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 Abstract. This paper revisits the Levy sections theorem.  We extend the scope of the theorem to time 

series and apply it to historical daily returns of selected dollar exchange rates.  The elevated kurtosis 

usually observed in such series is then explained by their volatility patterns.  And the duration of 

exchange rate pegs explains the extra elevated kurtosis in the exchange rates of emerging markets.  In 

the end our extension of the theorem provides an approach that is simpler than the more common 

explicit modeling of fat tails and dependence.  Our main purpose is to build up a technique based on 

the sections that allows one to artificially remove the fat tails and dependence present in a data set.  By 

analyzing data through the lenses of the Levy sections theorem one can find common patterns in 

otherwise very different data sets. 

 

PACS: 89.65.Gh; 89.75.−k. 
 

 

 
1. Introduction 

 

Recently the study of complex systems has attracted the attention of a growing number of 

physicists.  Scaling laws, self-organized criticality, self-similarity, and fractals, just to name a few, 

have been found in fields as diverse as biology and economics.  These phenomena have created the 

need for a general theoretical framework to explain them coherently through a physics of complex 

systems. 

A branch known as “econophysics” attempted to explain the self-similarity and fat tails 

observed in financial distributions that can be responsible for a variety of behaviors and, in 

particular, ultraslow convergence to the Gaussian regime [1].  Here one major contribution was 

Mantegna and Stanley’s truncated Levy flight [2], which takes into account both the departures 

from the classical central limit theorem and the presence of scaling laws. 

More recently, we have pursued a different line of research [3, 4].  Rather than looking for 

underlying probability distributions of financial processes, we focused on the role of nonlinear 

autocorrelations as well as nonidentically distributed variables.  As a result, we could alternatively 

explain both the ultraslow convergence and scaling laws. 

This paper moves forward and suggests an even simpler approach based on the Levy 

sections theorem [5].  The classical central limit theorem does not take chains of random variables 

that are dependent into account.  Yet the Levy sections theorem is stated under Levy’s 

generalization of the classical central limit theorem to encompass dependent variables.  The Levy 

sections theorem is not to be confused with his stable distribution of infinite variance.  Levy also 

employed his notion of “sections” to outline a proof for the generalization of the classical central 

limit theorem in order to consider the sums of dependent random variables [6].  This proof was 

reworked afterward using less restrictive assumptions [7, 8].  A full description of these 

developments was presented in his subsequent book [9]. 

Taking Levy sections amounts basically to using the inverse of the predictable quadratic 

variation as a random time change to transform a given process into a Gaussian one.  And every 
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continuous martingale is a time-changed Wiener process, where the time change is the quadratic 

variation.  This is known as the Dambis-Dubins-Schwarz theorem [10, 11, 12].  Also every 

semimartingale is a time-changed Wiener process [13].  At first, the last result can be employed for 

discrete time processes (time series).  And in particular, asset prices can be considered as time-

changed Wiener processes [14, 15].  References on martingale limit theory and the central limit 

theorem for martingales can be found elsewhere [16, 17, 18]. 

 This paper thus extends the Levy sections theorem’s approach to time series.  And we take 

historical daily returns of selected dollar exchange rates from both developed and emerging markets 

to illustrate our case.  By using the Levy sections to account for local volatilities we find universal 

patterns in the random behavior of actual financial series.  Indeed we explain their stylized fact of 

elevated kurtosis by the volatilities.  And the extra elevated kurtosis of emerging markets is 

explained by the duration of exchange rate pegs.  The longer foreign exchange intervention is, the 

greater the kurtosis.  One can then build a gauge of exchange rate peg duration based on the 

kurtosis.  In the end, our extension of the Levy sections theorem provides an approach that is 

simpler than the more common explicit modeling of fat tails and dependence [3, 4].  
 The main purpose of this paper is to build up a technique based on the sections that allows 

one to artificially remove the fat tails and dependence present in a data set, and then compare this 

set with a Gaussian one, only to realize that both data sets become very similar if analyzed through 

the lenses of the Levy sections theorem. 

