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On testing for the mean vetor of a multivariatedistribution with generalized and { 2 }- inverses�Pierre DUCHESNEyDépartement de mathématiques et statistiqueUniversité de MontréalChristian FRANCQEQUIPPE-GREMARSUniversité Charles de Gaulle - Lille 3 Deember 15, 2009AbstratGeneralized Wald's method onstruts testing proedures having hi-squared limiting distributionsfrom test statistis having singular normal limiting distributions by use of generalized inverses. Inthis artile, the use of f2g-inverses for that problem is investigated, in order to propose new teststatistis with onvenient asymptoti hi-square distributions. Alternatively, Imhof-based test sta-tistis an also be de�ned, whih onverge in distribution to weighted sum of hi-square variables;The ritial values of suh proedures an be found using Imhof's (1961) algorithm. The asymptotidistributions of the test statistis under the null and alternative hypotheses are disussed. Under�xed and loal alternatives, the asymptoti powers are ompared theoretially. Simulation studiesare also performed to ompare the exat powers of the test statistis in �nite samples. A data anal-ysis on the temperature and preipitation variability in the European Alps illustrates the proposedmethods.Key words and phrases: f2g-inverses; generalized Wald's method; generalized inverses; multivariateanalysis; singular normal distribution.Mathematis subjet lassi�ation odes (2000): primary 62H10; seondary 62F05, 62H15.1. INTRODUCTIONLet Tn = (Tn1; : : : ; Tnp)>, n � 1, be a sequene of statistis, and introdue Zn(�) = n1=2(Tn � �),� = (�1; : : : ; �p)>. The lassial testing problem onfronts hypotheses H0 and H1:H0 : � = �0;H1 : � 6= �0: (1)�Abbreviated title: "Testing for the mean vetor of a multivariate distribution".Corresponding author: Pierre Duhesne, Université de Montréal; Département de mathématiques etde statistique; C.P. 6128 Suursale Centre-Ville; Montréal, Québe H3C 3J7; Canada. tel: (514)343-7267; fax: (514) 343-5700; e-mail: duhesne�dms.umontreal.a.yThis work was supported by a grant from the Natural Siene and Engineering Researh Counilof Canada.



2Under the null hypothesis, it is assumed that the sequene of test statistis onverges toward a normaldistribution: Zn := Zn(�0) d! Np(0p;�) as n!1, where 0p = (0; : : : ; 0)> is the p-dimensional nullvetor. The ovariane matrix � 6= 0, possibly singular, is supposed to be unknown. Based on sam-ple data, the hypothesis testing problem is to deide whether it seems likely that the null hypothesisto be true. To study limiting alternative distributions, under the �xed alternative H1 : � = �1, wesuppose that Zn(�1) d! Np(0;�) as n!1, and under any sequene of loal alternative hypothesesH1n : �n = �0 + n�1=2�n, �n ! �, we suppose instead that Zn(�0) d! Np(�;�), with � 6= 0.The problem desribed above represents a general framework for many statistial problems omingfrom multivariate analysis, non-linear regression models, and time series analysis.1.1 Leading examples of the testing problemLet Xi = (Xi1; : : : ;Xip)>, i = 1; : : : ; n, be a random sample from a multivariate distribution, whereE(Xi) = � and var(Xi) = Ef(Xi � �)(Xi � �)>g = �. The sequene of test statistis ould besimply based on the sample means, Tn = �Xn = n�1Pni=1Xi, and the asymptoti normal distributionunder the null hypothesis is found invoking the multivariate entral limit theorem. That frameworkgoes bak to the seminal work of Wald (1954). In fat, under the normality assumption, that isXi � Np(�;�), with the ovariane matrix � unknown but supposed positive de�nite, Hotelling'sT 2 test statisti represents the lassial test proedure for problem (1) and Wald (1954) simplydeveloped the large sample analog of Hotelling's method. See, e.g., Srivastava and Khatri (1979),Muirhead (1982) or Anderson (1984), among others. When the sample is obtained from a singularmultivariate distribution, Bhimasankaram and Sengupta (1991) proposed a methodology similar toHotelling's test statisti. If X � Np(�;�) with det(�) = 0, it is well-known that X� � belongs tothe olumn spae of rank r, say, of the ovariane matrix � with probability one (w.p.1); visually,the data lies in the r-dimensional a�ne subspae of Rp , r < p. Furthermore, a ertain lineartransformation of X � � follows a nonsingular normal distribution (see, e.g., Bilodeau and Brenner(1999, p. 62) or Eaton (2007)). Thus the initial problem an be reformulated in a smaller dimensionusing a non-singular normal distribution. However, to work with the data in the transformed salemay be seen as a disadvantage from a pratial point of view, and, more importantly, the rank of �must be known a priori, whih an be a restritive assumption. Wald's method has been generalizedby Moore (1977) to sequenes of test statistis having singular normal distributions by a natural useof generalized inverses.Multivariate sampling is just a simple example and the study of other test statistis may resultin asymptoti singular normal distributions. In parametri models, when � is the vetor of ellprobabilities in a multinomial model and Tn represents the vetor of observed relative frequenies,the ovariane matrix � is singular; that example has been studied in detail by Moore (1977). Innon-linear regression models, under ertain onditions, the asymptoti distribution of the regressionparameters in non-linear regression models is a singular normal distribution, see Robinson (1972). Seealso Hadi and Wells (1990), who give several examples of non-linear models with singular informationmatries. Another example is taken from time series analysis, where a entral problem is to test forserial orrelation. It is well-known that the asymptoti distribution of a vetor of �xed length of



3residual autoorrelations is approximately a singular normal distribution, see Box and Piere (1970),Li and MLeod (1981) and Ljung (1986), amongst others.1.2 Testing proeduresIn this paper, we onsider several test proedures whih an be used whether � is singular or non-singular, without assuming normality. More spei�ally, we study the general lass of test statistis:Qn(Wn) = Z>nWnZn; (2)where Wn is a weight matrix. For the testing problem (1), the null is rejeted for large values ofQn(Wn). We disuss in detail three testing proedures orresponding to the weighting matries: (i)Wn = Ip, where Ip denotes the p� p identity matrix, (ii) Wn = ��kn , where ��kn represents a f2g-inverse of �n, and �nally (iii)Wn = ��n , where ��n is the Moore-Penrose inverse (or pseudo-inverse)of �n. The estimator �n is assumed to be strongly onsistent for �, that is �n ! �, almost surely.Note that the strong onsisteny of �n is assumed to be true under the null hypothesis, undersequenes of loal alternatives and for �xed alternatives. Our framework is general, and the teststatistis an be applied for all the testing problems desribed above. For example, in multivariatesampling, natural andidates would be proedures based on sample means for Zn, and �n ouldbe the sample ovariane matrix Sn = n�1Pni=1(Xi � �Xn)(Xi � �Xn)>. The test statistis in lass(i) are simply based on the usual Eulidian norm of Zn. The test proedures in lass (ii) onsiderto use f2g-inverses for the weight matrix Wn. The literature on generalized and pseudo-inverses isonsiderable, see, e.g., Rao and Mitra (1971) and Rao (1973), among others. On the other hand, theimportant role of f2g-inverses in statistis, more partiularly in the study of quadrati forms, seemsless well doumented. Appliations of f2g-inverses in statistis are desribed in Getson and Hsuan(1988). Finally, the lass of test statistis (iii) is omposed of the generalized Wald's test statistisintrodued in Moore (1977). See also Andrews (1987) and Hadi and Wells (1990). Duhesne andFranq (2008) investigated diagnosti heking time series models with portmanteau test statistisrelying on generalized inverses and f2g-inverses. In their appliations, Zn was based on a vetorof sample autoorrelations and �n was a ertain onsistent estimator of the asymptoti ovarianematrix of the sample autoorrelations. Here the framework is onsiderably more general, and weinvestigate the theoretial and empirial properties of the test statistis Qn(Wn) under �xed andloal alternatives.The paper is organized as follows. In Setion 2, we disuss the asymptoti distributions of the teststatistis Qn(Id), Qn(��kn ) and Qn(��n ) under null and loal hypotheses. The asymptoti powersof these test statistis are ompared in Setions 3 and 4, under �xed and loal alternatives, respe-tively. In Setion 5, some simulation experiments are onduted. A data analysis is presented inSetion 6 on the monthly temperature and preipitation variability in the European Alps for theperiod 1659-1999. Conluding remarks are o�ered in Setion 7. An Appendix gives some tehnialdetails onerning the onstrution of the test statistis based on f2g-inverses.



