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DUALITY IN LINEAR PROGRAMMING

Albici Mihaela, University „Constantin Brancoveanu”, Rm. Valcea

Teselios Delia, University „Constantin Brancoveanu”, Pitesti

Prundeanu Raluca, University „Constantin Brancoveanu”, Rm. Valcea

Popa Ionela, University „Constantin Brancoveanu”, Rm. Valcea

Abstract. Any linear programming problem marked as P and called ”primal” can 

be seen in connection with another linear programming  problem marked as D and called  

”dual”.  The  economic  interpretation  of  the  dual  model  brings  about  new information  

when analyzing such phenomena and when substantiating decision making.
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The idea of a linear programme’s duality and the theory of linear programming along 

with the duality marking manner have played a special role in economic analyses by the way 

in which they have emphasized the nature of prices. Ever since marginal analysis onwards, no 

other idea has proven to be that important to the fundamental theory of prices1.

1. Dual Problem

Let the example of linear programming in its general form be : 
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We shall call this problem « primal » and mark it as  P. The primal problem can be 

associated with another linear programming problem marked as  D and called « dual ». The 

transition from the primal problem to the dual one is done according to the following rules : 

1. before the transition takes place, the primal problem must be turned into its canonical 

form ;

2.  if  the  primal  linear  programming  problem  is  maximum,  then  the  dual  linear 

programming one is minimum and the other way round ;  

1
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3.  the  number  of  restrictions  in  the  primal  linear  programming  problem equals  the 

number of variables in the dual linear programming problem ; 

4. the number of variables in the primal linear programming problem equals the number 

of restrictions in the dual linear programming problem ; 

5. vector “c” in the primal linear programming problem is vector "b” in the dual linear 

programming problem ;

6. vector „b” in the primal linear programming problem is vector « c » in the dual linear 

programming problem ; 

7. the factors’ matrix in the dual linear programming problem is the transposed matrix 

of the  primal linear programming problem. 

Observation 1. The duality relation is symmetric: the duality’s duality is the primal 

problem. 

Correspondence rules between the primal linear programming problem and the dual 

linear programming one [2]: 

L.P.P.P L.P.P.D

minimum

maximum

number of variables

number of restrictions

free terms of restrictions

factors of objective function

columns of restrictions’ matrix

variable ≥0

variable ≤0

variable ∈ R

harmonious restriction

non-harmonious restriction

equality restriction

maximum

minimum

number of restrictions

number of variables

factors of objective function

free terms of restrictions

 rows of restrictions’ matrix

harmonious restriction

non-harmonious restriction 

equality restriction

variable ≥0

variable ≤0

variable ∈ R

Let the linear programming problem be: 
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Its dual nature is to be the linear programming problem: 
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Analogous as to the linear programming problem in a maximum canonical form: 
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Its dual nature is to be: 
( )

0

min

≥
≥

=

w

cwA

wbwg

(D)

Example 1. Let us write the dual nature of the linear programming problem: 
( ) 321 32max xxxxf +−=
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The problem’s canonical form is:
( ) 321 32max xxxxf +−=
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The problem’s dual nature is to be: 

( ) 212min wwwg +−=
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Example 2. Let us write the dual nature of the linear programming problem: 

( ) 21 2min xxxf −=
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The  problem  is  turned  back  into  its  canonical  form:

( ) 21 2min xxxf −=







−≥−
≥−

−≥−−

23

342

12

21

21

21

xx

xx

xx

0.0 21 ≥≥ xx

The problem’s dual nature is: 
( ) 321 23max wwwwg −+−=
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It is important to understand that duality is first and foremost a formal mathematical 

relation. Once a problem has been suggested, one makes up its double nature according to the 

rules above. If the primal problem is consistent, one naturally expects its duality to prove 

interesting.  One’s expectation can be grounded or not,  but duality’s  presence as a  formal 

feature of the primal problem is not affected [3].
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2. Duality Theorems 

Herein are the duality theorems that show the connection between the primal problem 

and the dual problem in a canonical form. 

Let the couple of problems be: 

(P)
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mnnm wxA ,11,, ,, MMM ∈∈∈ .

Let { }bAxxPx ≥≥= ,0  and { }cwAwPw ≤≥= ,0  be the set of admissible solutions of 

primal  linear  programming  problem  (P),  and  of  dual  linear  programming  problem  (D), 

respectively. 

Proposition  2. Irrespective  of  what  xPx ∈  and  wPw ∈  are  a  ( )wx,  couple  of 

solutions of the two problems, there is the following inequality: 
( ) ( )xfwg ≤  deci xcbw ≤

Demonstration:
bxAPx ≥⇒∈

The relation is multiplied by w  on the left and the result is bwxAw ≥ .

wPw ∈  hence cAw ≤ .

The relation is multiplied by x  on the right and the result is xcxAw ≤ .

Therefore, xcxAwbw ≤≤ .

Proposition  3. If solution couple  ( )wx ~,~  of the two problems has the feature that 
( ) ( )xfwg ~~ = , then x~ is the optimal solution of (P) primal linear programming problem and 

w~  is the best solution of (D) dual linear programming one. 

