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Abstract

This paper analyzes strategic choice in p-beauty contests. We first show that it is

not generally a best reply to guess the expected target value (accounting for the

own weight) even in games with n > 2 players and that iterated best response

sequences are not unique even after perfect/cautious refinement. This implies

that standard formulations of “level-k” models are neither exactly nor uniquely

rationalizable by belief systems based on iterated best response. Second, ex-

act modeling of iterated reasoning weakens the fit considerably and reveals that

equilibrium types dominate the populations. We also show that “levels of rea-

soning” cannot be measured regardless of the underlying model. Third, we con-

sider a “nested logit” model where players choose their level. It dispenses with

belief systems between players and is rationalized by a random utility model.

Besides being internally consistent, nested logit equilibrium fits better than three

variants of the level-k model in standard data sets.
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1 Introduction

The “p-beauty contest” is a game where n players guess numbers xi ∈ [0,1] and the

player whose guess is closest to p ∈ (0,1) times the mean of all guesses wins a fixed

prize. Nagel (1995) reported the first experimental investigation of such guessing

games and advanced an interpretation of “iterated best response” to explain her ob-

servations, leaning on the level-k model of Stahl and Wilson (1995). Accordingly, the

population consists of level-0 types who randomize uniformly, of level-1 types who

assume all their opponents are level 0, of level-2 types who assume all their opponents

are level 1, and so on. This model seems to explain two focal observations made in

many beauty contest experiments, increased densities around .333 and .222 in case

p = 2/3, and meanwhile, models of iterated reasoning have been adopted by many

authors.1 Currently, level-k models are considered the leading theory of strategic

choice not only in p-beauty contests, but in novel situations in general.

The present study challenges the level-k interpretation of strategic choice in

guessing games and presents evidence in favor of an alternative concept called nested

logit equilibrium (NLE). The NLE concept generalizes logit equilibrium, which is the

conventional formalization of quantal response equilibrium as defined by McKelvey

and Palfrey (1995), by employing the more general hierarchical concept “nested logit

response” instead of “logit response” at the level of individual choice (see e.g. Mc-

Fadden, 1981, 1984). We will discuss various level-k, logit, and nested logit models

based on the data set compiled by Bosch-Domenech et al. (2002), which combines

observations from six different sets of p-beauty contest experiments.

Figure 1 presents histograms and density estimates of the observations. As indi-

cated, the level-k approach essentially seeks to explain the spikes at .333 and .222, and

combines with a notion of noise to approximate the overall distribution. The spikes

at .333 and .222 rarely have the highest density in these samples, however. In most

cases the Nash equilibrium guess has higher density, and the “Laboratory” data have

the highest density in the neighborhood of .333 and .222 rather than exactly there.

1See e.g. Ho et al. (1998), Costa-Gomes et al. (2001), Crawford and Iriberri (2007), and Stahl and

Haruvy (2008) for level-k analyses and Camerer et al. (2004), Kübler and Weizsäcker (2004), and

Rogers et al. (2009) for related analyses.
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Figure 1: Histograms and density estimates of the data
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Moreover, these spikes are hardly significant in the density estimates, and thus there

is no necessity that an explanation of these spikes has to be the basis of models ex-

plaining the distribution of guesses.2 In addition to this lack of necessity, the present

paper shows the following. Increased densities at .333 and .222 (in case p = 2/3)

are generally not rationalizable by iterated best response, and hence level-k models

as discussed in the literature do not exactly comply with iterated reasoning (Section

2). Exact modeling of iterated reasoning suggests that equilibrium types dominate

the population but leads to significantly worse goodness-of-fit (Section 3). Nested

logit equilibrium rationalizes subjects’ levels using a random utility model, which is

internally consistent, and it significantly improves the goodness-of-fit (Section 4).

To be precise, Section 2 shows that the guess p ·0.5, or n−1
n−p

· p ·0.5 as in Ho et al.

(1998), is in general not the best response to uniformly randomizing players. The

best response may differ strikingly if the number of players is low or if the players

behave as if their opponents’ guesses would be highly correlated (such perceived cor-

2This applies in particular for standard risk-minimizing kernel bandwidths (“Kernel-1.0” in Figure

1), but to a lesser degree also if we use half these bandwidths (“Kernel-0.5”).
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relation has been reported by Ho et al., 1998, and it is found below as well). Section

2 further discusses the non-uniqueness of best responses to deterministically acting

opponents. Assuming all opponents pick .333 (i.e. level 1 as understood convention-

ally), all actions xi satisfying .111 ≤ xi < .333 are best responses in case p = 2/3

(the lower bound .111 is not tight if the number of players is n < ∞). While this

issue has been noted in the existing literature (see e.g. Footnote 1 in De Giorgi and

Reimann, 2008), an argument based on refinement concepts clarifying why .222 is

the most reasonable best response has not been put forward. We consider various re-

finements of best responses, e.g. perfection (Selten, 1975) and cautiousness (Pearce,

1984), and find that .222 itself is weakly dominated and that the focus on a response

approximating .222 cannot be justified by refinement concepts. It follows that level-k

responses approximating pk · 0.5 for all k cannot be derived from an assumption of

iterated best responses, and hence the conventionally assumed beliefs and actions of

level-k players are neither necessary nor sufficient for satisfying iterated rationality.

Section 3 investigates to which degree the standard assumptions underlying level-

k actions can be relaxed without obstructing the goodness-of-fit of level-k models.

We consider three increasingly self-sustaining incarnations of level-k models: (i)

a non-strategic model following Stahl (1996) where level-k players randomize nor-

mally with mean pk · 0.5 and variance σ2
k , (ii) is similar to (i), but now the mean µk

equates with the actual best response to level k−1, and (iii) a model of iterated logit

response (with precision λk for level k) that explains both mean and distribution of

level-k actions in a way that is compatible with the assumed beliefs of level-k players

and the “choice axiom” (Luce, 1959, 1977). Models relying on the actual expected

payoffs, i.e. (ii) and (iii), have to my knowledge not been estimated yet.3 We find that

if the level-k means in variant (i) are treated as free parameters, then the hypothesis

µk = pk · 0.5 is rejected in three out of six data sets. In addition, models of variant

(i) fit significantly better than variant (ii), and models of variant (ii) fit better than

3A reason seems to be that computing expected payoffs is comparably tedious in p-beauty con-

tests (see Section 2). The existing literature focuses on variations of (i), e.g. Ho et al. (1998) and

De Giorgi and Reimann (2008), and rests on the assumption that the unique best response of level-k

players equates with p or n−1
n−p

· p times the mean of level k−1. This assumption is not satisfied, but it

circumvents the computation of expected payoffs.
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variant (iii). That is, the goodness-of-fit of level-k models decreases significantly if

we require consistency with iterated reasoning and the choice axiom. We therefore

consider the level-k theory of strategic choice in guessing games incomplete.

Another observation made in Section 3 can be summarized as follows. Let

Pr(L = k|X = x) denote the ex-post probability that a subject is of level k conditional

on the guess being x (computed using Bayes’ Rule and the model estimates). Intu-

itively, one may expect that a subject guessing x ∈ [0,1] believes that the opponents

guess about x · p−1 on average. Hence, if a subject guesses x = 0.4 for example, then

one would expect that this subject is most likely of level k = 1. The existing litera-

ture universally assumes that “levels of reasoning” can be measured in this way. We

show that the conditional probabilities Pr(L = k|X = x) derived from level-k model

estimates strikingly contradict this intuition—in all data sets and for all level-k model

variants (i), (ii), and (iii). In most cases, the most probable type k is not even weakly

decreasing in the guess x. Hence, under the assumptions of level-k models, it is not

possible to infer a subject’s belief from its guess as it is done intuitively. In contrast,

subjects’ descriptions of their own strategies generally allow for such inference (see

for example Bosch-Domenech et al., 2002).