42. ASYMPTOTIC DISTRIBUTIONS UNDER THE NULL HYPOTHESISFor a reason that will be transparent in the next setion, the test statisti based on Qn(Id) will bealled Imhof-based test.2.1 The Imhof-based test statisti (ase Wn = Ip)A simple and natural test proedure leads to the study of the norm of Zn, namely jjZnjj2. Theasymptoti distribution of Qn(Ip) under the null hypothesis H0 follows easily invoking the multivari-ate entral limit theorem and a spetral deomposition of �. Consider the spetral deomposition� = P�P> =Ppi=1 �iviv>i with P>P = Ip, where � = diag(�1; : : : ; �p) and the olumns v1; : : : ;vpof the matrix P onstitute an orthonormal basis of Rp . The weights �1 � �2 � : : : � �r > 0and �r+1 = : : : = �p = 0 represent the eigenvalues of � and thus r = rank(�). The hi-squareddistribution with k degrees of freedom and non-entrality parameter  is noted �2k(). The vetor1p = (1; : : : ; 1)> orresponds to a p-dimensional vetor omposed only of ones.Proposition 1. If Zn = Zn(�0) d! Np(�;�) and �n ! � in probability as n!1, thenZ>nZn d! rXi=1 �i�21(��2i ) + �>0 �0 := rXi=1 �iN�2i + �>0 �0;where �0 = diag �0>r ;1>p�r�P>�. The non-entrality parameters ��i satisfy �� = (��1; : : : ; ��p)> =�1=2�P>� with �1=2� = diag���1=21 ; : : : ; ��1=2r ;0>p�r�, and the normal random variables N�i areomponents of the singular normal distribution N� = (N�1 ; : : : ; N�p )> � Np(��; I�rp ) with I�rp =diag �1>r ;0>p�r�.Proof: The proposition is a well known onsequene of the ontinuous mapping theorem and ofstandard results on quadrati forms of Gaussian vetors. See, e.g., Rao and Mitra (1971) or Rao(1973) for distributions of quadrati funtions in normal random variables. More preisely, it isobtained by noting that N�n := �1=2�P>Zn d! N� = Np(��; I�rp ) and that kZnk2 = kP>Znk2 =k�1=2N�n + �0k2. 2Under the null hypothesis � = 0p in Proposition 1 and it follows that:Qn(Ip) = jjZnjj2 d! rXi=1 �iN2i ; (3)where N1; : : : ; Nr orrespond to independent N (0; 1) random variables. In pratie, it is possibleto evaluate the distribution of the Gaussian quadrati form in (3) by means of the algorithm ofImhof (1961). More preisely, the test proedure based on the weight matrix Wn = Ip relies on thefollowing steps: 1) Compute the eigenvalues �̂1; : : : ; �̂p of �n, whih provides a onsistent estimator�. 2) Evaluate the (1��)-quantile �(�̂1; : : : ; �̂p) ofPpi=1 �̂iN2i using Imhof's algorithm, and �nally3) the null hypothesis is rejeted when Qn(Ip) � �(�̂1; : : : ; �̂p). An interesting advantage of thatproedure is that the rank of � does not need to be known and the proedure is in all points thesame whether � is singular or non-singular.



5In a time series framework, a similar proedure has been onsidered in Franq, Roy and Za-koïan (2005) in testing for null autoorrelations in the residuals from autoregressive-moving-average(ARMA) models. In their ontext, they spei�ed Zn = n1=2�̂, with �̂ = (�̂(1); : : : ; �̂(p))>, where �̂(h)denotes the lag-h residual autoorrelation, h = 1; : : : ; p. In order to test null autoorrelations, theirtest statisti redued to the so-alled Box-Piere test statisti jjZnjj2 = nPph=1 �̂2(h) proposed byBox and Piere (1970), whih relies on the sum of squared residual autoorrelations. See for exampleLi (2004), among others. In their proedure, the quantiles were found estimating the eigenvalues ofa onsistent estimator of the asymptoti ovariane matrix of the residual autoorrelations. Thatstrategy has been adapted in Duhesne and Franq (2008) for diagnosti heking non-linear timeseries models. Note that the use of the test statisti Qn(Ip) in the ontext of multivariate samplingseems to be absent from the literature, probably due to the non-standard limiting distribution ofthat test proedure.2.2 The test statisti based on f2g-inverses (ase Wn = ��kn )A generalized inverse (g-inverse) of � is a matrix ~� satisfying the ondition:� ~�� = �: (4)It is also alled a f1g-inverse sine (4) is usually the �rst of the four onditions de�ning the (unique)Moore-Penrose inverse of � (see, e.g., Getson and Hsuan (1988)). On the other hand, a f2g-inverseof � is any matrix �� satisfying the seond relation de�ning the Moore-Penrose inverse of �, thatis: ����� = ��: (5)When requirements (4) and (5) are satis�ed, the resulting matrix is alled a f1; 2g-inverse or re�exiveg-inverse (see, e.g., Rao (1973, p. 25)).Note that the matrix �� = P��P> is the Moore-Penrose inverse (or pseudo-inverse) of �,where �� = diag(��11 ; : : : ; ��1r ;0>p�r). For k = 1; : : : ; r, de�ne the matrix ��k = P��kP>, where��k = diag(��11 ; : : : ; ��1k ;0>p�k): The matrix ��k is always a f2g-inverse, but this is not a g-inverseof � when k < r.Empirial versions are easily onstruted. Sine �n ! � almost surely, as n ! 1, a naturalestimator of ��k relies on ��kn , where the spetral deomposition of �n is given by �n = Pn�nP>n .When all the non null eigenvalues of � are distint, the matrix ��k is uniquely de�ned. However,when some eigenvalues display multipliities, ��k is not uniquely de�ned, beause it depends onthe partiular hoie of the orthonormal basis in the spetral deompositions of �. That aveatis �xed using projetions and the Gram-Shmidt orthogonalization proess. Consider an arbitrarybasis B = fu1; : : : ;upg of Rp . For eah eigenvalue �k = �k(�) of multipliity mk(�), let V = Vk(�)be the assoiated eigenspae with dim(V) = mk(�). Single eigenvalues do not pose problem; onse-quently suppose k > 1. The projetion on V is denoted PV , whih is uniquely de�ned. The vetorsPV(u1); : : : ;PV(up) span V sine any vetor v 2 V an be expressed as v = Ppi=1 iui = PV(v) =Ppi=1 iPV(ui). From the vetors PV(u1); : : : ;PV(up), a basis BV = fPV (ui1); : : : ;PV(uik)g of Vis extrated as follows: let i1 be the smallest index of f1; : : : ; pg suh that PV(ui1) 6= 0 and for



6̀ 2 f2; : : : ; kg, i` represents the smallest index of fi`�1 + 1; : : : ; pg suh that PV(ui`) is not spannedby �PV(ui1); : : : ;PV (ui`�1)	. Using the Gram-Shmidt proess, the basis BV is transformed in anorthonormal basis of V. This proess allows to de�ne a unique ommon basis of eigenvetors forthe spetral omposition of � and ��k . More preisely, we de�ne a unique matrix PB suh that� = PB�P>B and ��k = PB��kP>B for all k � r. The matrix PB will be alled the B-eigenvetormatrix of �.A similar onstrution holds for �n with eigenvalues �̂1 � : : : � �̂p. Sine the B-eigenvetor ma-tries PB and Pn;B of � and �n are uniquely de�ned, the f2g-inverses ��k = ��kB and ��kn = ��kn;Bare now uniquely de�ned by ��kB = PB��kP>B and ��kn;B = Pn;B��kn P>n;B : An algorithm is given inthe Appendix on the onstrution of the matries ��kB and ��kn;B. In pratie, a tolerane is neededto estimate the rank of �, the multipliities, and to distinguish null and non null eigenvalues. Theproposed algorithm de�nes a funtion, noted AB;k;�(�), based on a tolerane �. The following Assump-tion A(�) is neessary in order to speify the minimum distane between the di�erent eigenvalues of�.Assumption A(�). Let B = fu1; : : : ;upg be an arbitrary basis of Rp . The tolerane � > 0 is suhthat:C1: minfj�i(�)� �j(�)j : �i(�) 6= �j(�)g > �,C2: For k � rank(�), the appliation AB;k;� suh that AB;k;�(�) = ��kB is ontinuous at �.Condition C1 in Assumption A(�) ensures that the multipliities are onsistently estimated if � ishosen small enough. It an be seen that C2 is satis�ed for all but a �nite number of basis B.The following lemma is useful for establishing the asymptoti distribution of Qn(Wn) in the aseWn = ��kn .Proposition 2. Suppose that Zn = Zn(�0) d! Np(�;�) and �n ! � almost surely, as n ! 1.Let B = fu1; : : : ;upg be a basis of Rp . Under Assumption A(�), if k � rank(�), it follows that:Z>n��kn;BZn d! �2k(�(k)1 );where �(k)1 =�>PB��kP>B�, and PB is the B-eigenvetor matrix of �.Proof: Assumption C2 in A(�) and the almost sure onvergene of �n to � give:��knB = AB;k;�(�n)! ��kB = AB;k;�(�) a:s:; as n!1:The ontinuous mapping theorem then entails that Z>n��kn;BZn d! Z>��kB Z. The Ogasawara-Takahashi theorem establishes the hi-square limiting distribution (see, e.g., Rao and Mitra (1971) orRao (1973)): Sine ��kB is a f2g-inverse, the onditions (���kB )3 = (���kB )2 and�>��kB ���kB � =�>��kB � hold trivially. Finally, ���kB � belongs to the olumn spae of ���kB �, sine ���kB � =���kB ��, � = Ckdiag(��11 ; : : : ; ��1k )C>k�, where PB = (Ck Cp�k), with Ck and Cp�k of dimen-sions p� k and p� (p� k), respetively. The number of degrees of freedom is k = rank(���kB ) withnon-entrality parameter �>��kB ���kB ���kB � =�>PB��kP>B�. This onludes the proof. 2Note that the ondition k � r = rank(�) appears to be essential (see Duhesne and Franq(2008)). It follows immediately from Proposition 2 that, when k � r, the asymptoti distribution of



