (45 ; 0; 310)>;Experiment i = II�(1)II;1 = ( 310 ; 0; 0)>, �(2)II;1 = (0;� 225 ; 25 )>, �(3)II;1 = ( 110 ;�15 ; 150)>, �(4)II;1 = ( 110 ;� 310 ; 15)>,�(1)II;2 = (� 110 ;� 110 ; 15 )>, �(2)II;2 = ( 110 ;� 110 ; 0)>, �(3)II;2 = ( 110 ; 110 ; 110)>, �(4)II;2 = ( 110 ;� 110 ; 110)>;Table 2. Mean ve
tors �(k)ij in multivariate sampling from the normal distributionN6(�(k)ij ;�(k)ij ), i = III; IV , j = 1; 2; 3, k = 1; : : : ; 4.Experiment i = III�(1)III;1 = ( 310 ; 0; 0; 0; 0; 0)> , �(2)III;1 = ( 310 ; 310 ; 0; 0; 0; 0)>,�(3)III;1 = ( 310 ; 310 ; 310 ; 0; 0; 0)>, �(4)III;1 = ( 310 ; 310 ; 110 ; 110 ; 0; 0)>,�(1)III;2 = (45 ; 0; 0; 0; 0; 0)> , �(2)III;2 = (45 ; 45 ; 0; 0; 0; 0)>,�(3)III;2 = (45 ; 45 ; 25 ; 0; 0; 0)>, �(4)III;2 = (35 ; 35 ; 310 ; 310 ; 0; 0)>,�(1)III;3 = (45 ; 0; 0; 0; 0; 0)> , �(2)III;3 = (25 ; 45 ; 0; 0; 0; 0)>,�(3)III;3 = (0; 0; 35 ; 0; 0; 0)>, �(4)III;3 = (35 ; 35 ; 310 ; 310 ; 0; 0)>;Experiment i = IV�(1)IV;1 = (0; 310 ;�15 ;� 310 ; 0; 15)>, �(2)IV;1 = (0;� 110 ;� 120 ; 3100 ; 12 ; 120)>,�(3)IV;1 = (0:37;�0:24;�0:18;�0:12;�0:06;�0:03)> , �(4)IV;1 = (0:22; 0:18; 0:14; 0:09; 0:05; 0:02)> ,�(1)IV;2 = (0:18;�0:17; 0:00; 0:35;�0:18;�0:18)> , �(2)IV;2 = (�0:19;�0:34; 0:00; 0:14; 0:19; 0:19)> ,�(3)IV;2 = (�0:19; 0:20;�0:23; 0:20;�0:19; 0:21)> , �(4)IV;2 = (�0:20; 0:08;�0:22; 0:08;�0:19; 0:08)> ,�(1)IV;3 = (0:00; 0:00; 0:00; 0:00;�0:35; 0:35)> , �(2)IV;3 = (0; 0; 12 ; 0; 0; 0)>,�(3)IV;3 = (0; 15 ; 0; 110 ; 0; 0)>, �(4)IV;3 = (0; 0; 0; 15 ;�p210 ; p210 )>.



16 Table 3. Relative frequen
y of reje
tion of H0 : � = 0 (in per
entage) for the testbased on the statisti
s Qn(Wn) de�ned by (2), usingWn = I3, Wn = ��kn , k = 1; 2,and Wn = ��n , with Zn = pn �Xn and �n = Sn, where the mean ve
tors are given inTable 1.(p; r) = (3; 2) � = �I;1 = diag(1; 1; 0)� = 0 � = �(1)I;1 � = �(2)I;1 � = �(3)I;1 � = �(4)I;11% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I3) 0.9 4.8 10.6 55.0 77.0 85.0 89.7 97.1 98.4 92.4 97.7 99.4 61.5 82.3 88.6Qn(S�n ) 1.3 5.8 11.0 57.4 77.0 85.0 90.3 96.9 98.7 90.3 96.9 98.7 57.4 77.0 85.0Qn(S�1n ) 0.4 2.9 7.3 27.6 45.3 54.0 50.5 65.3 71.5 50.5 65.3 71.5 27.6 45.3 54.0Qn(S�2n ) 1.3 5.8 11.0 57.4 77.0 85.0 90.3 96.9 98.7 90.3 96.9 98.7 57.4 77.0 85.0� = �I;2 = diag(10; 1; 0)� = 0 � = �(1)I;2 � = �(2)I;2 � = �(3)I;2 � = �(4)I;21% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I3) 1.2 5.6 11.3 50.0 71.5 81.0 8.3 24.4 39.4 12.3 35.5 57.3 56.3 79.4 86.3Qn(S�n ) 1.3 5.8 11.0 39.7 61.6 73.4 59.9 82.6 89.0 59.9 82.6 89.0 39.7 61.6 73.4Qn(S�1n ) 0.9 5.6 11.0 50.1 71.1 80.9 6.6 17.4 26.5 6.6 17.4 26.5 50.1 71.1 80.9Qn(S�2n ) 1.3 5.8 11.0 39.7 61.6 73.4 59.9 82.6 89.0 59.9 82.6 89.0 39.7 61.6 73.4For our investigations, we 
onsidered multivariate normal distributions of dimensions p = 3; 6,where � was singular and non-singular. The de�nitions of the 
ovarian
e matri
es � are given inTables 3-6. In Tables 3 and 5, the 
ovarian
e matri
es are exa
tly singular and they are diagonal.We investigated situations where the non null eigenvalues are both equal to one, and when they aredi�erent. In the 
ase p = 6, we investigated four unit eigenvalues, multipli
ities of dimension two anda situation where the non null eigenvalues are distin
t. In Tables 4 and 6 the 
ovarian
e matri
esare of the form � = Ip � 
AA>, where 
 is a real value and A is a p� r matrix; they are pre
iselyde�ned in the Tables. It is easily shown that these matri
es have at least p� r unit eigenvalues. Intime series, the asymptoti
 