Section 3 finally shows that most subjects are classified as equilibrium types (i.e.

as level k = ∞) in the model variants (ii) and (iii), which shows that subjects are

more aptly modeled as logit equilibrium types than as low-level logit responders. As

indicated already, the goodness-of-fit of variant (iii), i.e. of iterated logit response

and logit equilibrium, is rather poor, however. This may come as a surprise, as logit

equilibria proved powerful in explaining strategic choice,4 but as Haile et al. (2008)

discuss, their result that QRE can fit everything has typically no bite if we restrict

attention to logit models in games with many strategies. Clearly, a guessing game has

“many” strategies, even if we do not equate the strategy set with the continuum, and

for this reason, the logit specification does not imply a good fit automatically. Aside

4To name just a few studies following McKelvey and Palfrey (1995), McKelvey and Palfrey (1998)

apply it to extensive form games, Anderson et al. (1998a,b) apply it to public-goods and rent-seeking

games, Weizsäcker (2003) extends it to heterogenous precision parameters, Turocy (2005) relates the

principal branch of logit equilibria to the Harsanyi-Selten tracing procedure, and Breitmoser et al.

(2009) apply it to dynamic games with infinite time horizon.
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from this, closer inspection of the data reveals a possible explanation for its failure

in guessing games: the densities are not monotonic in the expected payoffs,5 which

suggests that the choices are not independent from irrelevant alternatives (IIA).

Models relaxing IIA have a long tradition in choice theory and economics (see

e.g. Train, 2003, and Tversky, 2004) and if we reinterpret the level-k model as a

model where players “choose their level” themselves, rather than living it without

individual reflection, then we actually obtain a model violating IIA: the nested logit

model of McFadden (1978, 1984). Its simplest variant, the two-level nested logit

model, can be described as follows: if (X1,X2, . . . ,Xn) denotes a partition of [0,1],

then players first choose a nest Xk and secondly choose an element xi ∈ Xk. Besides

being intuitive in cases with large choice sets, nested logit response is compatible

with random utility maximization (Daly and Zachary, 1978; McFadden, 1978) for

all partitions (Xk)k≤n. That is, internal consistency of the model is generally given

if we allow that subjects choose their “level” themselves. Note also that the nested

logit model avoids two unintuitive implications of level-k models even if we do not

stress their inconsistencies. By definition, level-k players are perfectly sure to make a

winning guess, and they believe to be exactly one step ahead of all opponents. Both

of these assumptions contradict the uncertainty experimental subjects express to have

(see e.g. Bosch-Domenech et al., 2002). Finally, analyses of nested logit models

are well established in other branches of economics.6 The analysis of nested logit

equilibria, i.e. of mutual nested logit responses, appears novel, however.

Section 4 defines nested logit equilibrium formally, derives the model estimates

for the six data sets, and shows that it fits the observations better than the non-strategic

level-k model variant (i) following Stahl (1996) in the majority of data sets, and it fits

the data better than the strategic level-k variants (ii) and (iii) in all data sets. Section 5

concludes. The supplementary material contains relegated technical material and the

parameter estimates of the models discussed in the text.

5The most obvious violation is that guesses xi ≈ 0 are more profitable than xi = 0 if players hold

non-degenerate beliefs, yet xi = 0 has higher density than any xi ≈ 0.
6For example in analyses of multiproduct firms (Anderson and De Palma, 1992), voting behavior

(Whitten and Palmer, 1996), phone calling patters (Train et al., 1987; Lee, 1999), and recreation trip

choices (Shaw and Ozog, 1999).
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2 Iterated best response sequences

This section derives several results on iterated best responses and relates them to

assumptions made in the level-k literature. The best-known assumption is that if one

faces opponents randomizing on [0,1] according to a probability distribution with

mean x, then one’s best response is n−1
n−p

· px, accounting for the weight of the own

guess (or p · x for simplicity). In addition, there seems to be consensus that xi is a

best response if it minimizes the distance to the expected target value, and if the best

response is not unique, then it is most plausible to focus on this minimizer.7 Guessing

the expected target value is known to be sub-optimal in two-player games (under full

support, assuming p < 1, xi = 0 is optimal there), and as the following shows, it is

not generally optimal if n = 3 (next) and as n becomes large (below). We discuss

refined best responses to deterministically acting opponents and show that there is no

particular reason to focus on said minimizer. Hence, the conventionally considered

level-k beliefs and actions cannot be derived from iterated best response.

2.1 Optimal level-1 strategies in three-player games

The notation is standard. The set of players is denoted as N = {1, . . . ,n}, typical

players are denoted as i, j ∈ N, and actions are denoted as xi ∈ [0,1] for all i ∈ N.

All players move simultaneously, and the payoff of i ∈ N is denoted as πi(x) for all

x = (xi)i∈N . The strategy of i ∈ N is a probability distribution on [0,1].

Assume n = 3 and consider player i = 1 in response to two opponents random-

izing uniformly on [0,1]. The set of (x2,x3) ∈ [0,1]2 in response to which a given x1

is closest to the target value is called winning region of x1. Without loss of generality,

assume x2 < x3. Two cases have to be distinguished. On the one hand, player 1 wins

(a share of) the prize in case x1 ≤ x2 < x3 if, using α = p/3,

α(x1 + x2 + x3) ≤
1

2
(x1 + x2) ⇔ x3 ≤

1−2α

2α
x1 +

1−2α

2α
x2. (1)

7A particularly recent and explicit reference in this direction can be found in De Giorgi and

Reimann (2008, Fn. 1 and Ass. 1).
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Figure 2: Winning regions of player 1 in case x2 < x3 (for x1 = 0.5 and p = 0.9)
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On the other hand, player 1 wins in case x2 < x1 ≤ x3 if

α(x1 + x2 + x3) ≤
1

2
(x1 + x2) ⇔ x3 ≤

1−2α

2α
x1 +

1−2α

2α
x2. (2)

These two cases correspond with two disjoint winning regions in [0,1]2 and are illus-

trated in Figure 2. A second set of restrictions (and winning regions) applies when

x3 > x2. Figure 3 depicts the aggregate winning regions for three values of x1.

In the case of uniformly randomizing opponents, the expected payoff of guessing

x1 simply equates with the aggregate area size of the winning regions associated with

x1. The expected payoff can be computed for all x1 in closed form, but due to the case

distinctions involved, it is relegated to Appendix A. The following results.

Proposition 2.1. Assume n = 3 and p ∈ (0,1). The payoff-maximizing choice in
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Figure 3: Winning regions for x1 ∈ {0.4,0.5,0.6} and p = 0.9
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response to two uniformly randomizing opponents is, using α := p/3,

x∗1 =
2α(1−2α)

(4−7α)(1−3α)
if p ≤ 0.908, (3)

x∗1 = 2/

(

4−
(2−6α)3

α(1−2α)(4α−1)

)

if p > 0.908. (4)

That is, best response functions are considerably more complex than x∗i = n−1
n−p

·

px. As an example, consider p = 0.9, which has been chosen in three-player treat-

ments by Ho et al. (1998). In this case, the payoff-maximizing choice in response to

uniformly randomizing players is x∗1 = 0.5217 (note that Ho et al. actually assume

truncated normal randomization at level 0, but a similar argument applies in this case).