7Qn(��kn ) is �2k under the null. The tests based on the f2g-inverses are thus de�ned by the ritialregions nQn(��kn ) > �2k;1��o, where �2k;� denotes the �-quantile of the �2k distribution.2.3 The test statisti based on the generalized inverse (ase Wn = ��n )In order to test the null hypothesis, Hotelling's type proedure is based on the weightingWn = ��1nand thus the test statisti Qn(��1n ), provided that �n is invertible. When � is non-singular, �n willbe non-singular when n is hosen large enough. In the singular ase, the weighting Wn = ��n o�ersa natural hoie, sine the Moore-Penrose inverse is uniquely de�ned. Reall that the generalizedinverse is obtained by inverting the non zero eigenvalues. In pratie, as for the f2g-inverses, atolerane � > 0 is required for assessing the non zero eigenvalues. The following proposition lari�esthe role of � and gives the asymptoti distribution of Qn(��n ).Proposition 3. Suppose that Zn = Zn(�0) d! Np(�;�) and �n ! � almost surely, as n ! 1.Let the spetral deomposition �n = Pn�nP>n where �n = diag f�1 (�n) ; : : : ; �p (�n)g. For any� > 0, let �n;� = Pn�n;"P>n , where �n;� is the matrix obtained by replaing by zero the elements of�n whih are less than �. If � is su�iently small, so that:Pr frank(�n;") = rank(�)g ! 1; (6)as n!1, it follows that: Z>n��n;"Zn d! �2r(�2);where r = rank(�) and �2 =�>���.Using similar arguments as in Proposition 2, Proposition 3 follows. See also the asymptotidistribution theory in Moore (1977, 1978) or Tyler (1981, Lemma 2.4). The proposition shows that,if � is hosen su�iently small, under the null hypothesis Qn(��n ) = Z>n��n;"Zn + oP (1) d! �2r.Beause �� = ��r , under the assumptions A(�) and (6), for � su�iently small we havePr �Qn(��n ) = Qn(��rn )	! 1; (7)as n!1. In this sense, the generalized inverse statisti an be onsidered as a partiular f2g-inversestatisti. Note that in the ase where ��n is only supposed to be a f1g-inverse, additional hypothesesare required in order to have the stated result (in partiular � must be in the olumn spae of �).In view of Theorem 9.2.3 of Rao and Mitra (1971, p. 173), the onlusion of Proposition 3 is alsotrue when the estimator ��n is a given symmetri re�exive g-inverse of the matrix �n and when �is a ontinuity point of the appliation whih gives this partiular symmetri re�exive g-inverse.The test statisti Qn(��n ) has been onsidered in a time series ontext for testing null autoor-relations in time series analysis. In fat, Li (1992) investigated the use of Qn(��1n ) in non-lineartime series analysis. However, in the time series framework, it seems di�ult to formulate preiseonditions whih guarantee the invertibility of the asymptoti ovariane matrix �. For example, thenon-linear time series model of Li (1992) rules out linear models suh as the ARMA models, in whihase it is known that the asymptoti ovariane matrix of the residual autoorrelations is essentiallysingular. From the simulation results in Duhesne and Franq (2008), to invert an approximately



8singular ovariane matrix may result in empirial levels far from the nominal levels. In order to havea test statisti well-de�ned in linear and non-linear models, Duhesne and Franq (2008) investigatedthe use of Qn(��n ), with ��n the Moore-Penrose inverse of a ertain estimator of the asymptotiovariane matrix of the residual autoorrelations.3. POWER UNDER FIXED ALTERNATIVESWe now examine the asymptoti powers under �xed alternatives, adopting the approah of Bahadur(1960). In this approah, the e�ieny of a test statisti is measured by its slope, de�ned as therate of onvergene of its p-value under a �xed alternative hypothesis H1 : � = �1 6= �0. Using thenotation in (3), letSI(t) = P rXi=1 �iN2i > t! ; S�k(t) = P ��2k > t� ; and S�(t) = P��2rank(�) > t�be the respetive asymptoti survival funtions of the test statistis Qn(Ip), Qn(��kn ) and Qn(��n )under the null hypothesis H0. Denote by V(f�i1 ; : : : ; �ijg) the linear vetor spae generated by theolumns i1; : : : ; ij of P = PB . When, with obvious onventions, �i1�1 < �i1 � � � � � �ij < �ij+1then V(f�i1 ; : : : ; �ijg) denotes the eigenvetor spae assoiated to the eigenvalues �i1 ; : : : ; �ij of �.Proposition 4. Let a basis B and a tolerane � suh that A(�) and (6) hold true, and let k � rank(�).Under the alternative H1 : � = �1 6= �0, the (approximate) Bahadur slopes of the test proedure (2)with the weightings Wn = Ip, Wn = ��kn and Wn = ��n are given by:I = limn!1� 2n log SI fQn (Ip)g = k�1 ��0k2�1 ; (8)�k = limn!1� 2n log S�k �Qn ���kn �	 = (�1 � �0)>��k(�1 � �0); (9)� = limn!1� 2n log S� �Qn ���n �	 = (�1 � �0)>��(�1 ��0); (10)respetively, where the onvergene in probability (9) and (10) hold, respetively, when:�1 � �0 62 V(f�k+1; : : : ; �r; 0g); (11)�1 � �0 62 V(f0g): (12)The onvergene in probability in formula (8) stands without further restrition.Note that, even when the variane is known, i.e. when �n = �, the test statisti based on thef2g-inverse (resp. the generalized inverse) is not onsistent when (11) (resp. (12)) does not holdtrue. Indeed, when �1 ��0 2 V(f�k+1; : : : ; �r; 0g) we have ��k(�1 ��0) = 0p, and it follows that:Qn ���k� = Z>n (�0)��kZn(�0);= nZn(�1) + n1=2(�1 � �0)o>��k nZn(�1) + n1=2(�1 ��0)o ;= Z>n (�1)��kZn(�1) 6! 1 in probability;as n ! 1. Similarly, when �1 � �0 2 V(f0g) the statisti Qn ���� = Z>n (�1)��Zn(�1) does notdiverge under the alternative hypothesis. Note also that, in view of the right-hand sides of (9) and



9(10), the previous derivations show that one an set, by ontinuity, �k = 0 when (11) is not satis�ed,and � = 0 when the relation (12) does not hold. The following orollary presents a omprehensiveomparison of the Bahadur slopes of the test statistis Qn (Ip), Qn ���kn � and Qn ���n �.Corollary 1. Under the assumptions of Proposition 4, the following omparisons an be made:i) The Imhof-based test is always onsistent (i.e. we always have I > 0);ii) The test based on the f2g-inverse ��kn is onsistent (i.e. �k > 0) if and only if (11);iii) The generalized-inverse based test is onsistent (i.e. � > 0) if and only if (12);iv) For all k � r := rank(�) we have � = �r � �k � �k�1 � � � � � �1 with �k = �k�1 i��1 � �0 2 V(f�kg);v) When �1 � �0 2 V(f�1; : : : ; �kg) with k > 1 we have �k � I , with strit inequality i� thereexists k0 suh that 1 < k0 � k, �k0 < �1 and �1 � �0 62 V (f�k0g);vi) When �1 � �0 62 V(f�1; : : : ; �kg) we have I > �k ;vii) The Bahadur slope of Imhof-based test statisti is always larger than the one of the test statistibased on ��1 , that is I � �1 , with equality i� �1 � �0 2 V(f�1g).The most notieable result of this orollary is that, ontrary to the other test proedures, theImhof-based test o�ers a stritly positive Bahadur slope for all �1 � �0 6= 0p. From that point ofview, Qn(Ip) represents the only omnibus test statisti with non trivial power under all alternativehypotheses, and is in the spirit of the so-alled portmanteau test statistis in the time series literature.However, for an alternative hypothesis in the non-zero eigenspae of �, the slope of the Imhof-basedtest is smaller than that of the test based on the generalized inverse ��n . Note also that, in term ofthe Bahadur slope, the f2g-inverse test statisti based on ��kn dominates the test statisti based on��k0n when k > k0.Figure 1 displays the Bahadur slopes of the di�erent tests when � = diag(1; 1; 1=2; 1=2; 0; 0) andwhen �1��0 is a unit vetor with diretion d in the plane ontaining u1 = 1=p5 (1; 1; 1; 1; 0; 1)> andu2 = (0; 0; 0; 0; 1; 0)> . The length of the vetor going from the origin to the urve P k in the diretiond gives the Bahadur slope of the test statisti Qn(��kn ). In this example, the Bahadur slope ofQn(I6)is always one, sine �1 = 1 and the length of �1 � �0 is normalized to one. Sine u2 2 V(f0g), onlythe Imhof-based test is powerful for alternatives in the diretion of u2 and the slopes of the other testsanel for that alternative hypothesis. This �gure thus illustrates the points i)-iv) of Corollary 1.Figure 2 illustrates other points. In partiular, in this �gure, �3 = � beause the diretion d of thealternative belongs to V(f�4g) and �3 � I beause d belongs to V(f�1; �2; �3g).Proof of Proposition 4: Under the null hypothesis, n�1=2Zn = n�1=2Zn(�0) p! 0 and under thealternative H1 : � = �1 we have n�1=2Zn = n�1=2fZn(�1) + n1=2(�1 � �0)g p! �1 � �0. A largedeviation result yields: logP  rXi=1 �iN2i > x! � �x2�1 ;



10 Figure 1. The Bahadur slopes �k of Qn(��kn ) and I of Qn(Ip) when � =diag(1; 1; 1=2; 1=2; 0; 0), for alternatives in the diretion �1 � �0 = d = a1u1 + a2u2,jjdjj = 1, where u1 = 1=p5 (1; 1; 1; 1; 0; 1)> and u2 = (0; 0; 0; 0; 1; 0)> . The Bahadurslope �k orresponds to the length of the vetor going from the origin to the urveP k in the diretion d. The slope of the Imhof-based test desribes a irle P beauseit is onstant.