ovarian
e matri
es of residual auto
ovarian
es exhibit similar forms, seeLi (2004, Chapter 2), among others. The 
ovarian
e matri
es in Tables 4 and 6 are non-singular,but the ratio of the largest to the smallest eigenvalue is large; 
onsequently they are approximatelysingular. The values of the non null mean ve
tors under the alternative hypotheses are given inTables 1 and 2. For ea
h 
ase, 1000 independent realizations have been generated.5.2 Dis
ussion of the Monte Carlo resultsIn Tables 3-6, the results for the level study 
orrespond to the 
olumn � = 0. For the nominallevel � = 5%, the empiri
al size over the 1000 independent repli
ations should belong to the in-terval [3:6%; 6:4%℄ with probability 95% (at the nominal levels � = 1% and 10%, the intervals are[0:4%; 1:6%℄ and [8:1%; 11:9%℄, respe
tively). When the relative reje
tion frequen
ies are outside the95% signi�
an
e limits, they are displayed in bold in the Tables. When the relative reje
tion frequen-
ies are outside the 99% signi�
ant limits, they are underlined. At the nominal levels � = 1%, 5%and 10%, the 99% signi�
an
e intervals are [0:2%; 1:8%℄, [3:2%; 6:8%℄ and [7:6%; 12:4%℄, respe
tively.



17Table 4. Relative frequen
y of reje
tion of H0 : � = 0 (in per
entage) for thetest based on the statisti
s Qn(Wn) de�ned by (2), using Wn = I3, Wn = ��kn ,k = 1; 2; 3, and Wn = ��n , with Zn = pn �Xn and �n = Sn, where the mean ve
torsare given in Table 1.(p; r) = (3; 3) � = �II;1 = I3 � 0:79x3x>3 , x3 = (1; 12 ; 110 )>� = 0 � = �(1)II;1 � = �(2)II;1 � = �(3)II;1 � = �(4)II;11% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I3) 1.0 4.8 10.7 62.0 99.9 100.0 86.5 94.9 97.5 26.9 48.8 62.2 79.5 92.3 96.0Qn(S�n ) 1.2 5.4 11.3 100.0 100.0 100.0 83.5 93.0 96.1 24.9 44.2 57.9 98.3 99.8 99.9Qn(S�1n ) 0.4 2.9 7.3 3.7 12.8 21.8 47.9 62.5 68.4 14.1 29.3 40.1 41.6 58.3 67.0Qn(S�2n ) 1.3 5.8 11.0 8.1 21.8 32.1 86.3 95.2 97.9 27.3 50.3 63.3 80.4 91.8 95.6Qn(S�3n ) 1.2 5.4 11.3 100.0 100.0 100.0 83.5 93.0 96.1 24.9 44.2 57.9 98.3 99.8 99.9� = �II;2 = I3 � 0:333XX>, X = (
1; 
2); 
1 = 13; 
2 = (1;�1; 0)>� = 0 � = �(1)II;2 � = �(2)II;2 � = �(3)II;2 � = �(4)II;21% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I3) 1.3 5.8 10.3 45.8 67.7 77.5 6.3 26.9 46.2 6.1 40.3 84.9 15.3 41.4 60.1Qn(S�n ) 1.2 5.4 11.3 31.6 54.3 66.6 29.4 50.6 65.3 100.0 100.0 100.0 100.0 100.0 100.0Qn(S�1n ) 1.1 5.1 10.9 45.8 68.7 78.8 1.2 6.2 10.9 1.0 5.2 10.8 4.9 14.5 22.4Qn(S�2n ) 1.3 5.8 11.0 36.8 60.0 71.2 34.4 58.2 70.5 1.4 5.9 11.0 37.9 63.0 75.8Qn(S�3n ) 1.2 5.4 11.3 31.6 54.3 66.6 29.4 50.6 65.3 100.0 100.0 100.0 100.0 100.0 100.0We dis
uss the results presented in Table 3. In general, the errors of the �rst kind of the teststatisti
s are well 
ontrolled, ex
ept for Qn(S�1n ) at the 5% and 10% nominal levels when � = �I;1.For the alternatives � = �(1)I;1;�(2)I;1, the mean ve
tors belong to the eigenspa
e generated by theeigenvalue �1 = 1; it appears preferable to spe
ify k = 2 than k = 1 in that situation, whi
hmay be explained by the multipli
ity of that unit eigenvalue. Interestingly, Qn(S�2n ) delivers higherpower than Qn(S�1n ) under �(1)I;1, even if that alternative belongs to the ve
tor spa
e generated byv1 = (1; 0; 0)>; this is explained by the fa
t that in �nite samples �(2)I;1 does not belong exa
tly to theve
tor spa
e of the �rst 
olumn of Pn in the spe
tral de
omposition of Sn. Under the alternatives� = �(3)I;1;�(4)I;1, the empiri
al powers of Qn(I3) and Qn(S�2n ) are very similar when � = �I;1, with aslight advantage for the weighting Wn = I3. These alternatives do not lie in a spe
i�
 eigenspa
e,and Qn(I3) o�ers high power. When � = �I;2, all the eigenvalues are di�erent and the 
ovarian
ematrix is singular. Sin
e �(1)I;2 2 V(f10g), Qn(S�1n ) is very powerful, but the weighting Wn = I3delivers a similar power. The di�eren
es in powers between Qn(S�1n ) and Qn(S�2n ) = Qn(S�n ) issigni�
ant. For �(2)I;2 2 V(f10; 1g), the weighting Wn = I3 gives low power, and to use a generalizedinverse provides the best empiri
al power. When � = �(3)I;2, that alternative does not lie in a spe
i�
eigenspa
e; 
onsequently all test statisti
s o�er some power, but the generalized inverse appears themost powerful. The alternative � = �(4)I;2 2 V(f10; 0g); the most powerful test statisti
s are Qn(S�1n )and Qn(I3).



