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Abstract

Generalized Wald’s method constructs testing procedures having chi-squared limiting distributions
from test statistics having singular normal limiting distributions by use of generalized inverses. In
this article, the use of {2}-inverses for that problem is investigated, in order to propose new test
statistics with convenient asymptotic chi-square distributions. Alternatively, Imhof-based test sta-
tistics can also be defined, which converge in distribution to weighted sum of chi-square variables;
The critical values of such procedures can be found using Imhof’s (1961) algorithm. The asymptotic
distributions of the test statistics under the null and alternative hypotheses are discussed. Under
fixed and local alternatives, the asymptotic powers are compared theoretically. Simulation studies
are also performed to compare the exact powers of the test statistics in finite samples. A data anal-
ysis on the temperature and precipitation variability in the European Alps illustrates the proposed
methods.

Key words and phrases: {2}-inverses; generalized Wald’s method; generalized inverses; multivariate
analysis; singular normal distribution.
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1. INTRODUCTION
Let Ty, = (Tn1,---,Tnp) T, n > 1, be a sequence of statistics, and introduce Z,(u) = n'/2(T, — p),
w=(u1,... ,up)T. The classical testing problem confronts hypotheses Hy and Hi:

Hy : po= py,
(1)
Hy:p # py.
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Under the null hypothesis, it is assumed that the sequence of test statistics converges toward a normal
distribution: Z,, := Zy () KN N, (0,,2) as n — oo, where 0, = (0,...,0)" is the p-dimensional null
vector. The covariance matrix ¥ # 0, possibly singular, is supposed to be unknown. Based on sam-
ple data, the hypothesis testing problem is to decide whether it seems likely that the null hypothesis
to be true. To study limiting alternative distributions, under the fixed alternative Hq : pu = py, we
suppose that Z, (p;) L\ N,(0,X) as n — oo, and under any sequence of local alternative hypotheses
Hip:p, = g +n""2A,, A, = A, we suppose instead that Z, () LN Ny (A, E), with A # 0.
The problem described above represents a general framework for many statistical problems coming

from multivariate analysis, non-linear regression models, and time series analysis.

1.1 Leading examples of the testing problem

Let X; = (Xj1,..., Xip) ', i=1,...,n, be a random sample from a multivariate distribution, where
E(X;) = p and var(X;) = E{(X; — u)(X; — p) "} = =. The sequence of test statistics could be
simply based on the sample means, T,, = X, =n~! Yo, X, and the asymptotic normal distribution
under the null hypothesis is found invoking the multivariate central limit theorem. That framework
goes back to the seminal work of Wald (1954). In fact, under the normality assumption, that is
X; ~ Np(p, X), with the covariance matrix ¥ unknown but supposed positive definite, Hotelling’s
T? test statistic represents the classical test procedure for problem (1) and Wald (1954) simply
developed the large sample analog of Hotelling’s method. See, e.g., Srivastava and Khatri (1979),
Muirhead (1982) or Anderson (1984), among others. When the sample is obtained from a singular
multivariate distribution, Bhimasankaram and Sengupta (1991) proposed a methodology similar to
Hotelling’s test statistic. If X ~ Nj(p, ) with det(X) = 0, it is well-known that X — p belongs to
the column space of rank r, say, of the covariance matrix ¥ with probability one (w.p.1); visually,
the data lies in the r-dimensional affine subspace of RP, r < p. Furthermore, a certain linear
transformation of X — p follows a nonsingular normal distribution (see, e.g., Bilodeau and Brenner
(1999, p. 62) or Eaton (2007)). Thus the initial problem can be reformulated in a smaller dimension
using a non-singular normal distribution. However, to work with the data in the transformed scale
may be seen as a disadvantage from a practical point of view, and, more importantly, the rank of 3
must be known a priori, which can be a restrictive assumption. Wald’s method has been generalized
by Moore (1977) to sequences of test statistics having singular normal distributions by a natural use
of generalized inverses.

Multivariate sampling is just a simple example and the study of other test statistics may result
in asymptotic singular normal distributions. In parametric models, when g is the vector of cell
probabilities in a multinomial model and T,, represents the vector of observed relative frequencies,
the covariance matrix X is singular; that example has been studied in detail by Moore (1977). In
non-linear regression models, under certain conditions, the asymptotic distribution of the regression
parameters in non-linear regression models is a singular normal distribution, see Robinson (1972). See
also Hadi and Wells (1990), who give several examples of non-linear models with singular information
matrices. Another example is taken from time series analysis, where a central problem is to test for

serial correlation. It is well-known that the asymptotic distribution of a vector of fixed length of
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residual autocorrelations is approximately a singular normal distribution, see Box and Pierce (1970),
Li and McLeod (1981) and Ljung (1986), amongst others.

1.2 Testing procedures
In this paper, we consider several test procedures which can be used whether 3 is singular or non-

singular, without assuming normality. More specifically, we study the general class of test statistics:
Qn(Wy) = Z, W, Zy, (2)

where W, is a weight matrix. For the testing problem (1), the null is rejected for large values of
9,(W,). We discuss in detail three testing procedures corresponding to the weighting matrices: (i)
W,, = I,, where I, denotes the p x p identity matrix, (ii) W, = X_*, where 3 _* represents a {2}-
inverse of ¥,,, and finally (iii) W,, = X, where X is the Moore-Penrose inverse (or pseudo-inverse)
of 3,,. The estimator ¥, is assumed to be strongly consistent for 3, that is X,, — 3, almost surely.
Note that the strong consistency of 3, is assumed to be true under the null hypothesis, under
sequences of local alternatives and for fixed alternatives. Our framework is general, and the test
statistics can be applied for all the testing problems described above. For example, in multivariate
sampling, natural candidates would be procedures based on sample means for Z,, and 3, could
be the sample covariance matrix S, = n~!' 3" (X; — X,,)(X; — X,,)T. The test statistics in class
(i) are simply based on the usual Euclidian norm of Z,. The test procedures in class (ii) consider
to use {2}-inverses for the weight matrix W,,. The literature on generalized and pseudo-inverses is
considerable, see, e.g., Rao and Mitra (1971) and Rao (1973), among others. On the other hand, the
important role of {2}-inverses in statistics, more particularly in the study of quadratic forms, seems
less well documented. Applications of {2}-inverses in statistics are described in Getson and Hsuan
(1988). Finally, the class of test statistics (iii) is composed of the generalized Wald’s test statistics
introduced in Moore (1977). See also Andrews (1987) and Hadi and Wells (1990). Duchesne and
Francq (2008) investigated diagnostic checking time series models with portmanteau test statistics
relying on generalized inverses and {2}-inverses. In their applications, Z, was based on a vector
of sample autocorrelations and X,, was a certain consistent estimator of the asymptotic covariance
matrix of the sample autocorrelations. Here the framework is considerably more general, and we
investigate the theoretical and empirical properties of the test statistics Q, (W) under fixed and
local alternatives.

The paper is organized as follows. In Section 2, we discuss the asymptotic distributions of the test
statistics Q,(I4), Qn(X,,*) and 9, (X, ) under null and local hypotheses. The asymptotic powers
of these test statistics are compared in Sections 3 and 4, under fixed and local alternatives, respec-
tively. In Section 5, some simulation experiments are conducted. A data analysis is presented in
Section 6 on the monthly temperature and precipitation variability in the European Alps for the
period 1659-1999. Concluding remarks are offered in Section 7. An Appendix gives some technical

details concerning the construction of the test statistics based on {2}-inverses.
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2. ASYMPTOTIC DISTRIBUTIONS UNDER THE NULL HYPOTHESIS
For a reason that will be transparent in the next section, the test statistic based on Q, (I4) will be
called Imhof-based test.

2.1 The Imhof-based test statistic (case W,, = I,)

A simple and natural test procedure leads to the study of the norm of Z,, namely ||Z,||>. The
asymptotic distribution of Q,(I,) under the null hypothesis Hy follows easily invoking the multivari-
ate central limit theorem and a spectral decomposition of 3. Consider the spectral decomposition
S =PAP' = b, Aiviv] with PTP =1, where A = diag(\1, ..., A,) and the columns vy, ..., v,
of the matrix P constitute an orthonormal basis of RP. The weights Ay > Xo > ... > A\, > 0
and A\41 = ... = A, = 0 represent the eigenvalues of ¥ and thus r = rank(X). The chi-squared
distribution with k& degrees of freedom and non-centrality parameter c is noted x7(c). The vector

1, = (1,...,1)T corresponds to a p-dimensional vector composed only of ones.