This solution is greater than both mean and median of the opponent’s strategies, and

in relation to the expected target value, which is α∗ (.5+ .5+x∗1) = .457, the optimal

x∗1 is on the “wrong side” of the opponent’s means. That is, the best response of level-

1 players is greater than the average guess of level-0 players in this case, and since

the best response in case p = 1 is to pick the median of (i.i.d.) opponents (if n = 3),

the optimal choice is not monotonically increasing in p. Both of these observations

contradict the assumptions conventionally made in level-k analyses.

The best response to uniformly randomizing opponents converges to n−1
n−p

· px,

and hence to px, as n approaches infinity. This convergence suggests that strategic ef-

fects becomes negligible when n is greater than say 10. In this context, let us recollect

a result of Ho et al. (1998) stating that subjects behave as if their opponents’ guesses

would be correlated with ρ = 1. We will obtain a similar conclusion, although our
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formalization of the stochastic dependence differs slightly. These observations relate

to the bias known as “belief in small numbers” and suggests that subjects do not ac-

count for the actual distributional properties of the opponents’ guesses if n is large.

Hence, the strategic effects inducing deviations from px do not become negligible as

n grows.

2.2 Iterated elimination and iterated best response

Guessing games are special in that they are solvable by iterated elimination of weakly

dominated strategies although almost all strategies are rationalizable (all but the upper

bound in case p < 1). The discrepancy between iterated weak dominance and com-

mon knowledge of rationality could not be larger in any game. One’s intuition may

suggest that refined notions of rationalizability, e.g. perfect rationalizability (Bern-

heim, 1984) or cautious rationalizability (Pearce, 1984), will allow us to bridge this

gap. Since a closely related issue exists in refining iterated best response sequences,

and hence in justifying beliefs in level-k models, such refinement concepts are inves-

tigated in some detail now.

We begin with specifying the solution path according to weak dominance. As-

sume one acts in response to opponents whose guesses are restricted to [0,y] with

0 < y ≤ 1. Lemma A.1 shows that all xi ≥ DR(y) are weakly dominated where

DR(y) =
n−2

n−2p
· py ≡

n−2

1/α−2
· y for α = p/n. (5)

The largest non-dominated action DR(y) will be called “dominant response” in the

following. It equates with the smallest guess xi that is optimal in response to all x−i

where x j ∈ (xi,y] for all j ∈ i (i.e. it is optimal as long as all opponents’ guesses x j

are greater than xi). If any of the opponents picks some x j ≤ DR(y), in turn, then the

resulting target value is less than or equal to DR(y), and combined these observations

imply that DR(y) weakly dominates all xi > DR(y). Note also that DR(y) is the

unique action that is optimal whenever n−2 opponents stick with y and one opponent

“deviates” to any x j ∈ [0,y]. Finally, this argument of weak dominance implies that

one should not minimize the distance to the expected target value when all opponents
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pick some y ∈ (0,1]. Consider for example y ≈ 1. The distance is minimized if one

picks xi = p · n−1
n−p

·1, which is weakly dominated by DR(1).

We now turn to the solution according to refined notions of rationalizability,

namely perfect and cautious rationalizability. In short, a strategy is rationalizable if it

is a best response to rationalizable strategies of the opponents, a strategy is perfectly

rationalizable if it continues to be a best response when the opponents tremble with

positive probability to alternative strategies, and it is cautiously rationalizable if it

continues to be a best response when the opponents tremble with positive probability

to other rationalizable strategies. Note that the restriction on the support of trembles

imposed by cautious rationalizability corresponds closely with the reasoning underly-

ing iterated weak dominance, whereas perfect rationalizability relates more closely to

the interpretation that trembles are made mistakingly. Formal definitions are provided

in Appendix A (Defs. A.2 and A.4; see also Bernheim, 1984, and Pearce, 1984). We

obtain the following result.

Proposition 2.2. For all i ∈ N, all actions xi ∈ [0,1) are rationalizable, and in case

n > 2, all actions xi ∈ [0,DR(1)) are perfectly rationalizable, while only xi = 0 is

cautiously rationalizable.

Since obeying weak dominance is in itself not an implication of rationality, re-

fined notions of rationalizability are used to validate iterated eliminations of weakly

dominated strategies. In our case, it turns out that the solution path depends on the

refinement concept employed. If trembles are considered to be mistakes, as in perfect

rationalizability, then many actions are rationalizable. If trembles are considered to

express a specific requirement of robustness, as in cautious rationalizability, then the

Nash equilibrium results. The proof, see appendix, also shows that the elimination

sequence implied by cautious rationalizability coincides with the one derived above

for iterated weak dominance. That is, after k iterations, all actions but [0,DRk(1))

are eliminated according to cautious rationalizability. It is therefore appropriate to

say that players choosing actions xi ∈
[

DRk+1(1),DRk(1)
)

are at most level-k cau-

tiously rational. Since DR(y) 6= n−1
n−p

· py, however, the standard intervals result only

approximately.

Sequences of iterated best responses are related closely to the solution paths of
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rationalizability concepts. The only significant difference concerns the restrictions

imposed on level-0 players. The level-0 strategies are unrestricted under rationaliz-

ability, whereas specific distributions (usually the uniform one) are assumed in iter-

ated best response sequences. It follows that the limit points of iterated best response

sequences are specific rationalizable strategies, but it is not obvious as to whether the

restriction at level 0 induces a significant refinement effect at level ∞. In order to in-

vestigate this, assume uniform randomization at level 0. Aside from this, level-k play-

ers best respond to level k−1 for all k ≥ 1. Following the literature, restrict attention

to the case that all players at level k act symmetrically and deterministically. Poten-

tially, this assumption induces a second refinement effect beyond restricting level-0

strategies, but in our case it does not. The level-k guess is denoted as xk ∈ [0,1], for

k ≥ 1.

A closed-form representation of the best response to n−1 opponents randomiz-

ing uniformly is not available. Let x1 denote the best response to level 0. In general,

x2 is a best response to opponents choosing x1 if and only if it is an element of the

open set (BRinf(x1),x1) with the lower bound

BRinf(xk) = max
{

n∗(2−1/p)−2
n−2p

· pxk,0
}

. (6)

This implies that iterated best response sequences may converge either very quickly

to 0, e.g. in case xk+1 is near the lower bound BRinf(xk) for all k, or they converge to

0 rather slowly, or actually not at all. If all xk+1 are sufficiently close to the respective

upper bounds, then the sequence would converge within any ε-neighborhood of x1.

Since x1 may be greater than 0.5 even if p < 1 (e.g. if p = 0.9 and n = 3), this

implies that iterated best response sequences may converge above 0.5. Our next result

investigates the implications of perfection and cautiousness in this context.8

Proposition 2.3. A best response sequence (xk) converging to r ∈R exists if and only

if r ∈ [0,x1). Assuming n > 2, perfect response sequences (yk) converging to r exist

iff r ∈ [0,min{DR(1),y1}). All cautious response sequences (zk) converge to 0.