The rest of the paper is organized as follows.  Section 2 presents building-block definitions 

and the Levy sections theorem.  Section 3 extends the previous definitions to time series.  Section 4 

illustrates our framework using data from exchange rate returns.  Section 5 puts forward a 

qualitative gauge of foreign exchange intervention using a Gaussian generator.  And Section 6 

concludes. 

 

2. Definitions and the Levy sections theorem 

 

We consider a chain of random variables denoted by nX  with n∈` . The conditional probability 

of a given realization 1nx +  of 1nX +  is written as ( )1 1,...,n nP x x x+ .  This means the probability of 

1nx +  if the random variables 1, , nX X…  follow the particular chain walk 1, , nx x… .  The 

conditional mean and variance of 1nX +  are 

  

                             ( )
1

1 1 1 1 1,...,
n

n n n n n nx x
X x P x x x dxµ + + + += = ∫"

                                                 (1) 

 

and 

 

 ( )
11

22 2 2 2

1 1 1 1 1 1,...,
nn

n n n n n n n nx xx x
m X X x P x x x dx µ+ + + + += − = −∫""

.                                 (2) 

 

Both nµ  and nm  depend on 1,..., nx x .  To simplify notation, we omit the index associated with the 

walk dependence.  For the chain walk 1, , nx x…  of size n  of the random variables 1, , nX X…  we 

calculate the quantity 
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where im  is the conditional variance of 1, , ix x…  for 1, ,i n= … .  Consider a positive real number 

t  such that the condition 

 

      1n ntλ λ− ≤ <                                                     (3)  

 

 is satisfied.  We say that the chain walk 1,..., nx x  belongs to the section t , and condition (3) is 

called the section condition t .  The 1nλ −  is calculated for the chain walk 1 1,..., nx x − , i.e. 

1
2

1

1

n

n i

i

mλ
−

−
=

=∑ .  For a given chain walk of size n  we have 
2

1 , 2, ,i i im i nλ λ −= + = " , and 
2

1 1mλ = .

 The section t  is made up of all chain walks obeying the section condition t .  Note that the 

chain walks can have different sizes n . 

 The sum 1 ... nx x+ +  of elements in a given chain walk belonging to the section t  defines a 

random variable, denoted by tS , whose variance is 
22 2

t t tM S S= − .  The Levy sections 

theorem [6−9] is the following. 

 

Theorem.  For the null conditional means 0 ( )n nµ = ∀ ∈`  and random  variables  ( )nX n∀ ∈`  

satisfying the Lindeberg conditional condition (see reference [9], section 67, pages 237-246, 

theorem 67.3), the probability distribution of /tS t  is such that 

( )
2

2
1

lim
2

x

t
t

P S t e dx
η

η
π

−

−∞→∞
< = ∫ . 

 

Stationarity is not assumed.  This theorem extends the classical central limit theorem to consider the 

chains of dependent random variables.  The distribution of the variable tS t  converges to a 

Gaussian of zero mean and unity standard deviation as the section t  goes to infinity.  The 

normalized variable t tS M , with 
22

t t tM S S= − , also converges to the Gaussian of zero 

mean and unity standard deviation.  For a given section t , the variable tS t  (unlike t tS M ) has 

not unity standard deviation.  Yet both variables have the same skewness and kurtosis (and the same 

is true of the other reduced statistical moments).  Both converge to a normal distribution of unity 

standard deviation.  While the standard deviation of t tS M  remains constant and equal to unity 

over the convergence process, the standard deviation of tS t  changes, yet converging 

asymptotically to unity. 

Given the conditional probability of the random variable nX , its probability distribution is 

given by the marginal probability defined as 

 

( )
1 1

1 1( ) ,...,
n

n n n n

x x

p x P x x x
−

−= ∑
"

 

 

where the sum considers all possible walks 1 1,..., nx x −  followed by the random variables 

1 1,..., nX X − .  The marginal variance of nX  is calculated from (1), i.e. 
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( )222 2 2 ( ) ( )n n n n n n n n n n nX X x p x dx x p x dxν = − = −∫ ∫ . 

   

 Let us define the quantity 

 

2 2

1

n

n i

i

nσ ν
=

≡∑  

 

which we call the cumulated average variance of nX .  Then, let us consider the sum random 

variable nS  of size n  defined in the usual way, i.e. 