18 Table 5. Relative frequen
y of reje
tion of H0 : � = 0 (in per
entage) for thetest based on the statisti
s Qn(Wn) de�ned by (2), using Wn = I6, Wn = ��kn ,k = 1; 2; 3; 4, and Wn = ��n , with Zn = pn �Xn and �n = Sn, where the meanve
tors are given in Table 2.(p; r) = (6; 4) � = �III;1 = diag(1; 1; 1; 1; 0; 0)� = 0 � = �(1)III;1 � = �(2)III;1 � = �(3)III;1 � = �(4)III;11% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I6) 0.7 4.1 9.3 38.9 64.5 76.9 81.9 94.4 97.1 96.6 99.3 99.9 87.2 96.4 98.7Qn(S�n ) 1.1 5.0 11.3 42.9 67.8 79.6 85.4 94.8 97.2 97.2 99.4 99.8 88.1 96.9 98.7Qn(S�1n ) 0.3 3.6 7.7 10.3 22.6 31.8 23.7 37.4 46.8 34.1 48.2 55.6 25.8 40.4 49.1Qn(S�2n ) 0.3 3.7 7.9 17.9 36.2 46.9 43.9 61.7 70.5 59.0 73.3 79.6 45.9 64.1 73.4Qn(S�3n ) 0.5 4.2 7.8 29.3 51.2 63.1 62.9 79.4 86.8 80.8 89.4 93.1 67.7 82.7 88.3Qn(S�4n ) 1.1 5.0 11.3 42.9 67.8 79.6 85.4 94.8 97.2 97.2 99.4 99.8 88.1 96.9 98.7� = �III;2 = diag(10; 10; 1; 1; 0; 0)� = 0 � = �(1)III;2 � = �(2)III;2 � = �(3)III;2 � = �(4)III;21% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I6) 0.7 4.6 9.6 34.6 60.2 72.0 73.1 90.5 95.0 82.7 95.4 98.1 53.6 79.3 89.4Qn(S�n ) 1.1 5.0 11.3 27.7 49.9 64.4 64.9 83.9 91.1 98.2 99.6 99.8 94.8 98.6 99.6Qn(S�1n ) 0.2 2.8 7.8 16.8 33.2 44.1 41.5 59.2 66.9 41.6 59.6 67.5 21.9 41.7 51.2Qn(S�2n ) 0.9 5.1 10.7 36.0 61.5 73.3 73.6 90.3 94.8 73.6 90.2 94.8 42.2 66.1 75.9Qn(S�3n ) 0.6 5.2 9.8 30.8 54.2 67.0 68.3 87.5 92.4 86.2 93.6 97.2 72.7 86.3 91.1Qn(S�4n ) 1.1 5.0 11.3 27.7 49.9 64.4 64.9 83.9 91.1 98.2 99.6 99.8 94.8 98.6 99.6� = �III;3 = diag(8; 4; 2; 1; 0; 0)� = 0 � = �(1)III;3 � = �(2)III;3 � = �(3)III;3 � = �(4)III;31% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I6) 0.8 4.5 10.5 56.1 77.5 84.9 75.7 93.9 97.2 27.0 62.7 78.9 82.0 96.0 99.0Qn(S�n ) 1.1 5.0 11.3 38.4 62.8 74.5 85.0 95.0 97.5 83.0 92.5 96.9 96.9 99.5 99.9Qn(S�1n ) 0.9 5.1 9.9 57.7 79.0 87.7 14.4 29.7 40.9 1.1 4.8 10.6 31.4 54.5 67.2Qn(S�2n ) 0.8 5.2 10.6 48.4 70.1 80.2 89.3 97.3 98.8 1.8 7.3 14.8 76.2 90.5 94.9Qn(S�3n ) 0.5 5.2 10.9 42.6 66.5 75.8 88.3 96.8 98.0 84.5 94.6 97.2 86.8 94.8 97.6Qn(S�4n ) 1.1 5.0 11.3 38.4 62.8 74.5 85.0 95.0 97.5 83.0 92.5 96.9 96.9 99.5 99.9From the results presented in Table 4, the empiri
al sizes were rather satisfa
tory, ex
ept forQn(S�1n ) at the 5% and 10% nominal levels, when � = �II;1 whi
h underreje
ted and displayedreje
tion rates outside the 99% signi�
an
e limits. When � = �II;1, the spe
tral de
ompositiongives �1 = �2 = 1 and �3 = 4:6 � 10�3. A basis for the eigenspa
e is 
omposed of the ve
torsfv1 = (0:0;�0:2; 1:0)> ;v2 = (0:5;�0:9;�0:2)>;v3 = (0:9; 0:4; 0:1)>g. Clearly �(1)II;1 and v1 areorthogonal and as a result the empiri
al powers of Qn(S�kn ), k � 2 were low. The best empiri
alpowers have been observed for the f2g-inverse with k = 3. The weighting Wn = I3 o�ered lesspower. The alternative �(2)II;1 belongs to V(v1). The best empiri
al powers have been observed byQn(S�2n ) and Qn(S�3n ). The weighting Wn = I3 o�ered high power. The ve
tor �(3)II;1 2 V(v1;v2);