In other words, the (refined) best response dynamics may converge anywhere in

the (correspondingly refined) set of rationalizable strategies capped at x1. Restricting

8Perfect responses and cautious responses are defined formally in Def. A.2 and Def. A.4.
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the level 0 strategies has no significant implications aside from capping the level-1 ac-

tions. Furthermore, neither perfect responses nor cautious responses are unique—see

Lemmas A.3 and A.5—aside from the fact that guessing the expected target value is

never a cautious response (under the assumption that opponents act symmetrically).

Finally, note that while the notion of perfect response does not impose significant re-

strictions on iterated best responses, the more restrictive notion of iterated cautious

response induces sequences with an upper bound that is strictly below the conven-

tionally considered sequences, as
(

n−2
n−2p

· p
)k−1

∗ x1 <
(

n−1
n−p

· p
)k−1

∗ x1 < pk−1 ∗ x1.

Hence, iterated best response sequences do not explain the increased densities at

p · 0.5 and p2 · 0.5, and they are neither necessary nor sufficient to rationalize the

assumed actions of level-k players.

To further illustrate, consider a fourth kind of iterated best responses: level 1 best

responds to level 0 as before, but for all k > 1, level-k players assume their opponents

would be level k−1 with probability 1−ε and level 0 with probability ε (i.i.d.). In this

case, level-k players are not unsure about the action that players at level k− 1 pick,

but they seek robustness with respect to the possibility that some of their opponents

are not level k− 1. Our result shows that as ε tends to 0, the resulting best response

sequences converge to positive values in fairly general circumstances.

Proposition 2.4. Assume n ≥ 3. Consider a best response sequence (xk) with level-0

perturbations as described above, as ε tends to zero. Such a sequence (xk) exists if

and only if x1 > p
n−p(n−1) , and if it exists it converges to

p
n−p(n−1) as k tends to infinity.

For example, if p = 2/3, which satisfies the restriction for all n > 3, the limit

of the best response sequence is 2/(n + 2), which equates with 1/4 if n = 4 and

with 1/10 if n = 18. Hence, convergence above zero is remarkably robust even as n

grows. To be sure, this effect is not an artifact of ε → 0, as convergence to zero can

be ruled out in general if ε is a positive constant. It follows that convergence to 0

as k tends to infinity is not a universal characteristic of best response dynamics—any

deviation from cautious response potentially induces a deviation from this limit and

thus a deviation from the conventionally assumed level-k actions.
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3 Application of level-k models

We consider three different families of level-k models. The first one is the seminal

model due to Stahl (1996) which we will refer to as “non-strategic” model.

Definition 3.1 (“Non-Strat”). The set of player types is K = {0, . . . ,K}; the type

shares in the population are (ρk)k∈K . Players of type k = 0 randomize uniformly on

[0,1], and for all k ≥ 1, type-k players randomize according to normal distributions

N (pk ∗0.5,σ2
k) truncated to [0,1].

This model is non-strategic in the sense that its structure cannot be derived solely

from assumptions of strategic choice. Assuming truncated normal distributions at lev-

els k≥ 1 is not compatible with random utility maximization in response to level k−1.

In addition, the modes of these distributions, pk ∗0.5, are not the best responses to the

distributions at level k−1, in particular not when these distributions are truncated as

they are here, nor are they the uniquely most plausible best responses if all opponents

deterministically choose x j = pk−1 ∗0.5 (see above).9

The log-likelihood of the observations o = (om)m=1,...,M (e.g. “Laboratory”) un-

der the parameters (σk,ρk)k∈K is, using fk(x|σk) as the density of the level-k strategy,

LL(o|σ,ρ) =
M

∑
m=1

ln ∑
k≥0

ρk · fk(om|σk). (7)

We estimate such finite-mixture models (Peel and MacLahlan, 2000) using the com-

parably robust procedure, albeit time consuming, of maximizing the full information

likelihood jointly over all parameters using the Nelder-Mead algorithm (similar for

example to Stahl, 1996; see also Arcidiacono and Jones, 2003). Standard errors are

obtained from the information matrix. Model selection is discussed based on the

Bayes Information Criterion (BIC, Schwarz, 1978). The ML estimates of the model

parameters (σk,ρk)k∈K for various specifications of K , i.e. of maxK , are reported

in Table B.1, and the goodness-of-fit of these models is reported in Table 1. It is not

9Related models have been considered by Ho et al. (1998) and De Giorgi and Reimann (2008).

They too assume that guessing the expected target value is the best response to level k−1, but they vary

distributional assumptions (e.g. normal at level 0 or uniform at level k > 0) and introduce truncation

toward subsets of [0,1] at higher levels. Neither of these variations is implied by strategic choice.
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necessary to memorize these estimates in detail. For the flow of our argument, it is

sufficient to note that according to BIC, the populations contain types up to level 2 (in

Laboratory and Classroom) or up to level 4 and 5 otherwise.

A first robustness check of the non-strategic model is obtained when we treat the

level-k means (µk) as free parameters and estimate (µk,σk,ρk) jointly. To facilitate

this test, Tables 1 and B.1 also report the ML estimates and the LL maxima of cor-

respondingly generalized models. These models contain two additional parameters,

x̃0 and p̃, and the level-k mean is computed as µk = x̃0 · p̃k. According to likelihood-

ratio tests, the hypothesis µk = pk ·0.5 for all k is rejected in three of the six data sets

(namely with respect to the non-student data sets Theorists, Newsgroup, and Newspa-

per). The explanation seems to be that quasi-equilibrium types (i.e. level k = ∞) are

needed to explain a significant share of the observations in these data sets. In order to

investigate this, consider the following extension of the non-strategic model.

Definition 3.2 (“Non-Strat∞”). The set of player types is K = {0, . . . ,K,∞}, other-

wise equivalent to “Non-Strat” (Def. 3.1).

These models are considered solely as a second robustness check of the non-

strategic models, since the “Non-Strat∞” models themselves are inconsistent. For,

randomization according to N
(

0,σ2
∞

)

contradicts equilibration of mutual responses.

In response to N
(

0,σ2
∞

)

, one is best off choosing a strictly positive number, and at

the very least, the mode of such equilibrium strategies should therefore be positive

rather than zero. In relation to “Non-Strat”, the results from “Non-Strat∞” (see Tables

1 and B.2) offer interesting insights, however. The BIC improves in four out of six

data sets due to inclusion of k = ∞, namely in the three non-student samples and in

Take-home, and the estimated shares of “quasi-equilibrium” players are above 50% in

these four samples. In addition, the maximal level of non-equilibrium types drops to

K = 2 or K = 3 in all samples. Finally, the level-k means µk = x̃0 · p̃k are now robust

to treating (x̃0, p̃) as free parameters, i.e. the BICs do not improve significantly in any

data set when k = ∞ is included (see Table 1). These results suggest that stochastic

equilibrium may have explanatory power in guessing games, with the caveat that

N
(

0,σ2
∞

)

is not a consistent notion of stochastic equilibrium.

Before we elaborate on this, let us turn to a second issue with level-k models.
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Figure 4: A-posteriori classification based on non-strategic models (the model dimensions follow from maxBIC, at least K = 3)
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Given a data set o and model estimates (ρk,σk), the probability that subject m is of

type k conditional on its guess om can be computed using Bayes’ Rule.