 

1n nS X X= + +" .                                                           (4) 

 

Its variance, 
2

2 2

n n nM S S= − , satisfies  

 

2 2

1 1

cor( , )
n n

n i i j i j

i i j

M X Xν ν ν
= ≠ =

= +∑ ∑ , 

 

where cor( , )i jX X  is the linear correlation between variables iX  and jX . 

 Next we define the quantity 

 
2 2

n n nMτ σ=  

 

which we call the variance time of nS .  To understand its meaning first consider the example of a 

chain of independent random variables nX , where cor( , ) 0i jX X =  for all 1, ,i j n≠ = … ,  and 

n nτ = .  The variance time is just the “actual” time n . 

Another example shedding light on the meaning of the variance time of nS  is a situation 

where the marginal variance 
2

iν  is stationary, i.e. 
2 2

iν ν=  for all i∈` .  In this case the variance 

time becomes 

 
2

2
1

cor( , )
n

n
n i j

i j

M
n X Xτ

ν ≠ =

= = + ∑ . 

 

Note that the presence of linear correlations can lead to delays and advances in the variance time 

when compared to the actual time n .  For some chains (for example, Mandelbrot’s fractional 

Brownian motion) the variance of nS  may follow a scaling law such as 
H

nM An= , where H  is 

Hurst exponent.  Here the variance time is 
2H

n nτ = .  If 1/ 2H >  ( 1/ 2H < ) the variance time 

will move ahead (fall behind) the actual time. 

 We do not attach an index related to the actual time in the random variable tS  because the 

number of terms in tS  depends on the chain walk.  Yet the size n  of a chain walk 1, , nx x…  

satisfying the section condition t  (equation (3)) can be used as a (random) variable related to time.  
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We denote it by tn .  If the variance of nX  is stationary, the variance time (associated with the 

section) tτ  of tS  is 

 
2 2

t tM vτ = . 

 

 

3. Extending the concepts to time series 

 

A time series ( )
1,...,i i N

x
=

, where i  is a time counter and N  is the series size, can be thought of as a 

single realization of a random process.  We can employ to this series either (1) the technique based 

on the marginal probability of a chain of identical random variables [3−6] applied to study of the 

properties of nS  or (2) the properties associated with the sum tS  as defined in Eq. (4).  The 

technique uses the concept of conditional variance nm  of a given chain of random variables as well 

as the variable tS  introduced in Section 2.  To clarify the differences between the two approaches 

we elaborate further on the definitions associated with nS  and tS . 

For the time series we rewrite the sum nS  for a given n N<  as 

 

1

1 1 1

, , ,
n n n

n i i N n i

i i i

S x x x+ − +
= = =

 
=  
 
∑ ∑ ∑" . 

 

Such collection of sums is seen as one realization of 1n nS X X= + +" , where the random 

variables iX  with  1, ,i n= …  are identically distributed.  The original time series is only one of the 

all possible realizations, i.e. 1 2( , , , )i NX X x x x= = … .  The marginal variance 
22 2X Xν = −  

can be straightforwardly reckoned from the list X .  This allows one to calculate the variance time 
2 2

n nMτ ν= , where 
2

nM  is the variance of nS .  Thanks to the presence of correlations, the 

normalized nS  does not converge to a Gaussian. 

One big difficulty is learning the values taken by the local volatilities 
2

im  since it is 

impossible to get them from only one realization of the variable, namely the empirical value of ix  

taken from the data set.  For this reason we need an extra technique to calculate the local volatilities.  

So consider a positive integer q , and the new time series 

 

( )
1,..., 2n n N q

y
= −

, 

 

where the first and the last q  terms of ( )
1,...,n n N

x
=

 were dropped, i.e. ,  1,..., 2n n qy x n N q+= = − .  

Then the local volatility 
2
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for 1, , 2n N q= −… .  Here the local volatility is a measure of the conditional variance associated 

with a given chain of random variables. 

Thus we can extend the concept of the Levy section t  for the collection ( )
1,..., 2n n N q

y
= −

.  The 

tS  ends up as the collection of all the sums 

 

{ }1 1... , 1,..., 2
i ii i n ny y y y i N q+ −+ + + + ∈ −  

 

such that the condition in Eq. (3) is fullfilled, i.e. 