Demonstration:
We suppose by reductio ad absurdum that x~  is not the optimal solution of (P) primal 

linear  programming  problem;  then,  there  is  solution  xPx ∈*
 so  that  ( ) ( )xfxf ~* <  (  (P) 

primal  linear  programming  problem  being  minimum).  But  ( ) ( )wgxf ~~ =  ⇒  
( ) ( ) ( )wgxfxf ~~* =< ,  so  there  is  couple  ( )wx ~,*

 of  admissible  solutions  that  contradicts 
Proposition 2. 

Corollary 4.
i) If (P)  primal  linear  programming  problem  does  not  have  finite 

optimization, then (D) dual linear programming problem does not have any 
admissible solutions (namely Φ=wP ); 

ii) If (D) dual linear programming problem does not have finite optimization, 
then (P) primal linear programming problem does not have any admissible 
solutions (namely Φ=xP ). 

Theorem 5. If the solution of the (P) primal linear programming problem is ( )xPx ∈~
 

and finite, then the best solution of the (D) dual linear programming problem is still ( )wPw ∈~
 

and finite, and the optimal values of the objective functions coincide: ( ) ( )wgxf ~~ = .

It is intuitively deduced from Propositions 2, 3 and Corollary 4 by negation. 
Additionally, if x~  is the basic optimal solution of the (P) primal linear programming 

problem  for  base  B
~  made  up  with  m independent  linear  column  vectors  in ( )

imijii aaaaA ,...,,...,, 21= ,  then  bBxx B 1
~ ~~~ −== ;  

1
~

~~ −⋅= Bcw
B  where  B

c ~  are the  m costs 
corresponding to the vectors in base B

~ .
The values of the objective functions are: 

( ) bBcxf
B

⋅⋅= −1
~

~~
 şi ( ) bBcwg

B
⋅⋅= −1

~
~~

 hence ( ) ( )wgxf ~~ = .
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This theorem leads to the conclusion that the final simplex table corresponding to the 
primal problem includes the optimal solutions of both problems (primal and dual). The solution 

1−⋅= Bcw B

T

B  of the dual problem is obtained on row z at the cross with the vectors’ columns that 
have formed the original base. .

Analogously, if the dual problem is solved, the result is that the solution of the (P) 
primal linear programming problem is to be found in the last simplex table of the (D) dual 
linear programming problem, on row  j

B

j cz − , just below the columns that have originally 
formed the base. 

This  consequence  gives  the  possibility  to  solve  a  (P)  primal  linear  programming 
problem by its dual one if the latter is easier to solve, and the solutions of the primal one are 
read according to the above. 

Theorem  6  (The  Fundamental  Theorem  of  Duality).  For  any  couple  of  dual 
problems, one and only one of the following situations is possible: 

i) Both problems have solutions: therefore, they have  optimal solutions and the 
optimal values of the objective functions coincide; 

ii) One of the problems has a solution, the other does not: therefore, the former 
problem has finite optimization; 

iii) Neither of the two problems has a solution. 
Theorem 7 (The Theorem of Complementary Spacing). Taking account of the couple 

of linear programming problems  (P), (D) stated above, the major and sufficient condition for 
solutions xPx ∈~

 and wPw ∈~
 to be optimal is: 

( )
( ) 0~~

0~~

=−
=−
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bxAw

Demonstration:

In order to demonstrate emergency, let x~  and w~  be the optimal solutions of the dual 

problems, namely 


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
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w
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Then ( ) 0~~ ≥−bxAw  and ( ) 0~~ ≥− xAwc .

But bwxc ~~ = ,
xAwbwxAwxc ~~~~~~ −=− ,

( ) ( ) 0~~~~ =−+− bxAwxAwc .

Since the two addition terms in the left member of the obtained inequality are non-

negative, the result is that either is nule and therefore pursues the desired conditions.   

For sufficiency, if these relations are added: 

( )
( ) 0~~

0~~

=−
=−

xAwc

bxAw
,

the result is:
0~~~~~~ =−+− xAwxcbwxAw  bwxc ~~ =⇔  and so x~  is the optimal solution of the primal 

problem, and w~  is the best solution of the dual problem, according to Proposition 3. 

Lemma 8 (The Fundamental Lemma).  If  x and  w are possible vectors of the primal, 

respectively the dual problem, the following relations are true: 
wbwAxcx ≤≤ .

Demonstration:

It is noticed that  0≤−bAx  is obtained from the primal problem’s restrictions. Since
0≥w  if w is possible,

( ) 0≤−bAxw .

Hence,
wbwAx ≤ .

Using the  dual  problem’s  restrictions  0≥−cwA  and  the non-negativity  restrictions 

upon x, there is, if x and w are possible: 
wAxcx ≤ .
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Theorem 9. (The Equilibrium Theorem of Linear Programming)  

a) If •• wx ,  are possible points for the primal and dual problem, they are optimal if and 

only if: 

(1) 0=•
iw  whenever i

j

jij bxa <∑ •
;

(2) 0=•
ix  whenever j

i

iij cwa >∑ •
,

that is the k-th variable of a problem is nule when the k-th restriction of the other one is not 

effective. 

b) The optimal point (or optimal points if it is about being non-strictly optimal) shall 

be so that the number of non-nule variables of either problem shall not exceed the number of 

restrictions in that problem.   