19Table 6. Relative frequen
y of reje
tion of H0 : � = 0 (in per
entage) for thetest based on the statisti
s Qn(Wn) de�ned by (2), using Wn = I6, Wn = ��kn ,k = 1; 2; 3; 4; 5; 6, and Wn = ��n , with Zn = pn �Xn and �n = Sn, where the meanve
tors are given in Table 2.(p; r) = (6; 6) � = �IV;1 = I6 � 920x6x>6 ;x6 = (1; 45 ; 35 ; 25 ; 15 ; 110 )>� = 0 � = �(1)IV;1 � = �(2)IV;1 � = �(3)IV;1 � = �(4)IV;11% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I6) 0.9 4.7 8.7 94.3 98.9 99.6 95.5 99.1 99.7 91.9 98.5 99.2 49.4 98.2 100.0Qn(S�n ) 1.6 7.0 12.0 97.0 99.5 99.7 95.8 99.2 99.5 92.6 98.3 99.2 100.0 100.0 100.0Qn(S�1n ) 0.3 3.2 6.7 26.0 40.4 48.6 24.6 38.2 46.7 23.8 39.2 47.3 0.4 3.3 6.7Qn(S�2n ) 0.2 2.7 6.6 45.7 63.0 71.2 45.7 61.6 69.6 46.6 63.7 71.7 0.2 2.5 6.6Qn(S�3n ) 0.5 3.5 7.0 65.6 79.5 84.9 65.2 77.5 83.2 64.2 79.8 85.7 0.5 3.4 6.9Qn(S�4n ) 0.7 4.1 8.8 83.4 92.1 94.8 82.6 91.9 94.4 82.4 92.2 95.2 0.7 3.9 8.3Qn(S�5n ) 1.5 6.1 11.4 95.5 99.2 99.6 96.8 99.4 99.6 93.7 98.6 99.6 1.7 6.1 11.7Qn(S�6n ) 1.6 7.0 12.0 97.0 99.5 99.7 95.8 99.2 99.5 92.6 98.3 99.2 100.0 100.0 100.0� = �IV;2 = I6 � 0:16XX>;X = (
1; 
2; 
3; 
4); 
1 = 16; 
2 = ( 12 ;� 12 ; 12 ;� 12 ; 12 ;� 12 )>;
3 = ( 12 ; 0; 0; 0; 0; 12 )>; 
4 = (0; 0; 12 ; 0; 0; 0)>� = 0 � = �(1)IV;2 � = �(2)IV;2 � = �(3)IV;2 � = �(4)IV;21% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I6) 0.8 4.7 9.1 94.5 99.0 99.5 94.3 98.9 99.5 96.7 99.5 99.7 74.3 90.9 96.8Qn(S�n ) 1.6 7.0 12.0 93.1 98.4 99.3 93.7 98.4 99.4 98.8 99.8 99.8 100.0 100.0 100.0Qn(S�1n ) 0.2 3.2 7.0 34.3 50.4 58.0 30.1 45.8 54.5 4.5 13.9 21.7 2.1 7.3 14.1Qn(S�2n ) 0.2 3.3 7.7 56.4 72.8 79.3 53.6 71.1 77.8 14.5 28.2 39.2 4.9 14.1 22.8Qn(S�3n ) 0.4 3.3 7.3 76.3 88.1 92.2 74.3 85.8 90.8 30.6 46.6 56.0 13.4 26.6 35.6Qn(S�4n ) 0.3 3.8 8.4 89.8 95.8 98.4 88.8 96.3 97.9 58.9 72.1 78.1 30.8 48.5 58.9Qn(S�5n ) 1.5 6.1 11.4 94.5 99.1 99.6 94.7 98.7 99.4 99.3 99.8 99.8 76.1 88.6 93.2Qn(S�6n ) 1.6 7.0 12.0 93.1 98.4 99.3 93.7 98.4 99.4 98.8 99.8 99.8 100.0 100.0 100.0� = �IV;3 = I6 � 0:49XX>;X = (
1; 
2; 
3; 
4; 
5); 
1 = 
2 = (1; 0; 0; 0; 0; 0)>;
3 = (0; 1; 0; 0; 0; 0)>; 
4 = (0; 0; 0; 1; 0; 0)>; 
5 = (0; 0; 0; 0; 1; 1)>� = 0 � = �(1)IV;3 � = �(2)IV;3 � = �(3)IV;3 � = �(4)IV;31% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I6) 0.4 4.5 9.2 97.3 99.4 99.8 97.9 99.6 99.8 23.2 49.9 65.1 45.7 71.1 81.3Qn(S�n ) 1.6 7.0 12.0 92.7 98.1 99.2 94.2 98.6 99.3 45.3 66.1 76.0 56.4 74.9 84.1Qn(S�1n ) 0.2 2.5 7.2 63.0 73.7 77.4 57.4 69.9 76.0 0.3 3.8 9.0 11.6 25.7 35.7Qn(S�2n ) 0.7 4.6 9.7 96.9 99.0 99.7 97.7 99.6 99.7 1.8 6.9 13.4 19.4 38.7 51.4Qn(S�3n ) 0.6 4.8 9.3 96.6 99.1 99.6 96.6 99.3 99.7 20.7 39.0 48.5 36.2 57.6 69.0Qn(S�4n ) 1.1 5.0 11.1 95.6 99.1 99.6 96.3 99.2 99.6 49.2 70.7 79.7 61.3 79.8 87.0Qn(S�5n ) 1.2 4.6 9.9 94.2 98.6 99.5 95.5 98.5 99.3 45.5 67.0 77.3 57.9 76.0 84.5Qn(S�6n ) 1.6 7.0 12.0 92.7 98.1 99.2 94.2 98.6 99.3 45.3 66.1 76.0 56.4 74.9 84.1the best power has been observed for the f2g-inverse with k = 2. The alternative � = �(4)II;1 doesnot lie in a spe
i�
 eigenspa
e; the best power has been observed with a f2g-inverse with k = 3.