 
2 2 2 2 2 2

1 1 1 1... ...
i i i in i i n i i n nm m m t m m mλ λ− + − += + + + ≤ < + + + = , 

 

where every 
2

im  is calculated by Eq. (5). 

The local volatility definition implies the existence of an integer [ ]0, 2tj N q∈ −  such that 

the section condition t  is not fulfilled for ti j> .  Indeed, tj  is the number of elements belonging to 

the collection tS  which can be rewritten as 

 

1 2

1 1

1 1 1

, , ,
jt

t

nn n

t i i j i

i i i

S y y y+ − +
= = =

 
=   
 
∑ ∑ ∑… . 

 

For every section t  we can define the collection 1 2( , , , )
tt jn n n n= …  made up of the number of 

terms in every sum belonging to the collection tS . 

For the time series, the variance of tS  is 
22 2

t t tM S S= − , and the variance time of tS  

is 
2 2

t tM vτ = .  Also, the average number of terms associated with tS  is 1( )
tt j tn n n j= + +" .  

The purpose of the definition of variance time is to compare the time evolution of both nS  and 
tS .  

Unlike nS , the 
tS  is not indexed to actual time, i.e. no particular time is associated with it.  The 

scale of the variance time, however, allows one to compare the two.  Although other scales can be 

imagined, in the one suggested here the variance of both nS  and 
tS  is the same for every variance 

time.  So we can assess the evolution of nS  and tS  by considering not actual time, but how their 

respective variances evolve. 

We assume that the time series is stationary when doing the sum procedures above.  Though 

the stationarity assumption for a chain of random variables is not made in the Levy sections 

theorem, our sum procedures to obtain 
tS  for an empirical time series make sense only if the series 

is stationary.  So our sum procedure is to be blamed in the event of a possible failure of the 

extension of the Levy sections theorem to time series. 

 

4. Illustrating with exchange rate returns 

 

Now we take historical daily returns of selected dollar exchange rates from six countries, namely 

Britain, France, Canada, India, Sri Lanka, and the People’s Republic of China.  These are absolute 
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returns, i.e. 1n n nx r r −= − , where rn is an exchange rate (dollar price of a foreign currency) at date n.  

The data are collected from the Federal Reserve website.  Table 1 gives more details. 

 We reckon the local volatility of trading weeks (5-day weeks), which means 2q =  in 

Section 3’s formulas.  Figure 1 shows the kurtosis K  as a function of the variance time.  Dashed 

lines are the kurtosis’ evolution of the conventionally ordered series nS  as a function of nτ .  The 

continuous lines are the kurtosis’ evolution of  tS  as a function of 
tτ . 

 To display the kurtosis behavior of the sections sums, we start with the initial (very small) 

section 
1510t −= , and then calculate the sections t i t+ ∆ , for 1, ,99i = … .  We cannot pick the 

section 0t =  to begin with because of computational limitations.  The values of t∆  are arbitrarily 

chosen to enable one to see smooth variations of the kurtosis as well as the transient period of 

kurtosis evolution.  We restrict the calculations to 100 steps because this is enough to assuring the 

asymptotical convergence of the kurtosis.  And also because this allows one to keep the number of 

terms of the sums in tS  small if compared to the original number of terms in an empirical time 

series.  This prevents introducing spurious correlations among the terms in sequence tS . The values 

of t∆  used in every currency are in Table 2.  The key features shown in Figure 1 are as follows. 

   

(A) There is kurtosis convergence in the sections sums tS  of the currencies toward a well 

defined asymptotic state.  This does not hold in the sums nS  of the conventionally ordered 

exchange rate time series. 

(B) The variance time of kurtosis convergence for the sections sums is short.  Unlike in the 

conventionally ordered sums, the kurtosis convergence for the sections is similar for all 

rates.  All the sections kurtosis practically reached the limit at the variance time 10tτ = . 

(C) The kurtosis convergence approaches zero.  Developed countries’ currencies present 

slightly negative kurtosis and emerging countries’ currencies have slightly positive 

kurtosis.  Unlike in the conventionally ordered series, the sections sums converge to a 

distribution resembling the Gaussian.  