Proposition 1. If Z, = Z,(p,) LN Np(A,X) and ), — 2 in probability as n — oo, then

T T
Z0Z, 5 S A3 (6;%) + 6060 := S NN + 6] 6,

=1 =1

where 0y = diag (0T 1! )PTA. The non-centrality parameters 0 satisfy 0* = (91‘,...,9;)T =

royp—r

AYVZPTA with AY? = diag (A;1/2, .. .,)\;1/2,0;4), and the normal random variables N;* are
components of the singular normal distribution N* = (Nl*,...,N;;‘)T ~ /\/;,(0*,1;’") with I;" =

diag (1T 0 )

roUp—r

Proof: The proposition is a well known consequence of the continuous mapping theorem and of
standard results on quadratic forms of Gaussian vectors. See, e.g., Rao and Mitra (1971) or Rao
(1973) for distributions of quadratic functions in normal random variables. More precisely, it is
obtained by noting that N¥ = AY/2"PTZ, 4 N* = Np(0*,1,7) and that [|Z,]? = [P Z,|? =
|AY2N, + 69|12, O

Under the null hypothesis A = 0, in Proposition 1 and it follows that:

T
d
On(Ly) = [|Zn]|* = ZAiNz‘Qa (3)
i=1
where Ny,..., N, correspond to independent N(0,1) random variables. In practice, it is possible

to evaluate the distribution of the Gaussian quadratic form in (3) by means of the algorithm of
Imhof (1961). More precisely, the test procedure based on the weight matrix Wy, = I, relies on the
following steps: 1) Compute the eigenvalues 5\1, ey Xp of X, which provides a consistent estimator
3. 2) Evaluate the (1 — a)-quantile cq(A1, . .. ,5\1,) of 8 | j\iNi? using Imhof’s algorithm, and finally
3) the null hypothesis is rejected when Q,(L,) > ca(A1,..., ). An interesting advantage of that
procedure is that the rank of ¥ does not need to be known and the procedure is in all points the

same whether 3 is singular or non-singular.
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In a time series framework, a similar procedure has been considered in Francq, Roy and Za-
kotan (2005) in testing for null autocorrelations in the residuals from autoregressive-moving-average
(ARMA) models. In their context, they specified Z,, = n!/2p, with p = (p(1),...,p(p)) ", where p(h)
denotes the lag-h residual autocorrelation, h = 1,...,p. In order to test null autocorrelations, their
test statistic reduced to the so-called Box-Pierce test statistic ||Z,[|? = n>_F_, p*(h) proposed by
Box and Pierce (1970), which relies on the sum of squared residual autocorrelations. See for example
Li (2004), among others. In their procedure, the quantiles were found estimating the eigenvalues of
a consistent estimator of the asymptotic covariance matrix of the residual autocorrelations. That
strategy has been adapted in Duchesne and Francq (2008) for diagnostic checking non-linear time
series models. Note that the use of the test statistic Q,(I,) in the context of multivariate sampling
seems to be absent from the literature, probably due to the non-standard limiting distribution of

that test procedure.

2.2 The test statistic based on {2}-inverses (case W,, = X_*)

A generalized inverse (g-inverse) of ¥ is a matrix 3 satisfying the condition:
TEE =3, (4)

It is also called a {1}-inverse since (4) is usually the first of the four conditions defining the (unique)
Moore-Penrose inverse of ¥ (see, e.g., Getson and Hsuan (1988)). On the other hand, a {2}-inverse
of 3 is any matrix ¥* satisfying the second relation defining the Moore-Penrose inverse of X, that
is:

IR = B, (5)

When requirements (4) and (5) are satisfied, the resulting matrix is called a {1, 2}-inverse or reflexive

g-inverse (see, e.g., Rao (1973, p. 25)).

Note that the matrix ¥~ = PA P is the Moore-Penrose inverse (or pseudo-inverse) of X,
where A~ = diag()\l_l, D 0;—4). For k = 1,...,r, define the matrix X7 = PAT*P T where
Ak = diag()\fl, e ,)\;1, 0;7,6). The matrix X * is always a {2}-inverse, but this is not a g-inverse

of 3 when k < r.

Empirical versions are easily constructed. Since ¥,, — ¥ almost surely, as n — oo, a natural
estimator of ¥ 7* relies on X, where the spectral decomposition of 3, is given by 2, = P,A,P, .

When all the non null eigenvalues of 3 are distinct, the matrix X% is uniquely defined. However,
when some eigenvalues display multiplicities, 3~ * is not uniquely defined, because it depends on
the particular choice of the orthonormal basis in the spectral decompositions of X. That caveat
is fixed using projections and the Gram-Schmidt orthogonalization process. Consider an arbitrary
basis B = {uy,...,up} of RP. For each eigenvalue A\, = A\;(X) of multiplicity my(X), let V = Vi ()
be the associated eigenspace with dim(V) = m(X). Single eigenvalues do not pose problem; conse-
quently suppose k > 1. The projection on V is denoted Py, which is uniquely defined. The vectors
Py(uy),...,Py(u,) span V since any vector v € V can be expressed as v =Y ¢, ¢;u; = Py(v) =
S P ePy(u;). From the vectors Py(uy),...,Py(uy), a basis By = {Py(u;,),...,Py(u;,)} of V
is extracted as follows: let iy be the smallest index of {1,...,p} such that Py(u;,) # 0 and for
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¢ e {2,...,k}, ig represents the smallest index of {i,_; + 1,...,p} such that Py (u;,) is not spanned
by {Py(u;,),...,Py(u;, ,)}. Using the Gram-Schmidt process, the basis By is transformed in an
orthonormal basis of V. This process allows to define a unique common basis of eigenvectors for
the spectral composition of ¥ and X *. More precisely, we define a unique matrix Pp such that
Y =PpAPJ and 7% = PgA~*P] for all k < r. The matrix Pp will be called the B-eigenvector
matriz of 2.

A similar construction holds for 3,, with eigenvalues 5\1 > ... > 5\,,. Since the B-eigenvector ma-
trices Pp and Py, g of X and X, are uniquely defined, the {2}-inverses 7% = B " and ;% = 2 1
are now uniquely defined by X5 = PBAf’“Pg and E;’CB = Pn’BA;’“P;{’B. An algorithm is given in
the Appendix on the construction of the matrices X ;* and E;f“B. In practice, a tolerance is needed
to estimate the rank of X, the multiplicities, and to distinguish null and non null eigenvalues. The
proposed algorithm defines a function, noted Ap k. (-), based on a tolerance e. The following Assump-

tion A(e) is necessary in order to specify the minimum distance between the different eigenvalues of
3.

Assumption A(e). Let B = {uy,...,u,} be an arbitrary basis of RP. The tolerance € > 0 is such
that:

Ci: min{|X;(2) — X;(Z)] : Mi(B) # X(B)} > ¢,

Cy: For k < rank(X), the application Ap j  such that Ap; (X) = XZ* is continuous at X.
Condition C; in Assumption A(e) ensures that the multiplicities are consistently estimated if € is
chosen small enough. It can be seen that Cy is satisfied for all but a finite number of basis B.
The following lemma is useful for establishing the asymptotic distribution of Q,,(W,) in the case
W, =3X_*.

Proposition 2. Suppose that Z,, = Z, () LN Np(A,X) and B, — X almost surely, as n — oo.
Let B = {uy,...,up} be a basis of RP. Under Assumption A(e), if k < rank(X), it follows that:

— d, k
Z, %, %0 5 x5 (01).
where 9§k> = ATPBAWPEA, and Pp is the B-eigenvector matriz of 3.
Proof: Assumption Cy in A(e) and the almost sure convergence of X, to X give:

Yk =Ap i (By) = B5" = Api.(B) a.s., as n — oo.

The continuous mapping theorem then entails that ZIE;”“BZ,I L\ ZTEE,’“Z. The Ogasawara-

Takahashi theorem establishes the chi-square limiting distribution (see, e.g., Rao and Mitra (1971) or
Rao (1973)): Since ¥ 5" is a {2}-inverse, the conditions (ZX ;)% = (EE,*)2 and ATE S ET FA =
ATZ]];’CA hold trivially. Finally, ¥35* A belongs to the column space of XX 5", since XA =
EE ;4 En, n = Crdiag(\[',...,A\;)C} A, where Py = (C; C,_j), with C; and C,_, of dimen-
sions p x k and p x (p — k), respectively. The number of degrees of freedom is k¥ = rank(EX;*) with
non-centrality parameter ATE * SR BN FA = ATPgATFP LA, This concludes the proof. O

Note that the condition k& < r = rank(X) appears to be essential (see Duchesne and Francq

(2008)). It follows immediately from Proposition 2 that, when k& < r, the asymptotic distribution of
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9, (%) is x7 under the null. The tests based on the {2}-inverses are thus defined by the critical
regions {QH(E;’“) > X%,l—a}= where X%,a denotes the a-quantile of the xi distribution.

2.3 The test statistic based on the generalized inverse (case W, = 3)

In order to test the null hypothesis, Hotelling’s type procedure is based on the weighting W,, = 2;1
and thus the test statistic Q, (2, 1), provided that ¥, is invertible. When ¥ is non-singular, X,, will
be non-singular when n is chosen large enough. In the singular case, the weighting W,, = 2 offers
a natural choice, since the Moore-Penrose inverse is uniquely defined. Recall that the generalized
inverse is obtained by inverting the non zero eigenvalues. In practice, as for the {2}-inverses, a
tolerance € > 0 is required for assessing the non zero eigenvalues. The following proposition clarifies

the role of € and gives the asymptotic distribution of Q,(X,).