Pr(type = k|om) = ρk · fk(om)/ ∑
k′∈K

ρk′ · fk′(om|σk′). (8)

Figure 4 depicts the ex-post classifications implied by our estimates for both “Non-

Strat” and “Non-Strat∞.” A standard assumption in level-k analyses is that a subject

guessing om is classified as level k if and only if om ∈
(

pk+1/2 ·0.5, pk−1/2 ·0.5
]

, or

approximations thereof. This assumption violates Bayes’ Rule in that it neglects the

a-priori probabilities of the various types (and to a lesser degree also the type vari-

ances σ2
k), and consequently this rule-of-thumb classification drastically contradicts

the Bayes-consistent classification Eq. (8) in all cases. In “Non-Strat” for example,

a guess of .4 is most likely to have been made by a level-1 player in only one out of

these six data sets (Laboratory), and in all cases, a guess of .5 is more likely to have

been made by a player of at least level three than by a player of level 0 or 1. This

violation of “measurability” of levels of reasoning is a concern. For, if the assump-

tions underlying the non-strategic level-k model imply that a guess of .5 most likely

has been made by a subject believing the opponents are level k ≥ 2, universally across

samples, then these assumptions may have to be reconsidered.

A solution may be to truncate the support of the level-k strategies, but we are

hesitant to do so since no such restriction can be derived from rationalizability. An al-

ternative solution may be to consider strategically consistent variants of level-k mod-

els. Two such variants are considered next. The first one is a model of iterated best

response with strategy perturbations, the second one is a model of iterated logit re-

sponse. Similar to Ho et al. (1998), we allow that subjects behave as if their op-

ponents’ draws are not independent (in order to model subjective overconfidence).

Assume all opponents j 6= i randomize according to the density f j on [0,1]. We as-

sume that i estimates the expected payoff in a thought experiment using m ≤ n− 1

draws from f j, rather than exactly n−1 draws. Let f m(·| f j) denote the joint density

of m i.i.d. random variables with density f j, and define i’s payoff from xi as

π
(

xi|m, f m(·| f j)
)

=
Z

[0,1]m
f m(y| f j)pi(xi,y)dy, (9)
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where pi(xi,y) indicates whether xi wins in response to y

pi(xi,y) =

{

1, if |xi − t(xi,y)| ≤ |y j − t(xi,y)| ∀ j = 1, . . . ,m,

0, otherwise,

assuming the target value t(xi,y) is the weighted average of xi and y

t(xi,y) =
1

n

(

xi +
n−1

m ∑ j≤m y j

)

.

We assume m ≥ 2 for computational reasons.10 Unbiased behavior results if m =

n−1, but the hypothesis m = n−1 is rejected in all cases. The estimated sample size

m used by subjects is fairly consistent, between 2 and 6 in most cases, and guess-

ing game subjects therefore seem to be overconfident or “believe in small numbers”

during payoff estimation. The strategic level-k models are defined as follows.

Definition 3.3 (“INP”). The set of player types is K = {0,1, . . . ,K,∞}. Players of

type k = 0 randomize uniformly on [0,1], and for all k ≥ 1, players of type k random-

ize according to fk = N
(

µk,σ
2
k

)

where µk ∈ argmaxxi
π(xi|m, f m(·| fk−1)).

The acronym “INP” refers to Iterated best response with Normal Perturbations.

Level k = ∞ induces equilibrium play if m ≥ 2. Our second model is iterated logit

response (ILR).

Definition 3.4 (“ILR”). Similar to INP, but now, for all k ≥ 1, players of type k

randomize on [0,1] according to the density (using λk ≥ 0)

fi(xi) = exp{λk ·π(xi| f
m(·| fk−1))}/

Z 1

0
exp{λk ·π(x̃i| f

m(·| fk−1))}dx̃i. (10)

Using standard procedure, we revert to maximum simulated likelihood to esti-

mate these models (Train, 2003), and in particular we compute the expected payoffs

π(·) by simulation. Otherwise, we proceed as before, maximizing jointly over all

parameters using the Nelder-Mead algorithm. The model estimates are reported in

Tables B.3 and B.4, the LL maxima and BICs are reported in Table 2, and the condi-

tional type classifications can be found in Figure 5.

10This model of individual payoff computation generalizes to real m ∈ R as follows: the expected

payoff is the weighted average of using ⌈m⌉ and ⌊m⌋, with weights m−⌊m⌋ and ⌈m⌉−m, respectively.
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Figure 5: A-posteriori classification based on strategic level-k models
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Again, equilibrium types dominate the populations. In the INP models that max-

imize BIC, the equilibrium type k = ∞ makes up 60% of the population in all cases,

and even 80% in five out six data sets. In the ILR models, the picture is similar

aside from the fact that a significant share of level-0 subjects is estimated in the three

non-student samples (around 50% in Theorists, Newsgroup, and Newspaper). Conse-

quently, the conditional type classifications mainly fluctuate between k = ∞ and k = 0

according to these models, with very thin support for types k ∈ {1,2,3}, and in the

majority of cases the estimated model dimension does not contain types k ∈ {1,2,3}

according to BIC (they do not in three out six cases for INP, and in five out of six

cases for ILR).

These results show that iterated reasoning adds little explanatory power to mod-

els containing both k = ∞ and k = 0 if we model iterated reasoning in a strategically

consistent way, but again, a caveat applies: overall the non-strategic model outper-

forms both INP and ILR. According to BIC, INP improves upon the non-strategic

model in two non-student samples, Theorists and Newsgroup, but aside from this, the

non-strategic model fits best. That is, the level-k mean µk is better described by 0.5 · pk

than by the best response to level k−1, and the randomization employed by subjects

is better described by the normal distribution than by logit response functions. Hence,

these strategic models do not adequately reflect the way in which subjects reason in

guessing games, but the following section shows that the nested logit model does.

4 Nested logit models of hierarchical reasoning

The hierarchical models considered in this section are two-level nested logit models,

and as such, they are special cases of the generalized extreme value (GEV) model

family (McFadden, 1981, 1984). In contrast to the choice-theoretic literature, we will

of course consider mutual nested logit responses, i.e. nested logit equilibria. Many

further generalizations of nested logit models exist, e.g. to multi-level hierarchies and

to cross-nesting (see e.g. Wen and Koppelman, 2001, and Bierlaire, 2006), but to

express our simple intuition, a two-level structure is sufficient: subjects first choose a

“level” and second choose an action corresponding with this level. By endogenizing
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the level choice, we avoid the issues (e.g. non-uniqueness) that are involved with

constructing belief systems that rationalize exogenous level assignments, while the

basic intuition is kept intact. The choice procedure itself will be modeled in a way

that is consistent with random utility maximization.

By “choosing a level” we mean that subjects choose a subset of [0,1] from a

partition of the strategy set as it results along the solution path according to cautious

rationalizability, as n → ∞, assuming the level-0 actions are uniform on [0,1]. We

thereby follow the intuition expressed in the literature, and explicitly refrain from

exploiting any degree of freedom in manipulating the underlying partition of [0,1].

The only difference to the literature is that we maintain level k as
(

pk ·0.5, pk−1 ·0.5
]

,

for consistency with cautious rationalizability, rather than centering it around pk ·0.5.

Definition 4.1 (Basic choice procedure). Let (κl)l≤L denote a partition of [0,1], for

some L ∈ N. Players first choose l ≤ L and second choose xi ∈ κl , using

(κL,κL−1, . . . ,κ1,κ0)

=
([

0,0.5 · pL−1
]

,
(

0.5 · pL−1,0.5 · pL−2
]

, . . . ,
(

0.5 · p1,0.5 · p0
]

,
(

0.5 · p0,1
])

.