20When � = �II;2, �1 = 1:000; �2 = 0:334; �3 = 10�3. The �rst alternative �(1)II;2 belongs to theeigenspa
e asso
iated to �1; it appears that Qn(S�1n ) is very powerful. The se
ond alternative �(2)II;2belongs to the eigenspa
e asso
iated to �2, and Qn(S�2n ) dominates whereas, as expe
ted, Qn(S�1n )has no power. The third alternative lies in V(f�3g); the test statisti
s based on the f2g-inverses withk = 1; 2 o�ered no power and the best power has been attained at k = 3. The alternative �(4)II;2does not lie in a spe
i�
 eigenspa
e. Low power has been observed for k = 1 and k = 2, and thebest empiri
al power has been observed when k = 3. Note that when � = �(2)II;2;�(3)II;2;�(4)II;2, theweighting Wn = I3 displayed low power and it appeared preferable to use a generalized inverse or af2g-inverse.In Table 5, multivariate sampling from a singular normal distribution of dimension six and rankfour was performed. In general the reje
tion rates were satisfa
tory under the null, ex
ept forQn(S�1n )when � = �III;1;�III;2, whi
h underreje
ts slightly. In the 
ase � = �III;1, slight underreje
tiono

urred at the 10% nominal level for Qn(S�kn ), k = 1; 2; 3. When � = �III;1, the empiri
al powersof Qn(I6) and Qn(S�n ) = Qn(S�4n ) were similar for the alternatives in
luded in the study. All thealternatives belong to the eigenspa
e V(f1g). Under these alternatives the best powers were attainedby Qn(S�n ) = Qn(S�4n ). When � = �III;2, the best power was observed for k = 2 when thealternative was �(1)III;2, whi
h belongs to V(f10g). The best f2g-inverse was the one with k = 2under the alternative � = �(2)III;2, whi
h is also in the eigenspa
e V(f10g). The di�eren
es with theweighting Wn = I6 were rather small. When � = �(3)III;2;�(4)III;2, the generalized inverse o�ered thehighest power. When � = �III;3, the best power was rea
hed by the test statisti
 Qn(S�kn ) basedon a f2g-inverse with k = 1, whi
h 
an be explained be
ause �(1)III;3 2 V(f8g) and the dimensionof that eigenspa
e is one. When � = �(2)III;3, the best power is observed with Qn(S�2n ). The teststatisti
 Qn(S�1n ) o�ered low power under that parti
ular alternative. On the other hand, the powerdi�eren
es between Qn(S�kn ), k � 2 were rather small. The alternative � = �(3)III;3 belongs to V(f2g).Consequently, Qn(S�kn ), k � 2, have no power. The best empiri
al power is obtained when k = 3 forthe f2g-inverse, but the generalized inverse exhibits also high power. The weighting Wn = I6 o�erssome power, but that pro
edure was signi�
antly less powerful than the generalized inverse. Thealternative � = �(4)III;3 belongs to the eigenspa
e generated by the non null eigenvalues. Consequentlythe best power is attained with the f2g-inverse with k = 4.Finally, we analyze the results in Table 6. In general the reje
tion rates were reasonable under thenull. When � = �IV;1;�IV;2, some underreje
tion has been observed for Qn(S�kn ), k = 1; 2; 3, whi
hseemed more pronoun
ed at the 10% nominal level. Overreje
tion o