Proposition 3. Suppose that Z,, = Z,(p,) LA Ny (A, X) and B, — X almost surely, as n — co.
Let the spectral decomposition =, = P, A P} where A, = diag{\i (Z,),.. S Ap (Bp)}. For any
e>0,let ¥, = PnAn,EPJ, where Ay, ¢ is the matriz obtained by replacing by zero the elements of

A, which are less than €. If € is sufficiently small, so that:
Pr{rank(2, ;) = rank(2)} — 1, (6)

as n — oo, it follows that:
— d,
erzn,azﬂ - X$(92)a
where r = rank(X) and fy = ATZ A,

Using similar arguments as in Proposition 2, Proposition 3 follows. See also the asymptotic
distribution theory in Moore (1977, 1978) or Tyler (1981, Lemma 2.4). The proposition shows that,
if € is chosen sufficiently small, under the null hypothesis Q,(;) = Z,; %, . Z, + op(1) 4 X2.

Because ¥~ = ¥, under the assumptions A(e) and (6), for e sufficiently small we have
PT{Qn(E;):Qn(Eﬁr)}_)L (7)

as n — oc. In this sense, the generalized inverse statistic can be considered as a particular {2}-inverse
statistic. Note that in the case where 2. is only supposed to be a {1}-inverse, additional hypotheses
are required in order to have the stated result (in particular A must be in the column space of X).
In view of Theorem 9.2.3 of Rao and Mitra (1971, p. 173), the conclusion of Proposition 3 is also
true when the estimator 3, is a given symmetric reflexive g-inverse of the matrix ¥, and when X
is a continuity point of the application which gives this particular symmetric reflexive g-inverse.
The test statistic Q, (X, ) has been considered in a time series context for testing null autocor-
relations in time series analysis. In fact, Li (1992) investigated the use of Q,(2;') in non-linear
time series analysis. However, in the time series framework, it seems difficult to formulate precise
conditions which guarantee the invertibility of the asymptotic covariance matrix 3. For example, the
non-linear time series model of Li (1992) rules out linear models such as the ARMA models, in which
case it is known that the asymptotic covariance matrix of the residual autocorrelations is essentially

singular. From the simulation results in Duchesne and Francq (2008), to invert an approximately
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singular covariance matrix may result in empirical levels far from the nominal levels. In order to have
a test statistic well-defined in linear and non-linear models, Duchesne and Francq (2008) investigated
the use of Q,(X,), with 3 the Moore-Penrose inverse of a certain estimator of the asymptotic

covariance matrix of the residual autocorrelations.

3. POWER UNDER FIXED ALTERNATIVES

We now examine the asymptotic powers under fixed alternatives, adopting the approach of Bahadur
(1960). In this approach, the efficiency of a test statistic is measured by its slope, defined as the
rate of convergence of its p-value under a fixed alternative hypothesis Hj : p = p; # pg. Using the

notation in (3), let
T
S'(t) =P (Z ANZ > t) , S7H(t) =P (xi > 1), and S (t) =P (Xﬁank(z) > t)
i=1

be the respective asymptotic survival functions of the test statistics Q,(I,), Q,(2,*) and QO (3,,)
under the null hypothesis Hy. Denote by V({Ai, ..., A;; }) the linear vector space generated by the
columns iy,...,i; of P = Pp. When, with obvious conventions, Aj; 1 < Aj; < -+ < A < A4

then V({Ai;,...,A;; }) denotes the eigenvector space associated to the eigenvalues \;,,..., A;; of .

i
Proposition 4. Let a basis B and a tolerance € such that A(e) and (6) hold true, and let k < rank(X).

Under the alternative Hy : p = py # g, the (approzimate) Bahadur slopes of the test procedure (2)
with the weightings W,, = 1,, W,, = X * and W, =X are given by:

2 1 — poll?
= nlgrolo—glog ST{Q, (L)} = 1)\71(), (8)
_ . 2 _ _ _
o= lim =~ log ST {On (B5) = (k1 = o) "I — o), (9)
_ . 2 _ _ _
c = nh_)ngo—ﬁlogS {Qn (Zn)} = (g — “O)TE (1 — 1), (10)
respectively, where the convergence in probability (9) and (10) hold, respectively, when:
K1 — Ko gv({}‘k-l-la---a)‘rao})a (11)
B — po ¢ V({0}). (12)

The convergence in probability in formula (8) stands without further restriction.

Note that, even when the variance is known, i.e. when X,, = 3, the test statistic based on the
{2}-inverse (resp. the generalized inverse) is not consistent when (11) (resp. (12)) does not hold

true. Indeed, when py — pg € V({Xk41,-..,Ar,0}) we have 37%(pu; — py) = 0,, and it follows that:
Q0 (B7%) = Zy (o) = Zn(po),
= {Zn(ﬂl) +n'? (g — Ho)}T X {Zn(ﬂ'l) +n' (g — No)} ;
= Z, (141)S 74 Zn (1) # oo in probability,

as n — oo. Similarly, when p; — py € V({0}) the statistic Q, (27) = Z,) (1) 2~ Zp (1) does not
diverge under the alternative hypothesis. Note also that, in view of the right-hand sides of (9) and
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(10), the previous derivations show that one can set, by continuity, ¢ * = 0 when (11) is not satisfied,
and ¢~ = 0 when the relation (12) does not hold. The following corollary presents a comprehensive
comparison of the Bahadur slopes of the test statistics Qp, (I,), Qn (2;’6) and Q, (2;).

Corollary 1. Under the assumptions of Proposition 4, the following comparisons can be made:

i) The Imhof-based test is always consistent (i.e. we always have ¢! > 0);

ii) The test based on the {2}-inverse X% is consistent (i.e. ¢ ¥ > 0) if and only if (11);

i11) The generalized-inverse based test is consistent (i.e. ¢~ > 0) if and only if (12);

i) For all k < r := rank(X) we have ¢ = ¢ " > ¢ * > ¢ k1 > ... > ¢ ' with ¢k = ¢ k1 4ff
p1— ko € V{Ae);

v) When py — g € V{1, ..., M\ }) with k > 1 we have ¢ =% > ¢!, with strict inequality iff there
exists k' such that 1 < k' <k, Ay <A1 and py; — po €V ({ M }9);

vi) When py — g € V{1, ..., A }) we have ¢! > c7*;

vii) The Bahadur slope of Imhof-based test statistic is always larger than the one of the test statistic
based on B!, that is ¢! > ¢71, with equality iff py — py € V({A1}).

The most noticeable result of this corollary is that, contrary to the other test procedures, the
Imhof-based test offers a strictly positive Bahadur slope for all p; — py # 0,. From that point of
view, Q,(I,) represents the only omnibus test statistic with non trivial power under all alternative
hypotheses, and is in the spirit of the so-called portmanteau test statistics in the time series literature.
However, for an alternative hypothesis in the non-zero eigenspace of 3, the slope of the Imhof-based
test is smaller than that of the test based on the generalized inverse X, . Note also that, in term of
the Bahadur slope, the {2}-inverse test statistic based on X # dominates the test statistic based on
>, ¥ when k > k'

Figure 1 displays the Bahadur slopes of the different tests when 3 = diag(1,1,1/2,1/2,0,0) and
when p; — g is a unit vector with direction d in the plane containing u; = 1/v/5(1,1,1,1,0, 1)—r and
uy = (0,0,0,0,1,0)". The length of the vector going from the origin to the curve P* in the direction
d gives the Bahadur slope of the test statistic Q, (X, *). In this example, the Bahadur slope of 9, (I¢)
is always one, since A\; = 1 and the length of pu; — p, is normalized to one. Since uy € V({0}), only
the Imhof-based test is powerful for alternatives in the direction of us and the slopes of the other tests
cancel for that alternative hypothesis. This figure thus illustrates the points i)-iv) of Corollary 1.

3

Figure 2 illustrates other points. In particular, in this figure, ¢™° = ¢~ because the direction d of the

alternative belongs to V({\4}¢) and ¢=3 > ¢! because d belongs to V({A1, A2, A3}).