The remainder defines the two-level nested logit model as it applies to guessing

games. For all xi ∈ [0,1], define l(xi) such that xi ∈ κl(xi). As before, the expected

payoff of xi in response to opponents picking f j is denoted as π
(

xi|m, f m(·| f j)
)

. The

nested logit response to opponents sticking to f j has the density

fi(xi| f j) = Q
(

l(xi)
)

Q
(

xi|l(xi)
)

(11)

where the density of choosing xi conditional on having chosen category l(xi) is

Q
(

xi|l(xi)
)

= exp
{

λ ·π
(

xi|m, f m(·| f j)
)

−λ ·ωl(xi)

}

/J(l(xi))

with J(l) =
Z

κl

exp
{

λ ·π
(

x̃i|m, f m(·| f j)
)

−λ ·ωl

}

dx̃i (12)

and the probability of choosing category l ≤ L is

Q(l) = exp
{

λβ′ωl +β′′ lnJ(l)
}

/ ∑
l′≤L

exp
{

λβ′ωl′ +β′′ lnJ(l′)
}

. (13)
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We say that the symmetric strategy profile σ = (σi)i∈N is a nested logit equilibrium

if σi = fi(·|σi). The extension to asymmetric strategy profiles is straightforward, but

not relevant in guessing games.

The category weights (ωl)l≤L remain to be defined, but regardless of their defini-

tion, this nested logit model is equivalent to the logit model if β′ = β′′ = 1. Choices of

β′,β′′ 6= 1 induce interdependence of choices within categories. In the extreme case

β′ = β′′ = 0, categories are chosen by a uniform draw, while the second-level choices

of xi conditional on category l(xi) are still made with positive precision if λ > 0.

We consider two variants of GEV models. They differ with respect to the assumed

category weights (ωl)l≤L: the weights are either zero or the average category payoff.

Definition 4.2 (“GEV-0”). The category weights are ωl = 0 for all l ≤ L.

Definition 4.3 (“GEV-A”). The category weights are ωl = 1
|κl |

R

κl
π(xi|·)dxi for all l.

Besides GEV-equilibrium types, we control for the possibility that the popula-

tion contains level-0 players (i.e. players that randomize uniformly), and in order to

investigate the interaction between hierarchical and iterated reasoning, we will also

allow for “level-1 types” who play a nested logit response to level 0. With respect

to the number of categories, we assume L ≤ 20. As before, we maximize the simu-

lated likelihood jointly over all parameters to obtain efficient estimates (see Amemiya,

1978). The estimation results are reported in Table B.5 (ML estimates) and Table 2

(LL maxima and BICs).

Our discussion is kept brief, focusing on the main results. Controlling for level-0

players turned out unnecessary in the sense that their estimated shares in the popu-

lation are zero in all GEV-models without a level-1 player type (for this reason, we

did not count the level-0 type share as a parameter when computing the BIC in these

cases). This suggests that the GEV-equilibrium comprehensively describes the dis-

tribution of guesses. Allowing for level 1, however, improves the goodness-of-fit in

three out of six data sets (Classroom, Take-home, and Newspaper). Although the

level-1 type shares are low (less than 20%), they are significant in these cases, which

suggests that the subject pools are not optimally described by a homogenous GEV

model in all cases. These level-1 actions can be modeled alternatively by introducing
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a second GEV-equilibrium type with appropriately adapted precision parameters, but

to maintain the focus on the basic idea of hierarchical reasoning, an investigation of

this is left as further research. The difference between GEV-0 and GEV-A is fairly

small, i.e. the assumed category weights are only of secondary relevance. Similarly,

the qualitative results do not depend on the assumed partition of [0,1], but compu-

tations have shown that flexible parameterization of the partition would improve the

goodness-of-fit in the three non-student samples.

In relation to the level-k models, the estimated GEV models fare rather well. The

best GEV models are better than the best strategic level-k models (INP and ILR) in

all cases, and they are better than the best non-strategic models in four cases, about as

good in Laboratory, and it is worse than the best non-strategic model in Newspaper.

The latter seems to be due to the fact that our GEV models focused on two-type

populations (nested logit equilibrium plus level-1 players), which seems inadequate

to model the heterogeneity of types in newspaper experiments. Finally, the GEV

model fits better than the massively parameterized kernel density estimator with risk-

minimizing bandwidth in all cases but Laboratory, and it is better than the kernel

estimator using half this bandwidth in all cases but Laboratory and Newspaper (the

exact numbers are reported in Table 2). We therefore conclude that the GEV models

fit better overall than all alternative models considered in this study, and that they are

close to what one may reasonably expect in terms of goodness-of-fit.

5 Concluding discussion

This paper discussed strategic choice in “p-beauty contest” guessing games by con-

trasting the level-k model of iterated reasoning with the nested logit model of hi-

erarchical reasoning. Both of these approaches seek to capture the same intuition:

subjects first pick categories and secondly pick numbers within categories. The level-

k model does so indirectly, by assigning categories (“levels of reasoning”) to players

exogenously and assuming that players do not reflect on their category. Attempts

to rationalize such category assignments based on beliefs derived from iterated best

response sequences have been shown to be both insufficiently well-defined, since
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iterated best response sequences are generally not unique even after employing re-

finement concepts, and inconsistent, since best responses to randomizing opponents

do generally not equate with guessing the expected target value. The latter applies

in particular if players behave as if their opponents’ guesses are correlated, which

has been observed in our study, where subjects behave as if they had only m ∈ [2,6]

independent opponents, and previously by Ho et al. (1998). We have also seen that

allowing for equilibrium types in the strategic level-k models (INP and ILR) implies

that the majority of subjects are classified as equilibrium types. Finally, it was shown

that ex-post classifications of subjects conditional on their guesses (using the model

estimates and Bayes’ Rule) are highly counter-intuitive for all data sets and all level-k

models considered.

The nested logit model assumes that subjects choose their level themselves,

based on perturbed payoff computations. By resorting to a hierarchical model of

choice, we explain level choice in a way that is compatible with random utility max-

imization. More importantly, we avoid the assumption that subjects adhere to a spe-

cific belief system out of the continuum of belief systems that are compatible with it-

erated perfect/cautious response—while preserving a “level component” in the choice

procedure and equilibration as it was observed in our level-k analysis. Nested logit

equilibria are a currently neglected specification of quantal response equilibria (McK-

elvey and Palfrey, 1995), but the concept of nested logit response is well-established

in choice theory and consumer theory.

We found that nested logit models generally fit better than strategic level-k mod-

els, and they fit better than non-strategic level-k models following Stahl (1996) in four

out of six cases. These results are obtained despite our reluctance to exploit the free-

dom that exists in constructing hierarchical models. We focused on only two kinds of

category weights (ωl was either 0 or equal to the average payoff within category), we

did not deviate from the (sub-optimal) partition implied by cautious rationalizability,

and we restricted attention to populations of at most two GEV types (equilibrium and

level 1). In light of this parsimony and the fact that two-level nested logit is an estab-

lished and intuitive generalization of logit, let us briefly address the concern voiced

by Haile et al. (2008). They show that if one fully exploits the distributional freedom
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in designing random utility models, including a relaxation of “i.i.d.” in at least one di-

mension, then QRE fits are uninformative. To obtain perfect fits, one needs a random

utility model with about one free parameter per strategy in generic games. Fitting

two- and three-parametric GEV models in a game with a continuum of strategies, we

seem to be save in this respect. A related concern is that equilibration is unlikely

in one-shot guessing games. I tend to agree with this assessment, but let us recall

that we did not assume equilibration from the outset. Instead, in a latent structure

analysis allowing for non-equilibrium types (with corresponding logit/GEV response

functions), we find that most subjects are equilibrium types in all data sets and ac-

cording to all strategic models (i.e. INP, ILR, and GEV). It is a result rather than an

assumption, albeit surprising.