urred for Qn(S�n ) = Qn(S�6n )at the 5% and 10% nominal levels. Some underreje
tion has been observed for Qn(S�1n ) when sam-pling from a normal distribution with 
ovarian
e matrix � = �IV;3. The eigenvalues of � = �IV;1are �1 = : : : = �5 = 1 and �6 = 5:5 � 10�3. The alternatives � = �(1)IV;1;�(2)IV;1;�(3)IV;1 are allin the orthogonal 
omplement of the eigenspa
e asso
iated to �6. For all these alternatives, theempiri
al power in
rease with k, and the best powers are attained by Qn(S�kn ), k = 5; 6. In gen-eral the di�eren
es between the weighting Wn = I6 and Wn = S�n were rather small. When� = �IV;2, �1 = �2 = 1; �3 = 0:97; �4 = 0:94; �5 = 0:75 and �6 = 5:3 � 10�3. The alternatives



21� = �(1)IV;2;�(2)IV;2 belong to the eigenspa
e asso
iated to the unit eigenvalue. However, sin
e theeigenvalues �i, i = 1; : : : ; 5 are 
lose, the best power are o�ered by Qn(S�kn ) with a large k. Thealternatives � = �(5)IV;2 lie in the eigenspa
e asso
iated to �5. The best power is observed for Qn(S�5n ).In general the di�eren
es between the weightingWn = I6 andWn = S�n were rather small under thealternatives � = �(1)IV;2;�(2)IV;2;�(3)IV;2. The alternative � = �(4)IV;2 belong to the eigenspa
e asso
iatedto �5 and �6. Low power is observed for Qn(S�kn ), k � 4. The best power are observed for Qn(S�kn ),k = 5; 6. In general the di�eren
es between the weighting Wn = I6 andWn = S�5n were small underthat alternative but substantially lower than the f2g-inverse with k = 6. When � = �IV;3, theeigenvalues are �1 = �2 = 1, �3 = �4 = 0:51 and �5 = �6 = 0:02. The alternatives � = �(1)IV;3;�(2)IV;3belong to the eigenspa
e asso
iated to �1. Consequently Qn(S�2n ) was the most powerful. The alter-native � = �(3)IV;3 belongs to the eigenspa
e asso
iated to �3. Consequently Qn(S�kn ), k = 1; 2 hadno power. The best empiri
al power has been observed when Qn(S�4n ). There were slight di�eren
esbetween Qn(S�kn ), k = 4; 5; 6. The alternative � = �(4)IV;3 belongs to the eigenspa
e asso
iated to �1and �3. The test statisti
 Qn(S�kn ), k = 1; 2; 3, o�ered some power under that alternative, but thebest power has been observed with the test statisti
 Qn(S�4n ).6. TESTING FOR CLIMATE CHANGESThe three 
lasses of test pro
edures are now illustrated on a set of monthly re
onstru
tions of temper-atures and pre
ipitationsz (see Casty et al. 2005). These spatio-temporal data extend from January1659 to De
ember 1999 and 
over a gridded area of 197 points over the whole European Alp region(note that the data �le 
ontains a gridded area of 275 points, but for ea
h observation the same 197points are measured). Our �rst aim is to 
ompare the mean temperature over the last 40 years withthe mean temperature over the whole period in order to test for a signi�
ant 
hange. We 
onstru
tedthe 12-dimensional multivariate time series of temperatures, denoted tt = (tt(1); : : : ; tt(12))>, su
hthat tt(i) 
orresponds to the monthly average at time t and month i over the 197 grid points,i = 1; : : : ; 12, t = 1659; : : : ; 1999. The monthly mean are represented in Figure 4.For our testing problem, we de�ned the time series Xt = 140P40i=1 tt+1657+i for t = 1; : : : ; n = 302and the test statisti
 Zn = Xn � 1n�1Pn�1t=1 Xt. We supposed that the series of temperatures fXtg
onstituted a stationary sequen
e with 
onstant mean �X, varian
e �X, and auto
ovarian
e fun
tion�X(�), that we presumed to be absolutely summable, that isP1h=1 k�X(h)k <1. Let E(Zn) = �Z.Under the null hypothesis: H0 : �Z = 0; against H1 : �Z 6= 0; (16)and the varian
e of the test statisti
 Zn is given by:� = nn� 1�X � (n� 1)�1 n�1Xh=1n�X(h) + �>X(h)o+ (n� 1)�2 n�2Xh=1(n� 1� h)n�X(h) + �>X(h)o :zCasty, C., et al. 2008. European Gridded Monthly Temperature, Pre
ipitation and 500hPa Re
onstru
tions. IGBPPAGES/World Data Center for Paleo
limatology Data Contribution Series # 2008-023. NOAA/NCDC Paleo
lima-tology Program, Boulder CO, USA.
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Figure 4. Monthly mean Alpine temperature from 1659 to 1999.Sin
e the auto
ovarian
e fun
tion is assumed absolutely summable, it follows that �! �X almostsurely, as n!1. In order to estimate 
onsistently the varian
e �, a simple estimator is given by theempiri
al varian
e Sn of X1; : : : ;Xn. An analysis of the eigenvalues of Sn revealed that the smallest(resp. largest) eigenvalue was 2:13� 10�3 (resp. 5:36� 10�1), suggesting that the sample 
ovarian
ematrix was relatively 
lose to a singular matrix.The test statisti
s Qn(I12), Qn(S�kn ), k 2 f1; : : : ; 11g and Qn(S�n ) were 
omputed. Sin
e Sn isinvertible, the generalized inverse is in fa
t the inverse, and the test statisti
 Qn(S�n ) is the 
lassi
alWald test pro
edure, that is Qn(S�n ) = Qn(S�1n ). From (v) in our Corollary 1, the Qn(S�n ) teststatisti
 is likely to have a larger Bahadur slope than any Qn(S�kn ), 1 � k � 12, and also than theImhof-based test statisti
 Qn(I12) (but we 
annot 
ompare dire
tly Qn(I12) and Qn(S�kn )). Using the