Proof of Proposition 4: Under the null hypothesis, n='/?Z, = n="?Z, (1) % 0 and under the

alternative Hy : g = p; we have n=Y2Z, = n V2{Z, (u;) + n'/2(p; — po)} 2 py — po. A large

deviation result yields:

r
log P (Z ANZ > a:) ~ 2—;”1

=1
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FIGURE 1. The Bahadur slopes ¢ of Q,(2,*) and ¢’ of Q,(I,) when & =
diag(1,1,1/2,1/2,0,0), for alternatives in the direction p; — py = d = aju; + aguy,
|d]| = 1, where uy = 1/v/5(1,1,1,1,0,1) " and uy = (0,0,0,0,1,0)T. The Bahadur

k corresponds to the length of the vector going from the origin to the curve

slope ¢~
P* in the direction d. The slope of the Imhof-based test describes a circle P because

it is constant.
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as ¢ — oo, where Ny,..., N, are independent N(0,1) random variables (see Zolotarev (1961)). The
Bahadur slope of the first test is thus given by:

2 Zn|? — ol |?
CI — lim ——IOgSI (”Zn”2) = lim H nH — HM /‘l‘OH ]
n—oo N

Now note that

lim Q, (¥,*) = lim n(p, — o) BTk (py — pg) = oo in probability

n—o0 n—o0
under the condition (11), and that Q, (2;) — oo in probability under the condition (12). Using the
large deviation result log P(x2 > z) ~ —z/2 as £ — oo, under the condition (11) (resp. (12)) the

Bahadur slope ¢7# (resp. ¢~) is then obtained by the arguments used to compute c. O

Proof of Corollary 1: Points ) — 7i7) are direct consequences of Proposition 4. To show iv),
consider the spectral decomposition ¥ = PAPT where P'P = I, and A = diag(\,..., ), and
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FIGURE 2. The Bahadur slopes ¢7* of Q,(2,*) and ¢’ of Q,(I,) when & =
diag(1,1,1/2,1/2,0,0), for alternatives in the direction p; — py = d = aju; + aguy,
|d|| = 1, where u; € V({\1}) and ug = 1/v/3(1,1,1,0,0,0)T € V({\1, A2, A3}). The

k corresponds to the length of the vector from the origin to the curve

Bahadur slope ¢—
P* in the direction d. The slope of the Imhof-based test describes a circle P because

it is constant.
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note that for 1 < k < k' < r the difference ¢~ — ¢ * is non-negative:
¢ —ct=(p - Mo)TPdiag (Ol—crﬂ >\1;41.1a EEK )\];1’ 0;1r> PT(Nl — Ho) >0,
with equality if and only if gy — prg € V({Ag41, ..., Aer}€). Points v) — vii) come from
¢t —cl = (g — po) "Pdiag (0,051 = A7 A = AT AT AT P (g — ).

This shows the result. O

Other comparisons between the test statistics can be performed under local alternatives. In the

next section, the so-called Pitman’s approach is investigated.
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4. POWER UNDER LOCAL ALTERNATIVES
Consider a sequence of local alternatives of the form Hy, : p,, = pg +n~12A,, where A,, = A # 0,.
The following proposition gives the Asymptotic Local Power (ALP) of the test procedures.

Proposition 5. When Z, () LN Ny(A,X), and with the notations and assumptions of Proposi-
tions 1-3, the ALP of the test procedure (2) with the weighting Wy, =1,, W, = X% and W, = 3

under the local alternatives Hy, are given by:

ALP(A) = Pr (Z Nix2(0:2) + 6400 > ca(M,. .. ,m) , (13)
i=1

ALPTH(A) = Pr(x301") > X2 a) (14)

ALP™(A) = Pr(x2(62) > X2 a) - (15)

The proof of Proposition 5 represents a direct consequence of Propositions 1-3 and therefore it is

omitted. The following corollary compares the ALP of the different test procedures.

Corollary 2. Under the assumption of Proposition 5:

i) The Imhof-based test is always locally asymptotically powerful (i.e. ALPT(A) > o VA);

i1) The test based on the {2}-inverse X * is locally asymptotically powerful (i.e. ALP *(A) > a)
if and only if A € V({Ags1,---, A, 0});

i11) The generalized-inverse based test is locally asymptotically powerful (i.e. ALP™ (A) > «) if
and only if A ¢ V({0});

iv) When A € V({A1,...,\¢}) with k <1 then ALP *(A) > ALP™(A);

v) When A € V({\1}) we have ALP71(A) > ALP/(A);

vi) When A € V({A\1}) we have ALP™'(A) > ALP 2(A) >--- > ALP "-'(A) > ALP (A).

This corollary shows that, as for the Bahadur slopes, the ranking of the local asymptotic powers
of the different tests depends on the position of the alternative with respect to the eigenspaces of X.
However, compared to Bahadur’s approach, Pitman’s approach highlights the relative merits of the
test procedures with a different viewpoint. In particular, in term of ALP, the performance of the test
statistics based of the {2}-inverse does not necessarily increases with & (compare 4v) in Corollary 1
with vi) in Corollary 2).

Figure 3 displays the ALP’s for several directions A of the local alternative, and for the same
matrix X as that used in Figures 1 and 2. From this figure, writing ALP % = ALP *(A), the

following relations are satisfied:

ALP ' > ALP 2 > ALP! > ALP % > ALP ", when A  (1,0,0,0,0,0)",
ALP~ > ALP % ~ ALP! > ALP2 > ALP ', when A o (1,1,1,1,0,0) ",
ALP™2 > ALP’ > ALP™® > ALP™ > ALP!, when A  (1,1,0,0,0,0)7,
ALP™® > ALP™ > ALP’ > ALP™2 = ALP™! = ¢, when A  (0,0,1,0,0,0)7.

To summarize, in term of ALP, the test based on ¥ 7% is very powerful for alternatives close to the

direction of the first k£ eigenvectors of 3, but may be completely powerless for orthogonal alternatives.



13

FIGURE 3. Asymptotic local powers of the tests when ¥ = diag(1,1,1/2,1/2,0,0)
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for alternatives in different directions.
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The Imhof-based test statistic and the one relying on the generalized inverse offer power for more

alternatives, but it appears that none test is dominated by another one.

Proof of Corollary 2: To show i) we note that [|[8*]|> = ATZA = 0 iff A € V({0}), and that
160> = 0 iff A € V({\1,...,\}). The points i) and iii) are obtained similarly. To show iv), first
note that

k417"

0, — 0F) = ATP pdiag (0;{, AL og_r) PLA >0,
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with equality iff A € V({\ps1,...,Ar}%). Thus 6 = 6% > 0 when A € V({\1,..., A\ }). Now iv) is
implied by the fact that P (X%(G) > X%,pa) strictly decreases with k for all # > 0 and all @ € (0,1)
(see Theorem 2 in Ghosh (1973)).

In order to show v) and wvi), we adapt arguments called upon by Ghosh (1973). Let X; be a
X2 (v)-distributed random variable, and let X, be a random variable independent of X;. Consider
the testing problem Hy : v = 0 against Hy : v > 0 based on the observations (X1, X3). Assume that
the distribution of X5 is the same under the null and alternative hypotheses. Using the Neyman-
Pearson lemma, the most powerful test statistic of Hy : v = 0 against Hg : v = vy, with vy > 0,
rejects the null hypothesis if the likelihood ratio is large. A straightforward but tedious computation
shows that this likelihood ratio is given by:

L(Xl,XQ;I/l) _

L(X,, X5;0) P(k/2) exp(=v1/2) ; (1 X1) /{450 (i + k/2)}.

Note that this ratio is an increasing function of X;. Consequently the critical region of the uniformly
most powerful (UMP) test is given by {X; > X%,ka} We now apply this result when A € V({\1}),
setting v = 0;2, X; = (N; +v)? and Xy = oo Ai/AlNZ, with the notations of Proposition 1 and
(Ni,...,N.)T ~ N,(0,1,). Noting also that 9%1) = 0;? when A € V({\1}), we then obtain:

ALPTHA) = P{(Ni+v)*> X710},

d MO
> P (N1+u)2+Z)\Z~/)\1Ni2>M = ALP!(A),
i=2 Ml

which shows v). Setting X| = (Ny + v)? + Zf:g N7 and Xy = N2, the same argument entails:

k
ALP*(A) = P {(N1 +v)? + ZNE > X%,la} ,
i=2

k+1

> P {(Nl +v)? + ZNiQ > X%Jrl,loz} = ALP™#1(A),
i=2

and point vi) follows. |

In the next section, further comparisons and undertaken using Monte Carlo experiments.

5. SIMULATION EXPERIMENTS

In the previous sections, we have presented the asymptotic null distributions of three classes of test
statistics, and we have given some asymptotic properties under fixed and local alternatives. It is
natural to inquire about their finite sample properties, in particular their exact levels and powers.
Furthermore, the theoretical results obtained in Sections 3 and 4 need to be completed empirically.
The power comparisons between the weighting W, = 3~ and W,, = I, seem also of particular
interest. To partially answer these considerations, some Monte Carlo experiments were conducted.
The main computer code for the experiments described below has been written using the R language,
and Imhof’s (1961) algorithm has been implemented in the FORTRAN 90 language.
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5.1 Description of the simulation experiments

In order to compare the test statistics, we considered multivariate sampling from the multivariate
normal distribution, for several choices of the covariance matrix 3. The test statistics included in
our simulation experiments used the weighting W, = I,, W,, = 3 * k < r, r = rank(X), and
W, = 3., where 3, = S, represents the sample covariance matrix. For each random sample
of size n = 100, we examined the empirical frequencies of rejection of the null hypothesis Hy :
p = 0 when the latter was true by using test statistics with three nominal levels (1, 5 and 10%).
Multivariate sampling appears particularly convenient to study the power of the test procedures,
given the analytical results demonstrated in the previous sections. Several fixed alternatives have
been included in the study, which have been chosen by examining the spectral decomposition of the

covariance matrix 3 and their associated eigenspaces.