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

u1

u2

P
1

P
2

P
3

P
4

P

−P
1

−P
2

−P
3

−P
4

−P

d

as x!1, where N1; : : : ; Nr are independent N (0; 1) random variables (see Zolotarev (1961)). TheBahadur slope of the �rst test is thus given by:I = limn!1� 2n logSI �kZnk2� = limn!1 jjZnjj2n�1 = jj�1 � �0jj2�1 :Now note that limn!1Qn ���kn � = limn!1n(�1 � �0)>��k(�1 � �0) =1 in probabilityunder the ondition (11), and that Qn ���n �!1 in probability under the ondition (12). Using thelarge deviation result logP (�2k > x) � �x=2 as x ! 1, under the ondition (11) (resp. (12)) theBahadur slope �k (resp. �) is then obtained by the arguments used to ompute I . 2Proof of Corollary 1: Points i) � iii) are diret onsequenes of Proposition 4. To show iv),onsider the spetral deomposition � = P�P> where P>P = Ip and � = diag(�1; : : : ; �p), and



11Figure 2. The Bahadur slopes �k of Qn(��kn ) and I of Qn(Ip) when � =diag(1; 1; 1=2; 1=2; 0; 0), for alternatives in the diretion �1 � �0 = d = a1u1 + a2u2,jjdjj = 1, where u1 2 V(f�1g) and u2 = 1=p3(1; 1; 1; 0; 0; 0)> 2 V(f�1; �2; �3g). TheBahadur slope �k orresponds to the length of the vetor from the origin to the urveP k in the diretion d. The slope of the Imhof-based test desribes a irle P beauseit is onstant.
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note that for 1 � k < k0 � r the di�erene � � �k is non-negative:� � �k = (�1 � �0)>Pdiag�0>k ; ��1k+1; : : : ; ��1k0 ;0>p�r�P>(�1 � �0) � 0;with equality if and only if �1 � �0 2 V(f�k+1; : : : ; �k0g). Points v)� vii) ome from�k � I = (�1 � �0)>Pdiag �0; ��12 � ��11 ; : : : ; ��1k � ��11 ;���11 ; : : : ;���11 �P>(�1 � �0):This shows the result. 2Other omparisons between the test statistis an be performed under loal alternatives. In thenext setion, the so-alled Pitman's approah is investigated.



124. POWER UNDER LOCAL ALTERNATIVESConsider a sequene of loal alternatives of the form H1n : �n = �0+n�1=2�n, where�n !� 6= 0p.The following proposition gives the Asymptoti Loal Power (ALP) of the test proedures.Proposition 5. When Zn(�0) d! Np(�;�), and with the notations and assumptions of Proposi-tions 1-3, the ALP of the test proedure (2) with the weighting Wn = Ip, Wn = ��kn and Wn = ��nunder the loal alternatives H1n are given by:ALPI(�) = Pr rXi=1 �i�21(��2i ) + �>0 �0 > �(�1; : : : ; �r)! ; (13)ALP�k(�) = Pr ��2k(�(k)1 ) > �2k;1��� ; (14)ALP�(�) = Pr ��2r(�2) > �2r;1��� : (15)The proof of Proposition 5 represents a diret onsequene of Propositions 1-3 and therefore it isomitted. The following orollary ompares the ALP of the di�erent test proedures.Corollary 2. Under the assumption of Proposition 5:i) The Imhof-based test is always loally asymptotially powerful (i.e. ALPI(�) > � 8�);ii) The test based on the f2g-inverse ��kn is loally asymptotially powerful (i.e. ALP�k(�) > �)if and only if � 62 V(f�k+1; : : : ; �r; 0g);iii) The generalized-inverse based test is loally asymptotially powerful (i.e. ALP�(�) > �) ifand only if � 62 V(f0g);iv) When � 2 V(f�1; : : : ; �kg) with k < r then ALP�k(�) > ALP�(�);v) When � 2 V(f�1g) we have ALP�1(�) > ALPI(�);vi) When � 2 V(f�1g) we have ALP�1(�) � ALP�2(�) � � � � � ALP�r�1(�) � ALP�(�).This orollary shows that, as for the Bahadur slopes, the ranking of the loal asymptoti powersof the di�erent tests depends on the position of the alternative with respet to the eigenspaes of �.However, ompared to Bahadur's approah, Pitman's approah highlights the relative merits of thetest proedures with a di�erent viewpoint. In partiular, in term of ALP, the performane of the teststatistis based of the f2g-inverse does not neessarily inreases with k (ompare iv) in Corollary 1with vi) in Corollary 2).Figure 3 displays the ALP's for several diretions � of the loal alternative, and for the samematrix � as that used in Figures 1 and 2. From this �gure, writing ALP�k � ALP�k(�), thefollowing relations are satis�ed:ALP�1 > ALP�2 > ALPI > ALP�3 > ALP�; when � / (1; 0; 0; 0; 0; 0)> ;ALP� > ALP�3 ' ALPI > ALP�2 > ALP�1 ; when � / (1; 1; 1; 1; 0; 0)> ;ALP�2 > ALPI > ALP�3 > ALP� > ALP�1 ; when � / (1; 1; 0; 0; 0; 0)> ;ALP�3 > ALP� > ALPI > ALP�2 = ALP�1 � �; when � / (0; 0; 1; 0; 0; 0)> :To summarize, in term of ALP, the test based on ��k is very powerful for alternatives lose to thediretion of the �rst k eigenvetors of�, but may be ompletely powerless for orthogonal alternatives.



13Figure 3. Asymptoti loal powers of the tests when � = diag(1; 1; 1=2; 1=2; 0; 0),for alternatives in di�erent diretions.
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The Imhof-based test statisti and the one relying on the generalized inverse o�er power for morealternatives, but it appears that none test is dominated by another one.Proof of Corollary 2: To show i) we note that k��k2 = �>�� = 0 i� � 2 V(f0g), and thatk�0k2 = 0 i� � 2 V(f�1; : : : ; �rg). The points ii) and iii) are obtained similarly. To show iv), �rstnote that �2 � �(k)1 =�>PBdiag�0>k ; ��1k+1; : : : ; ��1r ;0>p�r�P>B� � 0;



14with equality i� � 2 V(f�k+1; : : : ; �rg). Thus �2 = �(k)1 > 0 when � 2 V(f�1; : : : ; �kg). Now iv) isimplied by the fat that P ��2k(�) > �2k;1��� stritly dereases with k for all � > 0 and all � 2 (0; 1)(see Theorem 2 in Ghosh (1973)).In order to show v) and vi), we adapt arguments alled upon by Ghosh (1973). Let X1 be a�2k(�)-distributed random variable, and let X2 be a random variable independent of X1. Considerthe testing problem H0 : � = 0 against H0 : � > 0 based on the observations (X1;X2). Assume thatthe distribution of X2 is the same under the null and alternative hypotheses. Using the Neyman-Pearson lemma, the most powerful test statisti of H0 : � = 0 against H0 : � = �1, with �1 > 0,rejets the null hypothesis if the likelihood ratio is large. A straightforward but tedious omputationshows that this likelihood ratio is given by:L(X1;X2; �1)L(X1;X2; 0) = �(k=2) exp(��1=2) 1Xi=0(�1X1)i=f4ii!�(i+ k=2)g:Note that this ratio is an inreasing funtion of X1. Consequently the ritial region of the uniformlymost powerful (UMP) test is given by fX1 � �2k;1��g. We now apply this result when � 2 V(f�1g),setting � = ��21 , X1 = (N1 + �)2 and X2 =Pri=2 �i=�1N2i , with the notations of Proposition 1 and(N1; : : : ; Nr)> � Nr(0; Ir). Noting also that �(1)1 = ��21 when � 2 V(f�1g), we then obtain:ALP�1(�) = P �(N1 + �)2 > �21;1��	 ;> P ((N1 + �)2 + rXi=2 �i=�1N2i > �(�1; : : : ; �r)�1 ) = ALPI(�);whih shows v). Setting X1 = (N1 + �)2 +Pki=2N2i and X2 = N2k+1, the same argument entails:ALP�k(�) = P ((N1 + �)2 + kXi=2 N2i > �2k;1��) ;> P ((N1 + �)2 + k+1Xi=2 N2i > �2k+1;1��) = ALP�k+1(�);and point vi) follows. 2In the next setion, further omparisons and undertaken using Monte Carlo experiments.5. SIMULATION EXPERIMENTSIn the previous setions, we have presented the asymptoti null distributions of three lasses of teststatistis, and we have given some asymptoti properties under �xed and loal alternatives. It isnatural to inquire about their �nite sample properties, in partiular their exat levels and powers.Furthermore, the theoretial results obtained in Setions 3 and 4 need to be ompleted empirially.The power omparisons between the weighting Wn = ��n and Wn = Ip seem also of partiularinterest. To partially answer these onsiderations, some Monte Carlo experiments were onduted.The main omputer ode for the experiments desribed below has been written using the R language,and Imhof's (1961) algorithm has been implemented in the FORTRAN 90 language.