The equilibrium theorem is important for two reasons. Firstly, it allows one to verify a 

primal solution’s ability to be optimal even if one does not have the optimal dual solution. 

Then, even more remarkably, it leads one to a number of interpretations of economic models’ 

conditions to be optimal, models having the exact form required by linear programming.    

3. Economic Interpretation

Let us consider a linear2 manufacturing model with  n jx outputs and  m ib  inputs 

between which there is a relation defined by ija  constant manufacturing factors. The factors 

show what i input amount is necessary to manufacture a  j output unit. In this case,  ∑
j

jij xa  

is the total input amount necessary for the manufacturing of  x compound output.  Ax means 

vector b of the inputs necessary to manufacture this compound output. 

Vector  p of products’ prices and vector  b  of all available resources are stated. The 

optimal manufacturing is defined as being pxmax  and its features are analyzed. Therefore, 

there is a linear programming problem 
pxmax

bAx ≤
0≥x .

Its dual problem is then 
bwmin  
pwA ≥

0≥w .

It is known from the duality theorem that ••• = pxbwpx ,  is a value expression (prices 

multiplied by amounts); therefore, it is expected that bw•  have the same meaning. Since b  

is the amount vector, w  is a random vector of prices – which in this case are inputs’ prices. 

Due to the new dimension that dual variables get by their connection with prices in economic 

matters, dual variables shall be often known as “shadow prices”. 

Let us now consider the dual problem’s restrictions, each having the following form: 

j

i

iij pwa ≥∑ .

Since  ija  is  i input  amount  necessary  to  manufacture  a  j output  amount,  iij wa  

represents the value of i input necessary to manufacture a j output unit, and ∑
i

iij wa  is the 

2
 Lancaster K. (1973) Mathematical Economic Analysis, Scientific Publishing House, Bucharest.
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total  value  of  inputs  necessary  for  the  manufacturing  of  a  j output  unit,  all  inputs  being 

assessed in w shadow prices. 

The answer to this question is pursued: which is the lowest value that is to be attached 

to the vector of  b  available resources knowing that there is a possibility to turn resources 

into products and then to sell them? The restrictions of the dual problem express the fact that 

if the value of the inputs incorporated in a product is lower than the product’s price, it is more 

advantageous to sell the products instead of the resources. Once the  •• wx , optimal points 

have been reached, the economy (or the enterprise) does no longer care if it sells the product 

obtaining •px , or if it sells the resources at •w  prices, because the total cashing is the same: 

bwpx •• = .

Thus, it can be stated that: 

• any resource that cannot be entirely used for the manufacturing of an i optimal 

compound output shall  be given a shadow price equalling zero or it  shall  be 

considered that its optimal value is nule;    

• once an optimal state has been achieved, no product shall be seen as such if its 

unit cost exceeds its price (the inputs being assessed by optimal shadow prices)3.

In other words, the resources that make up the excess supply are free goods and the 

manufacturing generating losses shall  be left  out in case the shadow prices are real ones. 

These relations correspond to the equilibrium of a competitive economy. 

If only the i-th restriction varies, it is deduced that the i-th dual variable (in the optimal 

point) can be considered the marginal value of the problem modifying the  i-th restriction. 

In typical  economic contexts,  there is  going to  be the marginal  social  value (or marginal 

revenue)  of the increase in a  proper resource amount.  Thus,  one can justify the common 

interpretation of dual variables as shadow prices.   

Example 3. Let the linear programming problem be: 
( ) 321 354max xxxxf ++=





≤++
≤−+

132

342

321

321

xxx

xxx

3,2,1,0 =≥ ixi

i) State the optimal solution by using primal simplex algorithm; 
ii) Write the dual problem associated with the one above and then write its optimal 

solution; 
iii) Interpret the dual problem’s solutions from the economic point of view. 

i) The linear programming problem is brought back to its standard form: 
( ) ( )21321 0354max yyxxxxf ++++=





=+++
=+−+

132

342

2321

1321

yxxx

yxxx

3,2,1,0 =≥ ixi

0,0 21 ≥≥ yy

3 If the optimal state is not unique, the last statement is valid for at least one optimal point. 
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j∆ 4 0      3       9 0        4

Since the problem is maximum, all 
0≥∆ j

⇒  the problem’s optimal solution is: 

0,1,0,0,1 21321 ===== yyxxx .

Products 2P  and 3P  are not manufactured - they are not efficient. 

The maximum profit is 4.

b) The dual problem of the original one is: 
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The dual problem’s solutions are: 

0,3,9,4,0 32121 ===== yyyww

c) ( ) 4min =wg

Product  2P  is  manufactured  in  the  amount  4  and  resources  1y  şi  2y  remain 

unbought.
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