TABLE 1. Mean vectors NE;-C)

Nyl s =111 j=1,2,k=1,... 4.

in multivariate sampling from the normal distribution

Experiment ¢ = I
1) _ (3 T (2 _ (3 3 mT (3) _ (3 3 1,\T 4) _ (3 1IN\T
/J‘Izll)_ (E’ ) ) ug’%_(ﬁaﬁao) ) u(l,%_(ﬁaﬁ’ﬁ) “Ié)_ (anaﬁ) )
_ (4 T _ (3 3 mT _ (3 3 3\T _ (4 33T.
pro = (50,0 pro=(i515:0) . 5= (3% 15 10) pro=(5:0,7)
Experiment ¢ = I
(1) 3 T (2) _ 2 \T (3) _ /1 1 1\T 4 _ 1 3 IN\T
a p’[[’l_(ﬁaoao) l‘(l’QI)I,l (07 %75) ) “‘I(I?ﬁ_(ﬁﬂ_?%) l‘(l’i)l,l_(ﬁa_ﬁag) )
_ 1 1 I\T 1 1 mT _ (1 1 15T _ 1 1 15T,
“1[,2—(_ﬁa_ﬁas) 17,2 (f5:—1:9) “11,2—(E’E=E) Hira (5:—10°10)

TABLE 2. Mean vectors pl(.f)
Nowd, s i=111,1v, j=1,2,3, k=1,... 4.

in multivariate sampling from the normal distribution

Experiment 1 = 111

1 2
(I“;gl)ll (% 0 0 0 0 O)T’ (I“;(II)I,I = (%7%a070a070)—r:
3 4
Brrra = (% %, 13[],0 0 0)T7 MIH’I(QZ) (%, %, %, %,O,O)T,
l“"III % 0 0 0 0 0)T7 HIII,Q = (%, %,O,O,O,O)T,
3 4
Hifha = (3..3.0.0,0)7 i = (35 8. 5.0.0)
B = (£,0.0,0,0,0)7, it s = (2.4,0,0,0,0)7,
3 4
/J‘gl)l,3 = (ana %70a070)T7 lul«(]])]’g = (%, %, %, %,0,0)
Experiment 1 = IV
1
uis = 0 fh =5 =07, ui = (0.~f. g b
lig?;}l—(()?ﬂ —0.24,-0.18,—-0.12, —0.06, —0.03 T uygl—(ﬂﬂ 0.18,0.14,0.09,0.05,0.02 T,

)
) )
ul), = (0.18,-0.17,0.00,0.35, —0.18,—0.18) T, w2}, = (~0.19,-0.34,0.00,0.14,0.19,0.19)
IJ(HEQ = (~0.19,0.20, -0.23,0.20, ~0.19,0.21) T, {1, = (~0.20,0.08,—0.22,0.08, ~0.19,0.08) ",
uglg.g (0.00, 0.00, 0.00, 0.00, —0.35, 0.35) T, iy, = (0,0.1,0,0,0)7,
) )

1 4 2 V2
“53,3: (0’5= » 150 05 0 ' “g&,3=(010a0=5=_%’ﬁ
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TABLE 3. Relative frequency of rejection of Hy : g = 0 (in percentage) for the test
based on the statistics Q,(W,,) defined by (2), using W,, = I3, W, =3 "% k =1,2
and W, = ¥, with Z,, = \/ﬁ)_(n and X, = S,,, where the mean vectors are given in
Table 1.

(p,r) = (3,2) ¥ = X7, = diag(1,1,0)
n= w=pl') u=pt) p=p) p=plh)
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0,(T;) |09 48 10.6 550 77.0 85.0 89.7 97.1 984 92.4 97.7 99.4 615 82.3 88.6
0.(S7) |13 58 11.0 574 77.0 85.0 90.3 96.9 98.7 90.3 96.9 98.7 57.4 77.0 85.0
“1) |04 2.9 7.3 27.6 453 540 505 65.3 715 50.5 65.3 715 27.6 45.3 54.0
0.(S;?) |13 58 11.0 574 77.0 85.0 90.3 96.9 98.7 90.3 96.9 98.7 57.4 77.0 85.0
¥ = ¥, = diag(10,1,0)
p=0 w=pi) w=pl) u=pl) p=pl)
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
0,(T;) |12 56 113 500 71.5 81.0 83 244 394 123 355 57.3 56.3 79.4 86.3
1.3 58 11.0 397 61.6 73.4 59.9 82.6 89.0 59.9 82.6 89.0 39.7 61.6 73.4
0.(Sz') |09 5.6 11.0 50.1 71.1 80.9 6.6 17.4 265 6.6 17.4 265 50.1 71.1 80.9
.

2) 1.3 58 11.0 39.7 61.6 73.4 59.9 82.6 89.0 59.9 82.6 89.0 39.7 61.6 73.4

) )

(S}
3
wn

S

For our investigations, we considered multivariate normal distributions of dimensions p = 3,6,
where X was singular and non-singular. The definitions of the covariance matrices 3 are given in
Tables 3-6. In Tables 3 and 5, the covariance matrices are exactly singular and they are diagonal.
We investigated situations where the non null eigenvalues are both equal to one, and when they are
different. In the case p = 6, we investigated four unit eigenvalues, multiplicities of dimension two and
a situation where the non null eigenvalues are distinct. In Tables 4 and 6 the covariance matrices
are of the form ¥ =1, — cAAT, where ¢ is a real value and A is a p X r matrix; they are precisely
defined in the Tables. It is easily shown that these matrices have at least p — r unit eigenvalues. In
time series, the asymptotic covariance matrices of residual autocovariances exhibit similar forms, see
Li (2004, Chapter 2), among others. The covariance matrices in Tables 4 and 6 are non-singular,
but the ratio of the largest to the smallest eigenvalue is large; consequently they are approximately
singular. The values of the non null mean vectors under the alternative hypotheses are given in

Tables 1 and 2. For each case, 1000 independent realizations have been generated.

5.2 Discussion of the Monte Carlo results

In Tables 3-6, the results for the level study correspond to the column g = 0. For the nominal
level a = 5%, the empirical size over the 1000 independent replications should belong to the in-
terval [3.6%),6.4%] with probability 95% (at the nominal levels @ = 1% and 10%, the intervals are
[0.4%,1.6%] and [8.1%, 11.9%)], respectively). When the relative rejection frequencies are outside the
95% significance limits, they are displayed in bold in the Tables. When the relative rejection frequen-
cies are outside the 99% significant limits, they are underlined. At the nominal levels a = 1%, 5%
and 10%, the 99% significance intervals are [0.2%, 1.8%)], [3.2%, 6.8%] and [7.6%, 12.4%)], respectively.

)
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TABLE 4. Relative frequency of rejection of Hy : pu = 0 (in percentage) for the
test based on the statistics Q, (W) defined by (2), using W,, = Iy, W,, = Xk,
k=1,2,3, and W,, = ¥ with Z, = \/nX,, and X,, = S,,, where the mean vectors
are given in Table 1.

(p,T) = (3/3) Y= 2[[’1 = 13 — 0.79X3X;—, X3 = (1, %, 11—0)T
_ _ ., _ 2 _ (3 _,, 4
n = m=Hrry m=Hrrq n=Hrr, n=Hrr,

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
On(13) 1.0 4.8 10.7 62.0 999 100.0 8.5 949 97.5 269 488 622 79.5 923 96.0

Q.(S;) 1.2 54 11.3 100.0 100.0 100.0 83.5 93.0 96.1 249 442 579 983 998 99.9
On(S,,") 04 29 7.3 3.7 128 21.8 479 625 684 14.1 293 40.1 416 583 67.0
Qn(S;,2) 1.3 5.8 11.0 81 21.8 321 86.3 952 979 273 503 633 804 91.8 956
On(S;2) 1.2 54 11.3 100.0 100.0 100.0 83.5 93.0 96.1 249 442 579 983 99.8 99.9

Y= 2[[’2 = I3 - 0333XXT1 X = (Cl,C2),C1 = 13,(32 = (1, —I,O)T

1 2 3 4
=0 n= uﬁz),g n= uﬁz),g M= u?ﬂg M= u%

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
On(I3) 1.3 58 103 458 67.7 77.5 6.3 269 46.2 6.1 403 849 153 414 60.1

n(S,,) 1.2 54 113 316 543 66.6 294 50.6 65.3 100.0 100.0 100.0 100.0 100.0 100.0
Qn(S,;") 1.1 51 109 458 687 788 12 6.2 109 1.0 5.2 108 49 145 224
9n(S;?) 1.3 58 11.0 36.8 60.0 71.2 344 582 70.5 1.4 59 11.0 379 63.0 758
Q. (S;,,?) 1.2 54 113 316 543 66.6 294 50.6 65.3 100.0 100.0 100.0 100.0 100.0 100.0