(D) The sections’ kurtosis evolution presents a universal behavior for the currencies studied, 

regardless of the fact that a country is developed or not. 

 

 What happens from the perspective of actual time?  Assuming the variance time 10τ =  as 

an equilibrium benchmark, we can take the section t  corresponding to that time for every currency.  

Table 3 lists the values of t  for the exchange rate series.  We can obtain the collection tn  as 

defined in Section 3, and also calculate tn : the average number of terms of the sums of section t .  

Figure 2 shows histograms of the collections tn , and Table 4 presents 
tn  for the exchange rates. 

 Compared to the histograms of emerging markets’ currencies, the histograms of developed 

markets’ currencies tend to cluster in a near-zero value.  And the average number of days 
tn  

corresponding to the stationary limit 10tσ =  of the sections t  of developed countries’ currencies is 

smaller than that of emerging markets’ currencies (the values of t  are those displayed in Table 3).  

These features may be related to the degree of government intervention in the emerging markets’ 

currencies.  A fixed exchange rate regime would mean zero volatility (constant rate) and a return 

series dominated by zeros.  China, for instance, kept an 11-year-old peg of its currency, the yuan, at 

8.28 to the dollar.  But there were also four big episodes of revaluation in the yuan-dollar returns’ 

series considered.  This caused an interesting effect.  Because volatility nears zero most days, one 

needs to accumulate more days to fullfil a given section condition t .  Table 5 shows the yuan’s 
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tn  greater than that of the other currencies.  Indian and Sri Lankan rupees present smaller values 

but still greater than those of the pound, French franc, and Canadian dollar.  The developed 

countries’ currencies exhibit very similar tn . 

Figure 3 shows histograms related to the currencies’ local volatility.  The yuan’s volatility 

clusters in zero, unlike those of developed countries’ currencies.  This explains the observed 

patterns in the histogram of 
tn  (Figure 2). 

 

5. A suggested gauge of exchange rate control 

 

As an exercise, we put forward a qualitative gauge of foreign exchange intervention using a 

Gaussian generator.  Consider a Gaussian random generator of reduced variables that are 

independent and identically distributed (IIDR) [4].  Then consider the sequence n n nz m g= , 

1,..., 2n N q= −  (with q = 2 in the empirical example), where ng  is generated by a normal 

distribution, and nm  is the local volatility.  What is special here is that the volatility process is not 

modeled, but taken from the data.  If 
nm  is constant, the distribution of 

n n nz m g=  collapses to a 

Gaussian.  The column in the middle of Table 5 shows the kurtosis of the IIDR applied to the 

exchange rates.  The right hand side column shows the kurtosis of the original series of daily 

returns.  The effect of the local volatilities is unambiguous.  Because the generator is Gaussian, the 

elevated kurtosis should be explained by the volatilities. 

 Thanks to exchange rate pegs, return dispersion is low at the days a rate is fixed.  Thus a 

number of return observations fall out of the variance interval (by variance interval we mean the 

symmetric interval around the mean that is two standard deviation wide, and with respect to the 

original returns series; and this without taking the sections into account).  The elevated kurtosis in 

emerging markets’ exchange rates can then be explained by too many observations outside the 

variance interval.  This rationale is simpler than the more usual ones based on fat tails and 

dependence.  The Levy sections filter the effects on the local volatility so that the return series 

present a near-Gaussian universal pattern. 

Exchange rate time series are commonly believed to be modeled by a Gaussian whenever 

government intervention is absent.  This is because government intervention introduces patterns in 

the series that can be exploited by market participants to improve their forecasts.  With free float the 

market is more likely to be efficient in the sense that the properly anticipated prices fluctuate 

randomly [19].  Our results show that foreign exchange intervention provokes departures from the 

Gaussian in that it biases the volatility evolution.  So the greater the control is, the greater the 

kurtosis.  This is so because the pegs tend to bring a series’ dispersion closer to zero, thereby 

rendering many observations out of the distribution’s variance interval.  Thus the kurtosis reckoned 

in the IIDR can be seen as a gauge of peg duration.  Normalizing the pound-dollar’s kurtosis to 

unity, we can get a relative intervention scale (Table 6).  Note that this gauge is qualitative in that 

no quantitative relation between the kurtosis ratios and the peg durations are provided.  This might 

be one interesting topic for future research. 