To summarize, it seems reasonable to conclude that studying nested logit models

appears to be a promising avenue for further research in analyses of strategic choice.

As for studies of guessing games, let us sketch out how further research may extend

the present work. Aside from investigating the role of category weights, category

bounds, and heterogeneity of populations, it seems particularly interesting to study

more deeply nested choice models. One may find, for example, that Theorists start

out in the highest category (close to the Nash equilibrium) and stochastically work

downwards to lower categories, that Laboratory subjects start out in the lowest cat-

egory and stochastically work upwards, and that say Newspaper subjects start out in

the middle and may deviate back and forth in either direction until they settle with a

category. The exact paths that subjects follow in decision making may be highly indi-

vidual ex post, but models of nested logit equilibrium allow us to study the regularities

in the underlying stochastics, and this in turn, may lead to more precise predictions,

and a better understanding of the limits of predictability, in future applications.
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Table 1: Goodness of fit of non-strategic models; A =̂ standard µk = pk ·0.5, B =̂ µk are free parameters

Levels Laboratory Classroom Take-home Theorists Newsgroup Newspaper

LL BIC LL BIC LL BIC LL BIC LL BIC LL BIC

A : 0−2 32.124 23.216 61.584 52.026 58.434 48.579 46.432 36.465 57.106 47.085 3098.24 3080.29

A : 0−3 34.142 20.779 64.373 50.036 78.751 63.969 73.214 58.263 77.811 62.779 3709.37 3682.45

A : 0−4 34.656 16.839 66.516 47.400 87.297 67.588 86.683 66.749 84.681 64.638 4196.08 4160.19

A : 0−5 34.656 12.385 66.559 42.664 87.674 63.038 99.467 74.549 87.169 62.116 4263.49 4218.62

B : 0−2 33.596 20.233 65.273 50.935 60.048 45.266 141.96 127.01 110.04 95.009 4225.82 4198.90

B : 0−3 37.393 19.576 71.568 52.451 78.954 59.245 143.57 123.64 112.97 92.925 4309.96 4274.06

B : 0−4 37.393 15.122 71.697 47.801 87.644 63.007 148.32 123.40 118.91 93.855 4336.34 4291.49

B : 0−5 37.481 10.755 71.697 43.022 88.004 58.440 148.41 118.51 121.89 91.828 4344.63 4290.78

A : 0−1,∞ 29.419 20.510 56.676 47.118 58.767 48.912 119.89 109.92 81.448 71.427 4325.50 4307.55

A : 0−2,∞ 34.015 20.651 64.856 50.519 87.718 72.936 130.50 115.55 122.89 107.86 4496.14 4469.21

A : 0−3,∞ 34.142 16.324 66.624 47.507 88.010 68.301 139.32 119.39 130.22 110.17 4698.16 4662.26

A : 0−4,∞ 34.656 12.385 72.009 48.113 88.010 63.374 142.92 118.01 130.22 105.17 4703.00 4658.12

B : 0−1,∞ 31.605 18.242 65.240 50.902 65.035 50.253 143.59 128.63 122.87 107.84 4325.99 4299.07

B : 0−2,∞ 36.567 18.750 71.772 52.655 88.053 68.344 148.59 128.66 123.12 103.08 4496.81 4460.91

B : 0−3,∞ 37.393 15.122 72.795 48.899 88.326 63.690 149.62 124.70 132.55 107.50 4701.14 4656.28

B : 0−4,∞ 37.393 10.667 72.795 44.120 88.326 58.763 151.00 121.10 133.06 103.00 4706.31 4652.47
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Table 2: Goodness-of-fit comparison over all models

Laboratory Classroom Take-home Theorists Newsgroup Newspaper

LL BIC LL BIC LL BIC LL BIC LL BIC LL BIC

Kernel 31.464 n.a. 62.170 n.a. 68.263 n.a. 79.733 n.a. 53.498 n.a. 3685.85 n.a.

Kernel-0.5 38.12 n.a. 73.486 n.a. 88.304 n.a. 104.314 n.a. 77.106 n.a. 4368.10 n.a.

Non-Strat 32.124 23.216 61.584 52.026 87.297 67.588 99.467 74.549 84.681 64.638 4263.49 4218.62

Non-Strat∞ 34.015 20.651 64.856 50.519 87.718 72.936 139.32 119.39 130.22 110.17 4698.16 4662.26

INP + L0 21.438 14.757 59.606 52.437 59.208 51.818 90.139 82.664 72.784 65.268 3781.06 3767.60

INP + L0-1 30.072 18.936 59.793 47.845 59.218 46.899 105.52 93.057 85.740 73.213 3780.39 3757.96

INP + L0-2 32.119 16.529 62.756 46.029 59.221 41.975 120.35 102.91 86.537 69.000 3780.67 3749.26

INP + L0-3 32.152 12.108 68.219 46.713 59.225 37.052 123.16 100.73 98.549 76.001 3780.40 3740.02

ILR + L0 27.105 20.424 58.237 51.068 38.340 30.949 5.873 -1.603 21.207 13.691 1171.19 1157.73

ILR + L0-1 30.481 19.345 58.245 46.297 38.370 26.052 8.554 -3.905 21.336 8.809 1278.92 1256.48

ILR + L0-2 32.283 16.693 58.899 42.172 38.837 21.591 14.926 -2.517 23.413 5.875 1453.61 1422.20

ILR + L0-3 33.420 13.375 58.913 37.407 38.920 16.747 19.863 -2.563 25.083 2.535 1684.62 1644.24

GEV-0 31.000 22.091 58.914 49.356 47.127 37.272 163.52 153.56 65.509 55.488 3704.89 3686.94

GEV-0 + L1 31.044 15.454 80.878 64.151 142.64 125.39 163.53 146.08 65.512 47.975 3815.38 3783.97

GEV-A 32.266 21.130 69.187 57.239 59.812 47.494 163.49 151.03 110.01 97.486 3835.75 3813.32

GEV-A + L1 32.386 12.342 80.878 64.151 142.64 125.39 163.49 141.07 110.02 87.472 4151.58 4111.20

Kernel and Kernel-0.5 are kernel density estimates with standard bandwidth choice (using GNU R) and half this bandwidth, respectively. Non-Strat

are the non-strategic models following Stahl (1996). INP + L0-K is iterated best response with normal strategy perturbations (K levels) and the

corresponding equilibrium type. ILR + L0-K is the ILR model and K levels of iterated logit response. GEV-0 and GEV-A are nested logit models.
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Hierarchical Reasoning vs. Iterated Reasoning

in Simple Guessing Games

Supplementary material

Yves Breitmoser

EUV Frankfurt (Oder)

A Relegated definitions and proofs

Proof of Proposition 2.1 Fix x1 and define the auxiliary function f (·), to simplify

notation relating to the conditions Eqs. (1) and (2), and also define g as follows.