155.1 Desription of the simulation experimentsIn order to ompare the test statistis, we onsidered multivariate sampling from the multivariatenormal distribution, for several hoies of the ovariane matrix �. The test statistis inluded inour simulation experiments used the weighting Wn = Ip, Wn = ��kn , k � r, r = rank(�), andWn = ��n , where �n = Sn represents the sample ovariane matrix. For eah random sampleof size n = 100, we examined the empirial frequenies of rejetion of the null hypothesis H0 :� = 0 when the latter was true by using test statistis with three nominal levels (1, 5 and 10%).Multivariate sampling appears partiularly onvenient to study the power of the test proedures,given the analytial results demonstrated in the previous setions. Several �xed alternatives havebeen inluded in the study, whih have been hosen by examining the spetral deomposition of theovariane matrix � and their assoiated eigenspaes.Table 1. Mean vetors �(k)ij in multivariate sampling from the normal distributionN3(�(k)ij ;�(k)ij ), i = I; II, j = 1; 2, k = 1; : : : ; 4.Experiment i = I�(1)I;1 = ( 310 ; 0; 0)>, �(2)I;1 = ( 310 ; 310 ; 0)>, �(3)I;1 = ( 310 ; 310 ; 110)>, �(4)I;1 = ( 310 ; 0; 110)>,�(1)I;2 = (45 ; 0; 0)>, �(2)I;2 = ( 310 ; 310 ; 0)>, �(3)I;2 = ( 310 ; 310 ; 310)>, �(4)I;2 = (45 ; 0; 310)>;Experiment i = II�(1)II;1 = ( 310 ; 0; 0)>, �(2)II;1 = (0;� 225 ; 25 )>, �(3)II;1 = ( 110 ;�15 ; 150)>, �(4)II;1 = ( 110 ;� 310 ; 15)>,�(1)II;2 = (� 110 ;� 110 ; 15 )>, �(2)II;2 = ( 110 ;� 110 ; 0)>, �(3)II;2 = ( 110 ; 110 ; 110)>, �(4)II;2 = ( 110 ;� 110 ; 110)>;Table 2. Mean vetors �(k)ij in multivariate sampling from the normal distributionN6(�(k)ij ;�(k)ij ), i = III; IV , j = 1; 2; 3, k = 1; : : : ; 4.Experiment i = III�(1)III;1 = ( 310 ; 0; 0; 0; 0; 0)> , �(2)III;1 = ( 310 ; 310 ; 0; 0; 0; 0)>,�(3)III;1 = ( 310 ; 310 ; 310 ; 0; 0; 0)>, �(4)III;1 = ( 310 ; 310 ; 110 ; 110 ; 0; 0)>,�(1)III;2 = (45 ; 0; 0; 0; 0; 0)> , �(2)III;2 = (45 ; 45 ; 0; 0; 0; 0)>,�(3)III;2 = (45 ; 45 ; 25 ; 0; 0; 0)>, �(4)III;2 = (35 ; 35 ; 310 ; 310 ; 0; 0)>,�(1)III;3 = (45 ; 0; 0; 0; 0; 0)> , �(2)III;3 = (25 ; 45 ; 0; 0; 0; 0)>,�(3)III;3 = (0; 0; 35 ; 0; 0; 0)>, �(4)III;3 = (35 ; 35 ; 310 ; 310 ; 0; 0)>;Experiment i = IV�(1)IV;1 = (0; 310 ;�15 ;� 310 ; 0; 15)>, �(2)IV;1 = (0;� 110 ;� 120 ; 3100 ; 12 ; 120)>,�(3)IV;1 = (0:37;�0:24;�0:18;�0:12;�0:06;�0:03)> , �(4)IV;1 = (0:22; 0:18; 0:14; 0:09; 0:05; 0:02)> ,�(1)IV;2 = (0:18;�0:17; 0:00; 0:35;�0:18;�0:18)> , �(2)IV;2 = (�0:19;�0:34; 0:00; 0:14; 0:19; 0:19)> ,�(3)IV;2 = (�0:19; 0:20;�0:23; 0:20;�0:19; 0:21)> , �(4)IV;2 = (�0:20; 0:08;�0:22; 0:08;�0:19; 0:08)> ,�(1)IV;3 = (0:00; 0:00; 0:00; 0:00;�0:35; 0:35)> , �(2)IV;3 = (0; 0; 12 ; 0; 0; 0)>,�(3)IV;3 = (0; 15 ; 0; 110 ; 0; 0)>, �(4)IV;3 = (0; 0; 0; 15 ;�p210 ; p210 )>.



16 Table 3. Relative frequeny of rejetion of H0 : � = 0 (in perentage) for the testbased on the statistis Qn(Wn) de�ned by (2), usingWn = I3, Wn = ��kn , k = 1; 2,and Wn = ��n , with Zn = pn �Xn and �n = Sn, where the mean vetors are given inTable 1.(p; r) = (3; 2) � = �I;1 = diag(1; 1; 0)� = 0 � = �(1)I;1 � = �(2)I;1 � = �(3)I;1 � = �(4)I;11% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I3) 0.9 4.8 10.6 55.0 77.0 85.0 89.7 97.1 98.4 92.4 97.7 99.4 61.5 82.3 88.6Qn(S�n ) 1.3 5.8 11.0 57.4 77.0 85.0 90.3 96.9 98.7 90.3 96.9 98.7 57.4 77.0 85.0Qn(S�1n ) 0.4 2.9 7.3 27.6 45.3 54.0 50.5 65.3 71.5 50.5 65.3 71.5 27.6 45.3 54.0Qn(S�2n ) 1.3 5.8 11.0 57.4 77.0 85.0 90.3 96.9 98.7 90.3 96.9 98.7 57.4 77.0 85.0� = �I;2 = diag(10; 1; 0)� = 0 � = �(1)I;2 � = �(2)I;2 � = �(3)I;2 � = �(4)I;21% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I3) 1.2 5.6 11.3 50.0 71.5 81.0 8.3 24.4 39.4 12.3 35.5 57.3 56.3 79.4 86.3Qn(S�n ) 1.3 5.8 11.0 39.7 61.6 73.4 59.9 82.6 89.0 59.9 82.6 89.0 39.7 61.6 73.4Qn(S�1n ) 0.9 5.6 11.0 50.1 71.1 80.9 6.6 17.4 26.5 6.6 17.4 26.5 50.1 71.1 80.9Qn(S�2n ) 1.3 5.8 11.0 39.7 61.6 73.4 59.9 82.6 89.0 59.9 82.6 89.0 39.7 61.6 73.4For our investigations, we onsidered multivariate normal distributions of dimensions p = 3; 6,where � was singular and non-singular. The de�nitions of the ovariane matries � are given inTables 3-6. In Tables 3 and 5, the ovariane matries are exatly singular and they are diagonal.We investigated situations where the non null eigenvalues are both equal to one, and when they aredi�erent. In the ase p = 6, we investigated four unit eigenvalues, multipliities of dimension two anda situation where the non null eigenvalues are distint. In Tables 4 and 6 the ovariane matriesare of the form � = Ip � AA>, where  is a real value and A is a p� r matrix; they are preiselyde�ned in the Tables. It is easily shown that these matries have at least p� r unit eigenvalues. Intime series, the asymptoti ovariane matries of residual autoovarianes exhibit similar forms, seeLi (2004, Chapter 2), among others. The ovariane matries in Tables 4 and 6 are non-singular,but the ratio of the largest to the smallest eigenvalue is large; onsequently they are approximatelysingular. The values of the non null mean vetors under the alternative hypotheses are given inTables 1 and 2. For eah ase, 1000 independent realizations have been generated.5.2 Disussion of the Monte Carlo resultsIn Tables 3-6, the results for the level study orrespond to the olumn � = 0. For the nominallevel � = 5%, the empirial size over the 1000 independent repliations should belong to the in-terval [3:6%; 6:4%℄ with probability 95% (at the nominal levels � = 1% and 10%, the intervals are[0:4%; 1:6%℄ and [8:1%; 11:9%℄, respetively). When the relative rejetion frequenies are outside the95% signi�ane limits, they are displayed in bold in the Tables. When the relative rejetion frequen-ies are outside the 99% signi�ant limits, they are underlined. At the nominal levels � = 1%, 5%and 10%, the 99% signi�ane intervals are [0:2%; 1:8%℄, [3:2%; 6:8%℄ and [7:6%; 12:4%℄, respetively.



17Table 4. Relative frequeny of rejetion of H0 : � = 0 (in perentage) for thetest based on the statistis Qn(Wn) de�ned by (2), using Wn = I3, Wn = ��kn ,k = 1; 2; 3, and Wn = ��n , with Zn = pn �Xn and �n = Sn, where the mean vetorsare given in Table 1.(p; r) = (3; 3) � = �II;1 = I3 � 0:79x3x>3 , x3 = (1; 12 ; 110 )>� = 0 � = �(1)II;1 � = �(2)II;1 � = �(3)II;1 � = �(4)II;11% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I3) 1.0 4.8 10.7 62.0 99.9 100.0 86.5 94.9 97.5 26.9 48.8 62.2 79.5 92.3 96.0Qn(S�n ) 1.2 5.4 11.3 100.0 100.0 100.0 83.5 93.0 96.1 24.9 44.2 57.9 98.3 99.8 99.9Qn(S�1n ) 0.4 2.9 7.3 3.7 12.8 21.8 47.9 62.5 68.4 14.1 29.3 40.1 41.6 58.3 67.0Qn(S�2n ) 1.3 5.8 11.0 8.1 21.8 32.1 86.3 95.2 97.9 27.3 50.3 63.3 80.4 91.8 95.6Qn(S�3n ) 1.2 5.4 11.3 100.0 100.0 100.0 83.5 93.0 96.1 24.9 44.2 57.9 98.3 99.8 99.9� = �II;2 = I3 � 0:333XX>, X = (1; 2); 1 = 13; 2 = (1;�1; 0)>� = 0 � = �(1)II;2 � = �(2)II;2 � = �(3)II;2 � = �(4)II;21% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I3) 1.3 5.8 10.3 45.8 67.7 77.5 6.3 26.9 46.2 6.1 40.3 84.9 15.3 41.4 60.1Qn(S�n ) 1.2 5.4 11.3 31.6 54.3 66.6 29.4 50.6 65.3 100.0 100.0 100.0 100.0 100.0 100.0Qn(S�1n ) 1.1 5.1 10.9 45.8 68.7 78.8 1.2 6.2 10.9 1.0 5.2 10.8 4.9 14.5 22.4Qn(S�2n ) 1.3 5.8 11.0 36.8 60.0 71.2 34.4 58.2 70.5 1.4 5.9 11.0 37.9 63.0 75.8Qn(S�3n ) 1.2 5.4 11.3 31.6 54.3 66.6 29.4 50.6 65.3 100.0 100.0 100.0 100.0 100.0 100.0We disuss the results presented in Table 3. In general, the errors of the �rst kind of the teststatistis are well ontrolled, exept for Qn(S�1n ) at the 5% and 10% nominal levels when � = �I;1.For the alternatives � = �(1)I;1;�(2)I;1, the mean vetors belong to the eigenspae generated by theeigenvalue �1 = 1; it appears preferable to speify k = 2 than k = 1 in that situation, whihmay be explained by the multipliity of that unit eigenvalue. Interestingly, Qn(S�2n ) delivers higherpower than Qn(S�1n ) under �(1)I;1, even if that alternative belongs to the vetor spae generated byv1 = (1; 0; 0)>; this is explained by the fat that in �nite samples �(2)I;1 does not belong exatly to thevetor spae of the �rst olumn of Pn in the spetral deomposition of Sn. Under the alternatives� = �(3)I;1;�(4)I;1, the empirial powers of Qn(I3) and Qn(S�2n ) are very similar when � = �I;1, with aslight advantage for the weighting Wn = I3. These alternatives do not lie in a spei� eigenspae,and Qn(I3) o�ers high power. When � = �I;2, all the eigenvalues are di�erent and the ovarianematrix is singular. Sine �(1)I;2 2 V(f10g), Qn(S�1n ) is very powerful, but the weighting Wn = I3delivers a similar power. The di�erenes in powers between Qn(S�1n ) and Qn(S�2n ) = Qn(S�n ) issigni�ant. For �(2)I;2 2 V(f10; 1g), the weighting Wn = I3 gives low power, and to use a generalizedinverse provides the best empirial power. When � = �(3)I;2, that alternative does not lie in a spei�eigenspae; onsequently all test statistis o�er some power, but the generalized inverse appears themost powerful. The alternative � = �(4)I;2 2 V(f10; 0g); the most powerful test statistis are Qn(S�1n )and Qn(I3).