We discuss the results presented in Table 3. In general, the errors of the first kind of the test

statistics are well controlled, except for Q,(S; ') at the 5% and 10% nominal levels when 3 = Xy ;.
(1 (2

For the alternatives g = p;j,pu;;, the mean vectors belong to the eigenspace generated by the
eigenvalue A; = 1; it appears preferable to specify & = 2 than & = 1 in that situation, which

may be explained by the multiplicity of that unit eigenvalue. Interestingly, Q, (S, 2) delivers higher
power than Q,(S,,') under ug%, even if that alternative belongs to the vector space generated by

vi = (1,0,0)"; this is explained by the fact that in finite samples u(fi does not belong exactly to the

vector space of the first column of P, in the spectral decomposition of S,,. Under the alternatives
u= ug?’i, /,1542, the empirical powers of Q,(I3) and Q,(S;2) are very similar when 3 = X7, with a
slight advantage for the weighting W,, = I3. These alternatives do not lie in a specific eigenspace,

and Q,(I3) offers high power. When 3 = 3, all the eigenvalues are different and the covariance
matrix is singular. Since uglg € V({10}), Qn(S,,') is very powerful, but the weighting W, = I3
delivers a similar power. The differences in powers between Q,(S, ') and Q,(S,2) = Q,(S,,) is
significant. For ug) € V({10,1}), the weighting W,, = I3 gives low power, and to use a generalized
inverse provides the best empirical power. When p = ug?”%, that alternative does not lie in a specific
eigenspace; consequently all test statistics offer some power, but the generalized inverse appears the
most powerful. The alternative p = ugg € V({10,0}); the most powerful test statistics are Q,(S,")

and Qn (13) .
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TABLE 5. Relative frequency of rejection of Hy : u = 0 (in percentage) for the
test based on the statistics Q, (W) defined by (2), using W,, = Iy, W,, = Xk,
k=1,2,3,4 and W, = ¥, with Z, = /nX,, and 2, = S,, where the mean

vectors are given in Table 2.

(par) = (654) Y= 2]1[,1 = dlag(17 1: 17 1,070)

_ _ 1) _ (2 _ (3 _,,4)
n=0 n==HKr n=HKrra H=HKirra H=HKrrra

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Q. (Ig) 0.7 41 93 389 645 769 819 944 971 96.6 99.3 99.9 87.2 96.4 98.7
Qn(S;,) 1.1 5.0 11.3 429 67.8 79.6 854 94.8 97.2 97.2 994 99.8 88.1 96.9 98.7
Q.(S;1) 0.3 36 7.7 103 22.6 31.8 23.7 374 46.8 34.1 48.2 55.6 25.8 404 49.1
Qn(S,,2) 0.3 3.7 7.9 179 36.2 469 439 61.7 70.5 59.0 73.3 79.6 459 64.1 734
9,(8,?) 0.5 42 7.8 293 51.2 63.1 629 79.4 86.8 80.8 89.4 93.1 67.7 82.7 88.3
Qn(S,;4) 1.1 5.0 11.3 429 67.8 79.6 854 94.8 97.2 97.2 994 99.8 88.1 96.9 98.7

Y= 2111’2 = diag(lO, 10, ]., 1, 0, 0)
-0 _ _ 2 _,,3) _ 4
n n=HKrrro n=HKrrre m=Hrrro m=Hrrro
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Qn(TI6) 0.7 46 9.6 34.6 60.2 72.0 73.1 90.5 95.0 82.7 954 98.1 53.6 79.3 894

Q.(S;) 1.1 5.0 11.3 27.7 49.9 64.4 649 839 91.1 982 99.6 99.8 94.8 98.6 99.6
Qn(S,,") 0.2 2.8 7.8 16.8 33.2 44.1 41.5 59.2 66.9 41.6 59.6 67.5 21.9 41.7 51.2
9,(8;,2) 0.9 5.1 10.7 36.0 61.5 73.3 73.6 90.3 94.8 73.6 90.2 94.8 42.2 66.1 75.9
9,(8;,°) 0.6 52 9.8 30.8 542 67.0 68.3 87.5 924 86.2 93.6 97.2 72.7 86.3 91.1
Q.,(S;,*) 1.1 5.0 11.3 27.7 49.9 64.4 649 839 91.1 982 99.6 99.8 94.8 98.6 99.6

3= 2111,3 = diag(8,4, 2, 1, 0, 0)
w=0 p= ll«(l) _ ., _,,3) _,,4
II1,3 n=HKrrrs3 n=HKrrr3 n=HKrrr3
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
Q. (Is) 0.8 4.5 10.5 56.1 77.5 84.9 75.7 93.9 97.2 27.0 62.7 789 82.0 96.0 99.0

Q.(S;) 1.1 5.0 11.3 384 62.8 74.5 85.0 95.0 97.5 83.0 92.5 96.9 96.9 99.5 99.9

3

9,(8,") 0.9 51 99 57.7 79.0 87.7 144 29.7 409 1.1 48 10.6 314 54.5 67.2
Qn(S,2?) 0.8 52 10.6 484 70.1 80.2 89.3 97.3 988 1.8 7.3 148 76.2 90.5 94.9
9n(S,?) 0.5 5.2 109 42.6 66.5 75.8 88.3 96.8 98.0 84.5 94.6 97.2 86.8 94.8 97.6
Qn(S,4) 1.1 5.0 11.3 384 62.8 74.5 85.0 95.0 97.5 83.0 92.5 96.9 96.9 99.5 99.9

From the results presented in Table 4, the empirical sizes were rather satisfactory, except for
Q,(S,,) at the 5% and 10% nominal levels, when ¥ = Xj;; which underrejected and displayed
rejection rates outside the 99% significance limits. When ¥ = X7, the spectral decomposition
gives Ay = A9 = 1 and A3 = 4.6 % 1073, A basis for the eigenspace is composed of the vectors
{vi = (0.0,-0.2,1.0)T,vs = (0.5,-0.9,-0.2)7,v5 = (0.9,0.4,0.1)T}. Clearly u}}, and v, are
orthogonal and as a result the empirical powers of Q,(S;*), k¥ < 2 were low. The best empirical
powers have been observed for the {2}-inverse with k& = 3. The weighting W,, = I3 offered less

power. The alternative “521),1 belongs to V(vy). The best empirical powers have been observed by

On(S;?) and 9Q,(S;?). The weighting W,, = I offered high power. The vector “(I?})’l € V(vi,va);



TABLE 6. Relative frequency of rejection of Hjy

vectors are given in Table 2.