23lo
al power analysis, any f2g-inverse is asymptoti
ally lo
ally more powerful than Qn(S�n ) (and evenQn(I12)) in 
ertain dire
tions. From our results, we 
annot 
on
lude whi
h one is best between theImhof-based test and Qn(S�n ). The p-values of the di�erent test pro
edures are displayed under the
olumn labelled 'Temperature' in Table 7. At the nominal 5% level, the null hypothesis is not reje
tedby the test statisti
s based on the f2g-inverses with k 2 f2; : : : ; 7g, but is reje
ted by Qn(S�1n ), andQn(S�kn ), k 2 f8; : : : ; 11g. As we have seen in the previous se
tions, the f2g-inverse test statisti
sQn(S�kn ) and Qn(S�n ) may have low powers in 
ertain dire
tions of the alternative hypothesis, thatmay explain that several test statisti
s do not reje
t the null hypothesis. By 
omparison, the Imhof-based test, whi
h enjoys power in all dire
tions, reje
ts the null at the usual 5% level. Moreover,the 
onservative Bonferroni pro
edure (
onsisting in reje
ting if the minimal p-value multiplied bythe number of tests is less than a given level) also tends to reje
t the assumption that the Alpinetemperature of the 40 last years be sto
hasti
ally similar to that of the period of referen
e. This is ina

ordan
e with many empiri
al studies exhibiting an a

umulation of extremes positive temperatureduring the re
ent past (see e.g. Casty et al. 2005).The same exer
ise has been performed, repla
ing the series of temperatures fttg by a multivariatetime series 
omposed of pre
ipitations. Following the same pro
edure that des
ribed previously, amultivariate time series of monthly pre
ipitations, denoted fptg, t = 1659; : : : ; 1999, has been 
re-ated. The smallest (resp. largest) eigenvalue was 1:45 (resp. 131:0). The results are under the
olumn entitled 'Pre
ipitation' in Table 7. The results suggest that the test statisti
s do not dete
tany eviden
e against the null hypothesis that the average pre
ipitations of the last 40 years are sto-
hasti
 similar to those of the whole period. That 
on
lusion is in a

ordan
e with studies showingthat the pre
ipitation dynami
s does not exhibit a parti
ular trend over the last period, but shows'a 
lear 
y
li
 variability on a times
ale of 40-60 years' (see e.g. Casty et al. 2007 for more details).7. DISCUSSION AND CONCLUSIONGeneralized Wald's method 
onstru
ts testing pro
edures having 
hi-squared limiting distributionsfrom test statisti
s having singular normal limiting distributions by use of generalized inverses. In thisarti
le, we investigated the use of f2g-inverses for that problem and we proposed new test statisti
swith 
onvenient asymptoti
 
hi-square distributions. Imhof-based test statisti
s have also be studied,whi
h 
onverge in distribution to weighted sum of 
hi-square variables. We dis
ussed the asymptoti
null distributions of the test statisti
s, and we performed a power analysis under �xed and lo
alalternatives. Simulation studies have been performed to study the exa
t levels in �nite samples, andthe exa
t powers have been 
ompared empiri
ally in a simulation study.In general the test statisti
s o�ered satisfa
tory empiri
al levels; the test statisti
s based on the f2g-inverses with small values of k o�ered some underreje
tion, but generally in the 99% signi�
an
e limitsand reasonably 
lose to the 95% signi�
an
e intervals. From our theoreti
al and empiri
al results,the spe
tral de
omposition of the 
ovarian
e matrix plays an important role on the power properties.If an alternative lied in a spe
i�
 eigenspa
e, powerful test pro
edures were 
onstru
ted based onf2g-inverses with orders 
hosen large enough su
h that the asso
iated eigenspa
es in
luded thatalternative. This was expe
ted from our theoreti
al results (see Corollaries 1 and 2) and 
on�rmed in