18 Table 5. Relative frequeny of rejetion of H0 : � = 0 (in perentage) for thetest based on the statistis Qn(Wn) de�ned by (2), using Wn = I6, Wn = ��kn ,k = 1; 2; 3; 4, and Wn = ��n , with Zn = pn �Xn and �n = Sn, where the meanvetors are given in Table 2.(p; r) = (6; 4) � = �III;1 = diag(1; 1; 1; 1; 0; 0)� = 0 � = �(1)III;1 � = �(2)III;1 � = �(3)III;1 � = �(4)III;11% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I6) 0.7 4.1 9.3 38.9 64.5 76.9 81.9 94.4 97.1 96.6 99.3 99.9 87.2 96.4 98.7Qn(S�n ) 1.1 5.0 11.3 42.9 67.8 79.6 85.4 94.8 97.2 97.2 99.4 99.8 88.1 96.9 98.7Qn(S�1n ) 0.3 3.6 7.7 10.3 22.6 31.8 23.7 37.4 46.8 34.1 48.2 55.6 25.8 40.4 49.1Qn(S�2n ) 0.3 3.7 7.9 17.9 36.2 46.9 43.9 61.7 70.5 59.0 73.3 79.6 45.9 64.1 73.4Qn(S�3n ) 0.5 4.2 7.8 29.3 51.2 63.1 62.9 79.4 86.8 80.8 89.4 93.1 67.7 82.7 88.3Qn(S�4n ) 1.1 5.0 11.3 42.9 67.8 79.6 85.4 94.8 97.2 97.2 99.4 99.8 88.1 96.9 98.7� = �III;2 = diag(10; 10; 1; 1; 0; 0)� = 0 � = �(1)III;2 � = �(2)III;2 � = �(3)III;2 � = �(4)III;21% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I6) 0.7 4.6 9.6 34.6 60.2 72.0 73.1 90.5 95.0 82.7 95.4 98.1 53.6 79.3 89.4Qn(S�n ) 1.1 5.0 11.3 27.7 49.9 64.4 64.9 83.9 91.1 98.2 99.6 99.8 94.8 98.6 99.6Qn(S�1n ) 0.2 2.8 7.8 16.8 33.2 44.1 41.5 59.2 66.9 41.6 59.6 67.5 21.9 41.7 51.2Qn(S�2n ) 0.9 5.1 10.7 36.0 61.5 73.3 73.6 90.3 94.8 73.6 90.2 94.8 42.2 66.1 75.9Qn(S�3n ) 0.6 5.2 9.8 30.8 54.2 67.0 68.3 87.5 92.4 86.2 93.6 97.2 72.7 86.3 91.1Qn(S�4n ) 1.1 5.0 11.3 27.7 49.9 64.4 64.9 83.9 91.1 98.2 99.6 99.8 94.8 98.6 99.6� = �III;3 = diag(8; 4; 2; 1; 0; 0)� = 0 � = �(1)III;3 � = �(2)III;3 � = �(3)III;3 � = �(4)III;31% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I6) 0.8 4.5 10.5 56.1 77.5 84.9 75.7 93.9 97.2 27.0 62.7 78.9 82.0 96.0 99.0Qn(S�n ) 1.1 5.0 11.3 38.4 62.8 74.5 85.0 95.0 97.5 83.0 92.5 96.9 96.9 99.5 99.9Qn(S�1n ) 0.9 5.1 9.9 57.7 79.0 87.7 14.4 29.7 40.9 1.1 4.8 10.6 31.4 54.5 67.2Qn(S�2n ) 0.8 5.2 10.6 48.4 70.1 80.2 89.3 97.3 98.8 1.8 7.3 14.8 76.2 90.5 94.9Qn(S�3n ) 0.5 5.2 10.9 42.6 66.5 75.8 88.3 96.8 98.0 84.5 94.6 97.2 86.8 94.8 97.6Qn(S�4n ) 1.1 5.0 11.3 38.4 62.8 74.5 85.0 95.0 97.5 83.0 92.5 96.9 96.9 99.5 99.9From the results presented in Table 4, the empirial sizes were rather satisfatory, exept forQn(S�1n ) at the 5% and 10% nominal levels, when � = �II;1 whih underrejeted and displayedrejetion rates outside the 99% signi�ane limits. When � = �II;1, the spetral deompositiongives �1 = �2 = 1 and �3 = 4:6 � 10�3. A basis for the eigenspae is omposed of the vetorsfv1 = (0:0;�0:2; 1:0)> ;v2 = (0:5;�0:9;�0:2)>;v3 = (0:9; 0:4; 0:1)>g. Clearly �(1)II;1 and v1 areorthogonal and as a result the empirial powers of Qn(S�kn ), k � 2 were low. The best empirialpowers have been observed for the f2g-inverse with k = 3. The weighting Wn = I3 o�ered lesspower. The alternative �(2)II;1 belongs to V(v1). The best empirial powers have been observed byQn(S�2n ) and Qn(S�3n ). The weighting Wn = I3 o�ered high power. The vetor �(3)II;1 2 V(v1;v2);



19Table 6. Relative frequeny of rejetion of H0 : � = 0 (in perentage) for thetest based on the statistis Qn(Wn) de�ned by (2), using Wn = I6, Wn = ��kn ,k = 1; 2; 3; 4; 5; 6, and Wn = ��n , with Zn = pn �Xn and �n = Sn, where the meanvetors are given in Table 2.(p; r) = (6; 6) � = �IV;1 = I6 � 920x6x>6 ;x6 = (1; 45 ; 35 ; 25 ; 15 ; 110 )>� = 0 � = �(1)IV;1 � = �(2)IV;1 � = �(3)IV;1 � = �(4)IV;11% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I6) 0.9 4.7 8.7 94.3 98.9 99.6 95.5 99.1 99.7 91.9 98.5 99.2 49.4 98.2 100.0Qn(S�n ) 1.6 7.0 12.0 97.0 99.5 99.7 95.8 99.2 99.5 92.6 98.3 99.2 100.0 100.0 100.0Qn(S�1n ) 0.3 3.2 6.7 26.0 40.4 48.6 24.6 38.2 46.7 23.8 39.2 47.3 0.4 3.3 6.7Qn(S�2n ) 0.2 2.7 6.6 45.7 63.0 71.2 45.7 61.6 69.6 46.6 63.7 71.7 0.2 2.5 6.6Qn(S�3n ) 0.5 3.5 7.0 65.6 79.5 84.9 65.2 77.5 83.2 64.2 79.8 85.7 0.5 3.4 6.9Qn(S�4n ) 0.7 4.1 8.8 83.4 92.1 94.8 82.6 91.9 94.4 82.4 92.2 95.2 0.7 3.9 8.3Qn(S�5n ) 1.5 6.1 11.4 95.5 99.2 99.6 96.8 99.4 99.6 93.7 98.6 99.6 1.7 6.1 11.7Qn(S�6n ) 1.6 7.0 12.0 97.0 99.5 99.7 95.8 99.2 99.5 92.6 98.3 99.2 100.0 100.0 100.0� = �IV;2 = I6 � 0:16XX>;X = (1; 2; 3; 4); 1 = 16; 2 = ( 12 ;� 12 ; 12 ;� 12 ; 12 ;� 12 )>;3 = ( 12 ; 0; 0; 0; 0; 12 )>; 4 = (0; 0; 12 ; 0; 0; 0)>� = 0 � = �(1)IV;2 � = �(2)IV;2 � = �(3)IV;2 � = �(4)IV;21% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I6) 0.8 4.7 9.1 94.5 99.0 99.5 94.3 98.9 99.5 96.7 99.5 99.7 74.3 90.9 96.8Qn(S�n ) 1.6 7.0 12.0 93.1 98.4 99.3 93.7 98.4 99.4 98.8 99.8 99.8 100.0 100.0 100.0Qn(S�1n ) 0.2 3.2 7.0 34.3 50.4 58.0 30.1 45.8 54.5 4.5 13.9 21.7 2.1 7.3 14.1Qn(S�2n ) 0.2 3.3 7.7 56.4 72.8 79.3 53.6 71.1 77.8 14.5 28.2 39.2 4.9 14.1 22.8Qn(S�3n ) 0.4 3.3 7.3 76.3 88.1 92.2 74.3 85.8 90.8 30.6 46.6 56.0 13.4 26.6 35.6Qn(S�4n ) 0.3 3.8 8.4 89.8 95.8 98.4 88.8 96.3 97.9 58.9 72.1 78.1 30.8 48.5 58.9Qn(S�5n ) 1.5 6.1 11.4 94.5 99.1 99.6 94.7 98.7 99.4 99.3 99.8 99.8 76.1 88.6 93.2Qn(S�6n ) 1.6 7.0 12.0 93.1 98.4 99.3 93.7 98.4 99.4 98.8 99.8 99.8 100.0 100.0 100.0� = �IV;3 = I6 � 0:49XX>;X = (1; 2; 3; 4; 5); 1 = 2 = (1; 0; 0; 0; 0; 0)>;3 = (0; 1; 0; 0; 0; 0)>; 4 = (0; 0; 0; 1; 0; 0)>; 5 = (0; 0; 0; 0; 1; 1)>� = 0 � = �(1)IV;3 � = �(2)IV;3 � = �(3)IV;3 � = �(4)IV;31% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%Qn(I6) 0.4 4.5 9.2 97.3 99.4 99.8 97.9 99.6 99.8 23.2 49.9 65.1 45.7 71.1 81.3Qn(S�n ) 1.6 7.0 12.0 92.7 98.1 99.2 94.2 98.6 99.3 45.3 66.1 76.0 56.4 74.9 84.1Qn(S�1n ) 0.2 2.5 7.2 63.0 73.7 77.4 57.4 69.9 76.0 0.3 3.8 9.0 11.6 25.7 35.7Qn(S�2n ) 0.7 4.6 9.7 96.9 99.0 99.7 97.7 99.6 99.7 1.8 6.9 13.4 19.4 38.7 51.4Qn(S�3n ) 0.6 4.8 9.3 96.6 99.1 99.6 96.6 99.3 99.7 20.7 39.0 48.5 36.2 57.6 69.0Qn(S�4n ) 1.1 5.0 11.1 95.6 99.1 99.6 96.3 99.2 99.6 49.2 70.7 79.7 61.3 79.8 87.0Qn(S�5n ) 1.2 4.6 9.9 94.2 98.6 99.5 95.5 98.5 99.3 45.5 67.0 77.3 57.9 76.0 84.5Qn(S�6n ) 1.6 7.0 12.0 92.7 98.1 99.2 94.2 98.6 99.3 45.3 66.1 76.0 56.4 74.9 84.1the best power has been observed for the f2g-inverse with k = 2. The alternative � = �(4)II;1 doesnot lie in a spei� eigenspae; the best power has been observed with a f2g-inverse with k = 3.