: u = 0 (in percentage) for the
test based on the statistics Q, (W) defined by (2), using W,, = Iy, W,, = Xk,
k=1,2,3,4,56, and W, = 3, with Z, = v/nX,, and 2, = S,,, where the mean
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(p,7) = (6,6) Y =% =T — 2xex4,x6 = (1,4,2,2, L )7
n=20 ﬂzlﬁgl\},l ﬂ:“g},l ﬂ:ll'g?;},l HZH%}J
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
Q. (1) 09 4.7 87 943 989 99.6 95.5 99.1 99.7 91.9 985 99.2 49.4 98.2 100.0
0,(S7) 1.6 7.0 12.0 97.0 99.5 99.7 95.8 99.2 99.5 92.6 98.3 99.2 100.0 100.0 100.0
Q.(S;1) 0.3 3.2 6.7 26.0 40.4 48.6 24.6 382 46.7 23.8 39.2 473 04 3.3 6.7
0.(S;2) 0.2 2.7 6.6 457 63.0 71.2 45.7 61.6 69.6 46.6 63.7 71.7 0.2 25 6.6
0.(S,2) |05 3.5 7.0 656 79.5 84.9 652 77.5 83.2 64.2 798 857 0.5 34 6.9
0n(S74) | 0.7 41 88 834 92.1 948 826 91.9 944 824 922 952 0.7 39 83
Q.(S;?) 1.5 6.1 11.4 955 99.2 99.6 96.8 99.4 99.6 93.7 98.6 99.6 1.7 6.1 11.7
Q.(S;°) 1.6 7.0 12.0 97.0 99.5 99.7 95.8 99.2 99.5 92.6 98.3 99.2 100.0 100.0 100.0
2:2]V72=IG—0.16XXT,X:(Cl,CQ,Cg,C4),C1216,(32:(%,—%,%,—%,%,—%)T,
c; =(£,0,0,0,0,4)7, ¢4 =(0,0,3,0,0,0)7
n=0 M:ligl\),z u=u§2v),2 u=u§33,2 u=u54v),z
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
Q. (1) 0.8 4.7 9.1 945 99.0 99.5 94.3 989 99.5 96.7 99.5 99.7 74.3 90.9 96.8
0,(S7) 1.6 7.0 12.0 93.1 984 99.3 93.7 98.4 99.4 98.8 99.8 99.8 100.0 100.0 100.0
0.(S,;) |0.2 3.2 7.0 343 504 580 30.1 458 545 4.5 13.9 21.7 21 7.3 14.1
0.(S,2) 0.2 3.3 7.7 564 728 79.3 53.6 71.1 77.8 14.5 282 39.2 4.9 141 228
0.(S;23) |04 3.3 7.3 763 8.1 922 74.3 858 90.8 30.6 46.6 56.0 13.4 26.6 35.6
0.(S74) 0.3 3.8 84 89.8 958 984 88.8 96.3 97.9 589 72.1 78.1 30.8 485 58.9
Q.(S,,°) 1.5 6.1 11.4 945 99.1 99.6 94.7 98.7 99.4 99.3 99.8 99.8 76.1 88.6 93.2
0,(S;,°) 1.6 7.0 12.0 93.1 984 99.3 93.7 98.4 99.4 98.8 99.8 99.8 100.0 100.0 100.0
Y =33 =1I-049XXT, X = (c;,c2,¢3,¢4,¢5),¢1 =2 = (1,0,0,0,0,0) T,
c3 =(0,1,0,0,0,0)",¢cq = (0,0,0,1,0,0)T,e5 = (0,0,0,0,1,1) T
n=0 uzuglv),g uzu@,g u=u§33,3 u=u54v),3
1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
Q. (1) 04 45 9.2 973 994 99.8 979 99.6 99.8 232 499 65.1 457 71.1 81.3
Q,(S;) 1.6 7.0 12.0 92.7 98.1 99.2 94.2 98.6 99.3 45.3 66.1 76.0 56.4 749 84.1
9.(S;t) 0.2 2.5 7.2 63.0 73.7 774 574 69.9 760 03 38 9.0 11.6 257 357
0,(S72) |07 46 9.7 969 99.0 99.7 97.7 99.6 99.7 1.8 69 134 194 387 514
0.(S723) |06 48 9.3 96.6 99.1 99.6 96.6 99.3 99.7 20.7 39.0 485 36.2 57.6 69.0
Q,(S;4) 1.1 5.0 11.1 956 99.1 99.6 96.3 99.2 99.6 49.2 70.7 79.7 61.3 79.8 87.0
9.(S;?) 1.2 46 99 942 986 99.5 95.5 985 99.3 45.5 67.0 77.3 57.9 76.0 84.5
0,(S;°) 1.6 7.0 12.0 92.7 98.1 99.2 942 98.6 99.3 45.3 66.1 76.0 56.4 749 84.1

the best power has been observed for the {2}-inverse with & = 2. The alternative p = p

(4)

11 does

not lie in a specific eigenspace; the best power has been observed with a {2}-inverse with k = 3.
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When £ = Syr5, A; = 1.000, A2 = 0.334,A3 = 1075, The first alternative p\}, belongs to the
eigenspace associated to Aj; it appears that Q,(S, ") is very powerful. The second alternative u(IQI)’Q
belongs to the eigenspace associated to Ag, and 9, (S;?) dominates whereas, as expected, Qn(S;!)
has no power. The third alternative lies in V({A3}); the test statistics based on the {2}-inverses with
k = 1,2 offered no power and the best power has been attained at £k = 3. The alternative u(ﬁ)’Q
does not lie in a specific eigenspace. Low power has been observed for £k = 1 and k = 2, and the
best empirical power has been observed when £ = 3. Note that when pu = quI)’Q,ug?})’Q,u(ﬁ)’Q, the
weighting W, = I3 displayed low power and it appeared preferable to use a generalized inverse or a
{2}-inverse.

In Table 5, multivariate sampling from a singular normal distribution of dimension six and rank
four was performed. In general the rejection rates were satisfactory under the null, except for Q,(S,,")
when ¥ = X771, 37772, which underrejects slightly. In the case 3 = X771, slight underrejection
occurred at the 10% nominal level for Q, (S, *), kK =1,2,3. When ¥ = X7, the empirical powers
of O,(Is) and 9, (S;) = 9n(S,*) were similar for the alternatives included in the study. All the
alternatives belong to the eigenspace V({1}). Under these alternatives the best powers were attained
by Qn(S;) = Qn(S,;*). When ¥ = X7, the best power was observed for & = 2 when the
alternative was ugll)m, which belongs to V({10}). The best {2}-inverse was the one with k = 2
under the alternative p = “?I)I,?’ which is also in the eigenspace V({10}). The differences with the
weighting W,, = Is were rather small. When py = ;1,(]3])]’2, “541)1,27 the generalized inverse offered the
highest power. When ¥ = X7 3, the best power was reached by the test statistic Q, (S, *) based
on a {2}-inverse with k& = 1, which can be explained because u(lll)j’?) € V({8}) and the dimension
of that eigenspace is one. When p = “521)1,3’ the best power is observed with Q,(S,?). The test
statistic @, (S,, ') offered low power under that particular alternative. On the other hand, the power
differences between O, (S, %), k > 2 were rather small. The alternative pu = “53})1,3 belongs to V({2}).
Consequently, Q, (S, *), k < 2, have no power. The best empirical power is obtained when k = 3 for
the {2}-inverse, but the generalized inverse exhibits also high power. The weighting W,, = I offers
some power, but that procedure was significantly less powerful than the generalized inverse. The
alternative u = “541)1,3 belongs to the eigenspace generated by the non null eigenvalues. Consequently
the best power is attained with the {2}-inverse with k = 4.

Finally, we analyze the results in Table 6. In general the rejection rates were reasonable under the
null. When 3 = ¥y, E7v2, some underrejection has been observed for Q, (S, %), k = 1,2, 3, which
seemed more pronounced at the 10% nominal level. Overrejection occurred for Q,(S,;) = On(S,*)
at the 5% and 10% nominal levels. Some underrejection has been observed for Q,(S;;!) when sam-
pling from a normal distribution with covariance matrix 3 = Xy3. The eigenvalues of ¥ = X7y
are Ay = ... = A; = 1 and \g = 5.5 x 1073, The alternatives p = ugl‘z’l,ug?’l,uﬁ}’l are all
in the orthogonal complement of the eigenspace associated to Ag. For all these alternatives, the
empirical power increase with &, and the best powers are attained by Q,(S;*), £ = 5,6. In gen-
eral the differences between the weighting W,, = Is and W,, = S, were rather small. When

¥ = S, A=A = 1, A3 = 097, 0 = 094,05 = 0.75 and A\g = 5.3 x 1073, The alternatives
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n = /J,E-I‘JZ,/J,?‘;2 belong to the eigenspace associated to the unit eigenvalue. However, since the

eigenvalues \;, i = 1,...,5 are close, the best power are offered by Q,(S, *) with a large k. The
alternatives pu = /,L(I?’Q lie in the eigenspace associated to As. The best power is observed for Q,,(S;,5).
In general the differences between the weighting W,, = Is and W,, = S, were rather small under the
alternatives pu = ugl‘;’Q,u%’Q,u(]&;}’Q. The alternative pu = /J,(I@’Q belong to the eigenspace associated
to A5 and Ag. Low power is observed for Q,(S, *), k < 4. The best power are observed for Q,(S,,*),
k =5,6. In general the differences between the weighting W,, = Is and W,, = S_* were small under
that alternative but substantially lower than the {2}-inverse with £ = 6. When ¥ = X,y 3, the
eigenvalues are A\; = Ay = 1, A3 = Ay = 0.51 and A5 = Ag = 0.02. The alternatives u = u(ll&ﬁ,u(f‘}ﬁ
belong to the eigenspace associated to A;. Consequently Q, (S, 2) was the most powerful. The alter-
native u = ug?&?) belongs to the eigenspace associated to A3. Consequently O, (S,*), k£ = 1,2 had
no power. The best empirical power has been observed when Q,, (S, 4). There were slight differences
between Q,(S,*), k =4,5,6. The alternative p = uﬁz’?) belongs to the eigenspace associated to Ay
and A3. The test statistic Q,(S;*), k = 1,2,3, offered some power under that alternative, but the

best power has been observed with the test statistic Q,(S,,*).

6. TESTING FOR CLIMATE CHANGES

The three classes of test procedures are now illustrated on a set of monthly reconstructions of temper-
atures and precipitations? (see Casty et al. 2005). These spatio-temporal data extend from January
1659 to December 1999 and cover a gridded area of 197 points over the whole European Alp region
(note that the data file contains a gridded area of 275 points, but for each observation the same 197
points are measured). Our first aim is to compare the mean temperature over the last 40 years with
the mean temperature over the whole period in order to test for a significant change. We constructed
the 12-dimensional multivariate time series of temperatures, denoted t; = (t;(1),...,t;(12))T, such
that t;(i) corresponds to the monthly average at time ¢ and month 7 over the 197 grid points,
1=1,...,12, t = 1659, ...,1999. The monthly mean are represented in Figure 4.