 

6. Conclusion 

 

Levy’s notion of sections was a tool for him to outline a proof for the generalization of the 

classical central limit theorem to consider the sums of dependent random variables [6].  This paper 

extends his technique to time series.  Though the Levy sections do not consider actual time, the 

notion of a variance time for their sum that converges to a Gaussian can be useful for our purposes.  

So the sections can be designed to consider only the local volatility. Employing historical daily 
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returns of selected dollar exchange rates, we calculate the local volatilities of their trading weeks.  

Doing so, we find a universal behavior in the actual series. 

Unlike in the conventionally ordered exchange rate time series, we find kurtosis 

convergence toward a well defined asymptotic state in their correspondent Levy sections.  We also 

find the time of  kurtosis convergence to be short.  This is similar for the currencies considered.  

The kurtosis convergence approaches zero.  And in the Levy sections, the convergence occurs 

toward a distribution resembling the Gaussian. 

As an exercise, we employ our approach to show that the extra elevated kurtosis of 

emerging markets’ exchange rates can be explained by too many observations outside the variance 

interval.  This is so thanks to the duration of exchange rate pegs.  Foreign exchange intervention 

provokes departures from the Gaussian in that it biases the volatility evolution.  So the greater the 

control is, the greater the kurtosis. 

We finally suggest a qualitative gauge of peg duration based on the kurtosis reckoned in the 

Gaussian generator, and leave the search for a quantitative gauge for future research. 
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Table 1. Description of data. 

 

Country Currency Time Period Observations 

Britain Pound 4 Jan 71 – 10 Jan 03 8031 

France French Franc 4 Jan 71 – 31 Dec 98 7020 

Canada Canadian Dollar 4 Jan 71 – 10 Jan 03 8037 

India Indian Rupee 2 Jan 73 – 10 Jan 03 7525 

Sri Lanka Sri Lankan Rupee 2 Jan 73 – 10 Jan 03 7171 

China Yuan 2 Jan 81 – 10 Jan 03 5471 

 

 

 

Table 2. Values for steps t∆ . 

 

Currency t∆  

Pound 0.00002 

French Franc 0.00031 

Canadian Dollar 0.0000023

Indian Rupee 0.054 

Sri Lankan Rupee 0.02 

Yuan 0.00055 

 

 

 

Table 3. Value of t  for the section corresponding to 10tτ = . 

 

Currency t  

Pound 0.00046 

French Franc 0.00682 

Canadian Dollar 0.0000506

Indian Rupee 0.0584 

Sri Lankan Rupee 0.1 

Yuan 0.01210 

 

 

 

Table 4. Values of 
tn  for 10tτ = . 

 

Currency 
tn  

Pound 15.04 

French Franc 23.13 

Canadian Dollar 17.26 

Indian Rupee 246.20

Sri Lankan Rupee 79.06 

Yuan 323.39
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Table 5. Kurtosis of the Gaussian IIDR and of the original series. 

 

Currency IIDR Series’ Kurtosis Original Series’ Kurtosis 

Pound 6.76 4.76 

French Franc 10.04 8.54 

Canadian Dollar 7.73 5.37 

Indian Rupee 118.9 118.3 

Sri Lankan Rupee 124.3 288.7 

Yuan 1547.7 3486.1 

 

 

 

 

Table 6. Intervention scale: IIDR series’ kurtosis relative to IIDR pound-dollar return series’ 

kurtosis. 

 

Currency Intervention Scale

Pound 1.0 

French Franc 1.48 

Canadian Dollar 1.14 

Indian Rupee 17.60 

Sri Lankan Rupee 18.39 

Yuan 228.97 
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Figure 1: Kurtosis (vertical) vs stochastic time.  Dashed lines are for conventionally ordered series 

and continuous lines are for the Levy sections. 

 



 14

 

 

 
 

Figure 2. Histograms of tn .  Section t  for every currency corresponds to the variance time 10tτ = . 
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Figure 3. Distributions of the local volatilities of trading weeks ( 2q =  in the corresponding 

formulas in Section 3). 