20When � = �II;2, �1 = 1:000; �2 = 0:334; �3 = 10�3. The �rst alternative �(1)II;2 belongs to theeigenspae assoiated to �1; it appears that Qn(S�1n ) is very powerful. The seond alternative �(2)II;2belongs to the eigenspae assoiated to �2, and Qn(S�2n ) dominates whereas, as expeted, Qn(S�1n )has no power. The third alternative lies in V(f�3g); the test statistis based on the f2g-inverses withk = 1; 2 o�ered no power and the best power has been attained at k = 3. The alternative �(4)II;2does not lie in a spei� eigenspae. Low power has been observed for k = 1 and k = 2, and thebest empirial power has been observed when k = 3. Note that when � = �(2)II;2;�(3)II;2;�(4)II;2, theweighting Wn = I3 displayed low power and it appeared preferable to use a generalized inverse or af2g-inverse.In Table 5, multivariate sampling from a singular normal distribution of dimension six and rankfour was performed. In general the rejetion rates were satisfatory under the null, exept forQn(S�1n )when � = �III;1;�III;2, whih underrejets slightly. In the ase � = �III;1, slight underrejetionourred at the 10% nominal level for Qn(S�kn ), k = 1; 2; 3. When � = �III;1, the empirial powersof Qn(I6) and Qn(S�n ) = Qn(S�4n ) were similar for the alternatives inluded in the study. All thealternatives belong to the eigenspae V(f1g). Under these alternatives the best powers were attainedby Qn(S�n ) = Qn(S�4n ). When � = �III;2, the best power was observed for k = 2 when thealternative was �(1)III;2, whih belongs to V(f10g). The best f2g-inverse was the one with k = 2under the alternative � = �(2)III;2, whih is also in the eigenspae V(f10g). The di�erenes with theweighting Wn = I6 were rather small. When � = �(3)III;2;�(4)III;2, the generalized inverse o�ered thehighest power. When � = �III;3, the best power was reahed by the test statisti Qn(S�kn ) basedon a f2g-inverse with k = 1, whih an be explained beause �(1)III;3 2 V(f8g) and the dimensionof that eigenspae is one. When � = �(2)III;3, the best power is observed with Qn(S�2n ). The teststatisti Qn(S�1n ) o�ered low power under that partiular alternative. On the other hand, the powerdi�erenes between Qn(S�kn ), k � 2 were rather small. The alternative � = �(3)III;3 belongs to V(f2g).Consequently, Qn(S�kn ), k � 2, have no power. The best empirial power is obtained when k = 3 forthe f2g-inverse, but the generalized inverse exhibits also high power. The weighting Wn = I6 o�erssome power, but that proedure was signi�antly less powerful than the generalized inverse. Thealternative � = �(4)III;3 belongs to the eigenspae generated by the non null eigenvalues. Consequentlythe best power is attained with the f2g-inverse with k = 4.Finally, we analyze the results in Table 6. In general the rejetion rates were reasonable under thenull. When � = �IV;1;�IV;2, some underrejetion has been observed for Qn(S�kn ), k = 1; 2; 3, whihseemed more pronouned at the 10% nominal level. Overrejetion ourred for Qn(S�n ) = Qn(S�6n )at the 5% and 10% nominal levels. Some underrejetion has been observed for Qn(S�1n ) when sam-pling from a normal distribution with ovariane matrix � = �IV;3. The eigenvalues of � = �IV;1are �1 = : : : = �5 = 1 and �6 = 5:5 � 10�3. The alternatives � = �(1)IV;1;�(2)IV;1;�(3)IV;1 are allin the orthogonal omplement of the eigenspae assoiated to �6. For all these alternatives, theempirial power inrease with k, and the best powers are attained by Qn(S�kn ), k = 5; 6. In gen-eral the di�erenes between the weighting Wn = I6 and Wn = S�n were rather small. When� = �IV;2, �1 = �2 = 1; �3 = 0:97; �4 = 0:94; �5 = 0:75 and �6 = 5:3 � 10�3. The alternatives



21� = �(1)IV;2;�(2)IV;2 belong to the eigenspae assoiated to the unit eigenvalue. However, sine theeigenvalues �i, i = 1; : : : ; 5 are lose, the best power are o�ered by Qn(S�kn ) with a large k. Thealternatives � = �(5)IV;2 lie in the eigenspae assoiated to �5. The best power is observed for Qn(S�5n ).In general the di�erenes between the weightingWn = I6 andWn = S�n were rather small under thealternatives � = �(1)IV;2;�(2)IV;2;�(3)IV;2. The alternative � = �(4)IV;2 belong to the eigenspae assoiatedto �5 and �6. Low power is observed for Qn(S�kn ), k � 4. The best power are observed for Qn(S�kn ),k = 5; 6. In general the di�erenes between the weighting Wn = I6 andWn = S�5n were small underthat alternative but substantially lower than the f2g-inverse with k = 6. When � = �IV;3, theeigenvalues are �1 = �2 = 1, �3 = �4 = 0:51 and �5 = �6 = 0:02. The alternatives � = �(1)IV;3;�(2)IV;3belong to the eigenspae assoiated to �1. Consequently Qn(S�2n ) was the most powerful. The alter-native � = �(3)IV;3 belongs to the eigenspae assoiated to �3. Consequently Qn(S�kn ), k = 1; 2 hadno power. The best empirial power has been observed when Qn(S�4n ). There were slight di�erenesbetween Qn(S�kn ), k = 4; 5; 6. The alternative � = �(4)IV;3 belongs to the eigenspae assoiated to �1and �3. The test statisti Qn(S�kn ), k = 1; 2; 3, o�ered some power under that alternative, but thebest power has been observed with the test statisti Qn(S�4n ).6. TESTING FOR CLIMATE CHANGESThe three lasses of test proedures are now illustrated on a set of monthly reonstrutions of temper-atures and preipitationsz (see Casty et al. 2005). These spatio-temporal data extend from January1659 to Deember 1999 and over a gridded area of 197 points over the whole European Alp region(note that the data �le ontains a gridded area of 275 points, but for eah observation the same 197points are measured). Our �rst aim is to ompare the mean temperature over the last 40 years withthe mean temperature over the whole period in order to test for a signi�ant hange. We onstrutedthe 12-dimensional multivariate time series of temperatures, denoted tt = (tt(1); : : : ; tt(12))>, suhthat tt(i) orresponds to the monthly average at time t and month i over the 197 grid points,i = 1; : : : ; 12, t = 1659; : : : ; 1999. The monthly mean are represented in Figure 4.For our testing problem, we de�ned the time series Xt = 140P40i=1 tt+1657+i for t = 1; : : : ; n = 302and the test statisti Zn = Xn � 1n�1Pn�1t=1 Xt. We supposed that the series of temperatures fXtgonstituted a stationary sequene with onstant mean �X, variane �X, and autoovariane funtion�X(�), that we presumed to be absolutely summable, that isP1h=1 k�X(h)k <1. Let E(Zn) = �Z.Under the null hypothesis: H0 : �Z = 0; against H1 : �Z 6= 0; (16)and the variane of the test statisti Zn is given by:� = nn� 1�X � (n� 1)�1 n�1Xh=1n�X(h) + �>X(h)o+ (n� 1)�2 n�2Xh=1(n� 1� h)n�X(h) + �>X(h)o :zCasty, C., et al. 2008. European Gridded Monthly Temperature, Preipitation and 500hPa Reonstrutions. IGBPPAGES/World Data Center for Paleolimatology Data Contribution Series # 2008-023. NOAA/NCDC Paleolima-tology Program, Boulder CO, USA.
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Figure 4. Monthly mean Alpine temperature from 1659 to 1999.Sine the autoovariane funtion is assumed absolutely summable, it follows that �! �X almostsurely, as n!1. In order to estimate onsistently the variane �, a simple estimator is given by theempirial variane Sn of X1; : : : ;Xn. An analysis of the eigenvalues of Sn revealed that the smallest(resp. largest) eigenvalue was 2:13� 10�3 (resp. 5:36� 10�1), suggesting that the sample ovarianematrix was relatively lose to a singular matrix.The test statistis Qn(I12), Qn(S�kn ), k 2 f1; : : : ; 11g and Qn(S�n ) were omputed. Sine Sn isinvertible, the generalized inverse is in fat the inverse, and the test statisti Qn(S�n ) is the lassialWald test proedure, that is Qn(S�n ) = Qn(S�1n ). From (v) in our Corollary 1, the Qn(S�n ) teststatisti is likely to have a larger Bahadur slope than any Qn(S�kn ), 1 � k � 12, and also than theImhof-based test statisti Qn(I12) (but we annot ompare diretly Qn(I12) and Qn(S�kn )). Using the