24 Table 7. Testing stability against 
limate 
hanges: p-values (in per
entage) of theQn(�)-tests de�ned by (2) for the testing problem (16) when the Xt's 
orrespond totemperature averages or pre
ipitation averages.Temperature Pre
ipitationImhof Qn(I12) 3.3 66.4k = 1 2.0 96.9k = 2 6.6 85.7k = 3 12.3 45.5k = 4 13.7 48.0k = 5 13.1 57.4f2g-inverse Qn(S�kn ) k = 6 6.0 45.2k = 7 5.6 39.5k = 8 4.1 36.9k = 9 0.4 23.4k = 10 0.6 18.4k = 11 1.0 21.4Moore-Penrose Qn(S�n ) 1.5 24.6the simulation experiments. In pra
ti
e, a spe
tral de
omposition of the 
ovarian
e matrix appearsthus useful in spe
ifying the order k: If the alternative of interest belongs to a parti
ular eigenspa
e,it di
tates the 
hoi
e of k. When the 
ovarian
e matrix was singular or approximately singular,and when the alternative lied in the eigenspa
e asso
iated to the non-null eigenvalues, test statisti
sbased on f2g-inverses with an order equal to the estimated rank of the 
ovarian
e matrix wereparti
ularly powerful test pro
edures. If an alternative was orthogonal to the eigenspa
e asso
iatedto the eigenvalues used to 
onstru
t a test statisti
 based on a f2g-inverse, low power has beenobserved (see also Corollary 2, ii)). The weighting based on a generalized inverse o�ered high powerin several 
ases, and the omnibus weighting Wn = Ip provided also interesting power, and in fa
twas very powerful for the alternatives whi
h were in the eigenspa
e generated by the null eigenvalues.The test pro
edures have been illustrated in the data analysis on the monthly temperature andpre
ipitation variability in the European Alps. In 
omparing the monthly temperature of the last40 years with the whole period under study, a signi�
ant di�eren
e has been found using the Imhof-based test, using the test statisti
s relying on f2g-inverses with k = 1, 7 � k � 11, and also for thetest statisti
 using the generalized inverse. No signi�
ant di�eren
e has been found for the pre
ipi-tation time series. Sin
e the f2g-inverses may o�er high power in 
ertain dire
tions, and low powerin others, our data analysis 
ontributed to explain the dire
tions of the alternative hypothesis whi
hentailed reje
tion of the null hypothesis of equal mean temperature.APPENDIX. CONSTRUCTION OF THE f2g-INVERSE.In order to 
ompute ��kB , with k < r, r = rank(�), we des
ribe an algorithm, whi
h has been used



25in Se
tions 5 and 6. Given a �xed toleran
e � >, a basis B = fu1; : : : ;umg of Rr , a symmetri
semi-de�nite matrix � and an integer 1 � k < r, the following steps are performed.1. First, 
ompute the eigenvalues �1 � � � � � �r of �;2. Find the largest integer k � k su
h that �k > �k+1 + �;3. De�ne the following set: s(k) = fi; j�k � �ij < �g;4. Compute the 
ardinal mk of s(k);5. Cal
ulate the matrixM s(k) su
h that the mk 
olumns 
onstitute an orthonormal basis of theeigenspa
e Vs(k) asso
iated to the eigenvalues su
h that the indi
es are in s(k);6. The orthogonal proje
tion on Vs(k) 
an be 
omputed, and is given by P Vs(k) =M s(k)M>s(k);7. De�ne the generator P Vs(k)(B) = nP Vs(k)(u1); : : : ;P Vs(k)(um)o;8. A basis given by nP Vs(k)(ui1); : : : ;P Vs(k)(uimk )o is 
al
ulated, taking the mk ve
tors ofP Vs(k)(B) su
h that the norm is larger than � and su
h that their distan
e is superior to �of the spa
e generated by the pre
eding ve
tors of the system (if that operation does notprovide a basis, � was 
hosen too large; thus � is divided by two and the algorithm returns tostep 2);9. An orthonormal basis fv1; : : : ;vmkg is determined, applying the Gram-S
hmidt pro
ess onthe basis obtained in the pre
eding step;10. if k > 0, a matrix M f1;:::;kg su
h that the k 
olumns 
onstitute an orthonormal basis of theeigenspa
e asso
iated to the eigenvalues �1; : : : ; �k;11. The matri
es ��kB = diag(��11 ; : : : ; ��1k ;0>m�k), ��kB = Mf1;:::;kg��kB M>f1;:::;kg if k > 0,adopting the 
onvention ��kB = 0 if k = 0, and ��kB = ��kB +Pk�kj=1 ��1k viv>i :The algorithm de�ned by steps 1-11 gives a fun
tion AB;k;� su
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