For our testing problem, we defined the time series X; = % ngl tir16574s fort =1,....n =302
and the test statistic Z,, = X,, — ﬁ ?:_11 X;. We supposed that the series of temperatures {X;}
constituted a stationary sequence with constant mean px, variance ¥x, and autocovariance function
I'x(-), that we presumed to be absolutely summable, that is > % | [[Tx(h)| < co. Let E(Zy) = py.
Under the null hypothesis:

Hy : puy =0, against Hy : uy # 0, (16)

and the variance of the test statistic Z,, is given by:

n—1 n—2
= - SSx— (17" {Fx(h) + F)Tc(h)} + (-1 (n—1-h) {Px(h) + I‘)T((h)} .
h=1 h=1

fCasty, C., et al. 2008. European Gridded Monthly Temperature, Precipitation and 500hPa Reconstructions. IGBP
PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2008-023. NOAA/NCDC Paleoclima-
tology Program, Boulder CO, USA.
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F1GURE 4. Monthly mean Alpine temperature from 1659 to 1999.

Since the autocovariance function is assumed absolutely summable, it follows that ¥ — Xx almost
surely, as n — oco. In order to estimate consistently the variance 3, a simple estimator is given by the
empirical variance S,, of Xy,...,X,,. An analysis of the eigenvalues of S,, revealed that the smallest
(resp. largest) eigenvalue was 2.13 x 1072 (resp. 5.36 x 10™1), suggesting that the sample covariance
matrix was relatively close to a singular matrix.

The test statistics Qp(I12), On(S,*), k € {1,...,11} and Q,(S,; ) were computed. Since S,, is
invertible, the generalized inverse is in fact the inverse, and the test statistic Q,(S,,) is the classical
Wald test procedure, that is Q,(S;) = 9,(S,;!). From (v) in our Corollary 1, the Q,(S;) test
statistic is likely to have a larger Bahadur slope than any Q,(S,*), 1 < k < 12, and also than the
Imhof-based test statistic Qp(I12) (but we cannot compare directly 9, (I12) and 9, (S, *)). Using the
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local power analysis, any {2}-inverse is asymptotically locally more powerful than Q,(S,,) (and even
9O, (I12)) in certain directions. From our results, we cannot conclude which one is best between the
Imhof-based test and 9, (S,,). The p-values of the different test procedures are displayed under the
column labelled 'Temperature’ in Table 7. At the nominal 5% level, the null hypothesis is not rejected
by the test statistics based on the {2}-inverses with k € {2,...,7}, but is rejected by Q,(S,,!), and
On(S,*), k € {8,...,11}. As we have seen in the previous sections, the {2}-inverse test statistics
O, (S,*) and 9, (S, ) may have low powers in certain directions of the alternative hypothesis, that
may explain that several test statistics do not reject the null hypothesis. By comparison, the Imhof-
based test, which enjoys power in all directions, rejects the null at the usual 5% level. Moreover,
the conservative Bonferroni procedure (consisting in rejecting if the minimal p-value multiplied by
the number of tests is less than a given level) also tends to reject the assumption that the Alpine
temperature of the 40 last years be stochastically similar to that of the period of reference. This is in
accordance with many empirical studies exhibiting an accumulation of extremes positive temperature
during the recent past (see e.g. Casty et al. 2005).

The same exercise has been performed, replacing the series of temperatures {t;} by a multivariate
time series composed of precipitations. Following the same procedure that described previously, a
multivariate time series of monthly precipitations, denoted {p;}, ¢ = 1659,...,1999, has been cre-
ated. The smallest (resp. largest) eigenvalue was 1.45 (resp. 131.0). The results are under the
column entitled 'Precipitation’ in Table 7. The results suggest that the test statistics do not detect
any evidence against the null hypothesis that the average precipitations of the last 40 years are sto-
chastic similar to those of the whole period. That conclusion is in accordance with studies showing
that the precipitation dynamics does not exhibit a particular trend over the last period, but shows

"a clear cyclic variability on a timescale of 40-60 years’ (see e.g. Casty et al. 2007 for more details).

7. DISCUSSION AND CONCLUSION

Generalized Wald’s method constructs testing procedures having chi-squared limiting distributions
from test statistics having singular normal limiting distributions by use of generalized inverses. In this
article, we investigated the use of {2}-inverses for that problem and we proposed new test statistics
with convenient asymptotic chi-square distributions. Imhof-based test statistics have also be studied,
which converge in distribution to weighted sum of chi-square variables. We discussed the asymptotic
null distributions of the test statistics, and we performed a power analysis under fixed and local
alternatives. Simulation studies have been performed to study the exact levels in finite samples, and
the exact powers have been compared empirically in a simulation study.

In general the test statistics offered satisfactory empirical levels; the test statistics based on the {2}-
inverses with small values of k offered some underrejection, but generally in the 99% significance limits
and reasonably close to the 95% significance intervals. From our theoretical and empirical results,
the spectral decomposition of the covariance matrix plays an important role on the power properties.
If an alternative lied in a specific eigenspace, powerful test procedures were constructed based on
{2}-inverses with orders chosen large enough such that the associated eigenspaces included that

alternative. This was expected from our theoretical results (see Corollaries 1 and 2) and confirmed in
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TABLE 7. Testing stability against climate changes: p-values (in percentage) of the
Q,(+)-tests defined by (2) for the testing problem (16) when the X¢’s correspond to

temperature averages or precipitation averages.

Temperature Precipitation

Imhof Qy (I1») 3.3 66.4
k=1 2.0 96.9
k= 6.6 85.7
k=3 12.3 45.5
k=4 13.7 48.0
k=5 13.1 o7.4
{2}-inverse Q,(S,*) k=6 6.0 45.2
k= 0.6 39.5
k=38 4.1 36.9
k= 0.4 234
k=10 0.6 18.4
k=11 1.0 214
Moore-Penrose Q,(S,,) 1.5 24.6

the simulation experiments. In practice, a spectral decomposition of the covariance matrix appears
thus useful in specifying the order k: If the alternative of interest belongs to a particular eigenspace,
it dictates the choice of k. When the covariance matrix was singular or approximately singular,
and when the alternative lied in the eigenspace associated to the non-null eigenvalues, test statistics
based on {2}-inverses with an order equal to the estimated rank of the covariance matrix were
particularly powerful test procedures. If an alternative was orthogonal to the eigenspace associated
to the eigenvalues used to construct a test statistic based on a {2}-inverse, low power has been
observed (see also Corollary 2, ii)). The weighting based on a generalized inverse offered high power
in several cases, and the omnibus weighting W,, = I, provided also interesting power, and in fact
was very powerful for the alternatives which were in the eigenspace generated by the null eigenvalues.

The test procedures have been illustrated in the data analysis on the monthly temperature and
precipitation variability in the European Alps. In comparing the monthly temperature of the last
40 years with the whole period under study, a significant difference has been found using the Imhof-
based test, using the test statistics relying on {2}-inverses with k =1, 7 < k < 11, and also for the
test statistic using the generalized inverse. No significant difference has been found for the precipi-
tation time series. Since the {2}-inverses may offer high power in certain directions, and low power
in others, our data analysis contributed to explain the directions of the alternative hypothesis which

entailed rejection of the null hypothesis of equal mean temperature.

APPENDIX. CONSTRUCTION OF THE {2}-INVERSE.

In order to compute 3%, with & < r, r = rank(X), we describe an algorithm, which has been used
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in Sections 5 and 6. Given a fixed tolerance € >, a basis B = {uy,...,up} of R", a symmetric

semi-definite matrix ¥ and an integer 1 < k < r, the following steps are performed.

First, compute the eigenvalues Ay > --- > A, of 3;
Find the largest integer & < k such that A\ > Apy1 + €
Define the following set: s(k) = {7, |[A\x — A\i| < €};
Compute the cardinal my of s(k);

SANLEICC I .

Calculate the matrix M 4 such that the my columns constitute an orthonormal basis of the
eigenspace V(i) associated to the eigenvalues such that the indices are in s(k);
The orthogonal projection on Ve can be computed, and is given by Py, = Ms(k)MsT(k);

7. Define the generator Py, (B) = {va(k)(ul), e va(k)(um)};

>

8. A basis given by {Pys(k)(uil),...,va(k)(uimk)} is calculated, taking the my vectors of
va(k)(B) such that the norm is larger than € and such that their distance is superior to €
of the space generated by the preceding vectors of the system (if that operation does not
provide a basis, € was chosen too large; thus € is divided by two and the algorithm returns to
step 2);

9. An orthonormal basis {v1,...,vym, } is determined, applying the Gram-Schmidt process on
the basis obtained in the preceding step;
10. if k£ > 0, a matrix M ;) such that the k columns constitute an orthonormal basis of the
eigenspace associated to the eigenvalues A, ..., Ag;
11. The matrices Ag" = diag(A7',..., A, 0] ), Bp" = My mAg"M], , if k> 0,
adopting the convention ¥ ;* = 0if £ =0, and 5" = S5 + 25;1& A o]
The algorithm defined by steps 1-11 gives a function Ap j . such that Ap k. (X) = L 5".
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