23loal power analysis, any f2g-inverse is asymptotially loally more powerful than Qn(S�n ) (and evenQn(I12)) in ertain diretions. From our results, we annot onlude whih one is best between theImhof-based test and Qn(S�n ). The p-values of the di�erent test proedures are displayed under theolumn labelled 'Temperature' in Table 7. At the nominal 5% level, the null hypothesis is not rejetedby the test statistis based on the f2g-inverses with k 2 f2; : : : ; 7g, but is rejeted by Qn(S�1n ), andQn(S�kn ), k 2 f8; : : : ; 11g. As we have seen in the previous setions, the f2g-inverse test statistisQn(S�kn ) and Qn(S�n ) may have low powers in ertain diretions of the alternative hypothesis, thatmay explain that several test statistis do not rejet the null hypothesis. By omparison, the Imhof-based test, whih enjoys power in all diretions, rejets the null at the usual 5% level. Moreover,the onservative Bonferroni proedure (onsisting in rejeting if the minimal p-value multiplied bythe number of tests is less than a given level) also tends to rejet the assumption that the Alpinetemperature of the 40 last years be stohastially similar to that of the period of referene. This is inaordane with many empirial studies exhibiting an aumulation of extremes positive temperatureduring the reent past (see e.g. Casty et al. 2005).The same exerise has been performed, replaing the series of temperatures fttg by a multivariatetime series omposed of preipitations. Following the same proedure that desribed previously, amultivariate time series of monthly preipitations, denoted fptg, t = 1659; : : : ; 1999, has been re-ated. The smallest (resp. largest) eigenvalue was 1:45 (resp. 131:0). The results are under theolumn entitled 'Preipitation' in Table 7. The results suggest that the test statistis do not detetany evidene against the null hypothesis that the average preipitations of the last 40 years are sto-hasti similar to those of the whole period. That onlusion is in aordane with studies showingthat the preipitation dynamis does not exhibit a partiular trend over the last period, but shows'a lear yli variability on a timesale of 40-60 years' (see e.g. Casty et al. 2007 for more details).7. DISCUSSION AND CONCLUSIONGeneralized Wald's method onstruts testing proedures having hi-squared limiting distributionsfrom test statistis having singular normal limiting distributions by use of generalized inverses. In thisartile, we investigated the use of f2g-inverses for that problem and we proposed new test statistiswith onvenient asymptoti hi-square distributions. Imhof-based test statistis have also be studied,whih onverge in distribution to weighted sum of hi-square variables. We disussed the asymptotinull distributions of the test statistis, and we performed a power analysis under �xed and loalalternatives. Simulation studies have been performed to study the exat levels in �nite samples, andthe exat powers have been ompared empirially in a simulation study.In general the test statistis o�ered satisfatory empirial levels; the test statistis based on the f2g-inverses with small values of k o�ered some underrejetion, but generally in the 99% signi�ane limitsand reasonably lose to the 95% signi�ane intervals. From our theoretial and empirial results,the spetral deomposition of the ovariane matrix plays an important role on the power properties.If an alternative lied in a spei� eigenspae, powerful test proedures were onstruted based onf2g-inverses with orders hosen large enough suh that the assoiated eigenspaes inluded thatalternative. This was expeted from our theoretial results (see Corollaries 1 and 2) and on�rmed in



24 Table 7. Testing stability against limate hanges: p-values (in perentage) of theQn(�)-tests de�ned by (2) for the testing problem (16) when the Xt's orrespond totemperature averages or preipitation averages.Temperature PreipitationImhof Qn(I12) 3.3 66.4k = 1 2.0 96.9k = 2 6.6 85.7k = 3 12.3 45.5k = 4 13.7 48.0k = 5 13.1 57.4f2g-inverse Qn(S�kn ) k = 6 6.0 45.2k = 7 5.6 39.5k = 8 4.1 36.9k = 9 0.4 23.4k = 10 0.6 18.4k = 11 1.0 21.4Moore-Penrose Qn(S�n ) 1.5 24.6the simulation experiments. In pratie, a spetral deomposition of the ovariane matrix appearsthus useful in speifying the order k: If the alternative of interest belongs to a partiular eigenspae,it ditates the hoie of k. When the ovariane matrix was singular or approximately singular,and when the alternative lied in the eigenspae assoiated to the non-null eigenvalues, test statistisbased on f2g-inverses with an order equal to the estimated rank of the ovariane matrix werepartiularly powerful test proedures. If an alternative was orthogonal to the eigenspae assoiatedto the eigenvalues used to onstrut a test statisti based on a f2g-inverse, low power has beenobserved (see also Corollary 2, ii)). The weighting based on a generalized inverse o�ered high powerin several ases, and the omnibus weighting Wn = Ip provided also interesting power, and in fatwas very powerful for the alternatives whih were in the eigenspae generated by the null eigenvalues.The test proedures have been illustrated in the data analysis on the monthly temperature andpreipitation variability in the European Alps. In omparing the monthly temperature of the last40 years with the whole period under study, a signi�ant di�erene has been found using the Imhof-based test, using the test statistis relying on f2g-inverses with k = 1, 7 � k � 11, and also for thetest statisti using the generalized inverse. No signi�ant di�erene has been found for the preipi-tation time series. Sine the f2g-inverses may o�er high power in ertain diretions, and low powerin others, our data analysis ontributed to explain the diretions of the alternative hypothesis whihentailed rejetion of the null hypothesis of equal mean temperature.APPENDIX. CONSTRUCTION OF THE f2g-INVERSE.In order to ompute ��kB , with k < r, r = rank(�), we desribe an algorithm, whih has been used



25in Setions 5 and 6. Given a �xed tolerane � >, a basis B = fu1; : : : ;umg of Rr , a symmetrisemi-de�nite matrix � and an integer 1 � k < r, the following steps are performed.1. First, ompute the eigenvalues �1 � � � � � �r of �;2. Find the largest integer k � k suh that �k > �k+1 + �;3. De�ne the following set: s(k) = fi; j�k � �ij < �g;4. Compute the ardinal mk of s(k);5. Calulate the matrixM s(k) suh that the mk olumns onstitute an orthonormal basis of theeigenspae Vs(k) assoiated to the eigenvalues suh that the indies are in s(k);6. The orthogonal projetion on Vs(k) an be omputed, and is given by P Vs(k) =M s(k)M>s(k);7. De�ne the generator P Vs(k)(B) = nP Vs(k)(u1); : : : ;P Vs(k)(um)o;8. A basis given by nP Vs(k)(ui1); : : : ;P Vs(k)(uimk )o is alulated, taking the mk vetors ofP Vs(k)(B) suh that the norm is larger than � and suh that their distane is superior to �of the spae generated by the preeding vetors of the system (if that operation does notprovide a basis, � was hosen too large; thus � is divided by two and the algorithm returns tostep 2);9. An orthonormal basis fv1; : : : ;vmkg is determined, applying the Gram-Shmidt proess onthe basis obtained in the preeding step;10. if k > 0, a matrix M f1;:::;kg suh that the k olumns onstitute an orthonormal basis of theeigenspae assoiated to the eigenvalues �1; : : : ; �k;11. The matries ��kB = diag(��11 ; : : : ; ��1k ;0>m�k), ��kB = Mf1;:::;kg��kB M>f1;:::;kg if k > 0,adopting the onvention ��kB = 0 if k = 0, and ��kB = ��kB +Pk�kj=1 ��1k viv>i :The algorithm de�ned by steps 1-11 gives a funtion AB;k;� suh that AB;k�(�) = ��kB :REFERENCESAndrews, D. W. K. (1987), `Asymptoti results for generalized Wald tests', Eonometri Theory 3,348�358.Anderson, T. W. (1984), An Introdution to Multivariate Statistial Analysis, Wiley, New York.Bahadur, R. R. (1960), `Comparisons of tests', The Annals of Mathematial Statistis 31, 276�295.Bhimasankaram, P. and Sengupta, D. (1991), `Testing for the mean vetor of a multivariate normaldistribution with a possibly singular dispersion matrix and related results', Statistis & ProbabilityLetters 11, 473�478.Bilodeau, M. and Brenner, D. (1999), Theory of Multivariate Statistis, Springer, New York.Box, G. E. P. and Piere, D. A. (1970), `Distribution of residual autoorrelations in autoregressive-integrated moving average time series models', Journal of the Amerian Statistial Assoiation 65,1509�1526.Casty, C., Wanner, H., Luterbaher, J., Esper, J. and Böhm,R. (2005), `Temperature and preipitationvariability in the European Alps sine 1500', International Journal of Climatology 25, 1855�1880.
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