f (x) =
1−2α

2α
(x1 + x) g ∈ {x| f (x) = x}⇔ g =

1−2α

4α−1
x1 (14)

The payoff maximizing x1 can now be discussed by distinguishing three cases. First,

it x1 ≥
α

1−2α , then the expected payoff is

π(x1) = (1− x1)
2 +

[

f−1(x1)+ f−1(1)
]

∗ (1− x1). (15)

This equates with

π(x1) =
1− (3−8α)∗ x1

1−2α
∗ (1− x1) if α > 1/4 (16)

π(x1) = (1− x1)
2 +

[

2α

1−2α
− x1

]

∗

[

1−
1−2α

2α
x1

]

if α ≤ 1/4 (17)

and implies π′(x1) < 0 in either case, i.e. for all x1 ≥
α

1−2α . Hence, the optimal guess

satisfies x1 ≤
α

1−2α . Second, for all x1 ≤
4α−1
1−2α (if any) the expected payoff is

π(x1) = 2∗ x1 ∗ (1− x1)−
[

x1 − f−1(x1)
]

∗ [ f (x1)− x1]+ [ f (x1)− x1]∗ [g− x1]

= 2∗ x1 ∗ (1− x1)−
(2−6α)2

(1−2α)2α
x2

1 +
(2−6α)2

2α(4α−1)
x2

1, (18)
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and the first derivative of it is positive for all x1 relevant to this case if and only if

2α(1−2α)2 +(2−6α)3 −4α · (1−2α)(4α−1) > 0, (19)

i.e. iff α < 0.3026. If not, i.e. if α ≥ 0.3026, then the payoff maximizing choice is the

zero of the first derivative of Eq. (18), which is

x∗1 = 2/

(

4+
(2−6α)2

(1−2α)α
−

(2−6α)2

α(4α−1)

)

= 2/

(

4−
(2−6α)3

α(1−2α)(4α−1)

)

. (20)

If α < 0.3026, in turn, then the payoff maximizing guess x∗1 must satisfy 4α−1
1−2α ≤ x∗1 ≤

α
1−2α , and in this case the expected payoff is

π(x1) = 1− x2
1 −

[

x1 − f−1(x1)
]

∗ [ f (x1)− x1]−
[

f−1(1)− x1

]

∗ [1− f (x1)]

= 1− x2
1 −

(2−6α)2

(1−2α)2α
x2

1 −
[2α−2x1(1−2α)]2

(1−2α)2α
. (21)

The zero of the first derivative is now

x∗1 =
4α(1−2α)

(2−6α)2 +2(2−3α)(1−2α)
=

2α(1−2α)

(4−7α)(1−3α)
. (22)

Lemma A.1 (Weak dominance). Let Y denote a convex subset of [0,1], with 0 = minY

and y = supY , and assume all players j 6= i are restricted to pick strategies from Y .

Then, xi := DR(y), see Eq. (5), weakly dominates all x′i > xi.

Proof. Define X =×i∈N Y , fix i ∈ N, define xi such that

xi = p/n∗
(

2xi +(n−2)y
)

⇔ xi =
n−2

n−2p
∗ py, (23)

and define X ′
−i(x

′
i) := {x−i ∈ X−i | x j > x′i ∀ j 6= i}. It is easy to verify that xi := xi is

a best response to all x−i ∈ X ′
−i (xi) and that any x′i > xi is not a best response to all

x−i ∈ X ′
−i (xi), since any such x′i is not a best response if ∃ j 6= i such that xi < x j < x′i.

Next, for all x−i /∈ X ′
−i(xi), i.e. for all x−i ∈ Y N\{i} \X ′

−i(xi), there exists j 6= i such

that x j ≤ xi. This implies that the target value satisfies p/n∗
(

xi +∑ j 6=i xi

)

≤ xi as well

as p/n∗
(

x′i +∑ j 6=i xi

)

< x′i for all x′i > xi. It follows that x′i > xi is a best response to

any x−i /∈ X ′
−i(xi) only if xi is a best response to it. As a result, all x′i > xi are weakly

dominated by xi = xi.
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Definition A.2 (Perfect response). Fix xi ∈ [0,1] and x−i ∈ [0,1]N\{i}. We say that xi

is a perfect response to x−i if there exist probability densities fε, j(·) : [0,1] → R+ for

all ε > 0 and all j 6= i such that xi is the limit of best responses to the following mixed

strategies (as ε approaches zero): for all j 6= i, j chooses x j with probability 1−ε and

randomizes according to fε, j with probability ε.

Lemma A.3 (Perfect response). Fix x′ ∈ [0,1) and xi ∈ [0,1], and assume n ≥ 3

as well as BRinf(x
′) > 0. xi is a perfect response to x−i = {x′}N\{i} if and only if

xi ∈
(

BRinf (x
′) ,min

{

DR(1),x′
})

.

Proof. “If”-part Fix any x′ and assume first that xi ∈
[

DR(x′),min
{

DR(1),x′
})

.

Define y′ := DR−1(xi), which satisfies y′ ∈ [0,1] due to this restriction on xi, as well

as

∀ j 6= i ∀y ∈ [0,1] ∀ε : fε, j(y) :=















cε, if y′− ε ≤ y ≤ y′

1, if DR(y′) ≤ y ≤ DR(y′)+ ε

ε1/ε, otherwise

with cε ∈ R such that
R 1

0 fε, j(y)dy = 1 (for all j 6= i). Given any j 6= i, let Yε, j de-

note the random variable associated with density fε, j, for all ε. Also for all ε, let

Pr1(ε) denote the probability that y′− ε ≤ Yε, j ≤ y′, let Pr2(ε) denote the probability

that DR(y′)+ ε ≤ Yε, j ≤ DR(y′), and define Pr3(ε) = 1−Pr1(ε)−Pr2(ε). Note that

Pr3(ε) < ε1/ε, Pr2(ε) = ε, and Pr1(ε) > 1− ε− ε1/ε. It follows that, as ε approaches

zero, Pr2(ε)/Pr1(ε)
n → 0 and Pr3(ε)/Pr2(ε)

n → 0, for all j 6= i. Guessing xi in re-

sponse to x−i perturbed in this way yields an expected payoff of at least 1− (n−1)∗

ε∗Pr3(ε), while guessing any x′i < xi yields 1− (n−1)∗ εn−1 ∗Pr1(ε)
N−2 ∗Pr2(ε) at

most, and guessing any x′i > xi yields 1− (n− 1) ∗ ε ∗Pr2(ε) at most (in both cases,

this applies if ε < |x′i − xi| and ε sufficiently close to zero). The former is generally

greater than the payoff in either of the latter cases if ε is close to zero, and hence xi is

a perfect response to x−i.

Second, assume xi ∈ (BRinf (x
′) ,DR(x′)). Again define y′ := DR−1(xi), but the
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tremble density now becomes (noting that x′ < 1 implies y′ < 1)

∀ j 6= i ∀y ∈ [0,1] ∀ε : fε, j(y) :=















cε, if y′− ε ≤ y ≤ y′

1, if DR(y′− ε)− ε ≤ y ≤ DR(y′− ε)

ε1/ε, otherwise

with cε ∈ R such that
R 1

0 fε, j(y)dy = 1 (for all j 6= i). The argument is very similar to

the one made above; the only difference is that x′i = DR(y′− ε), for y′ := DR−1(xi),

is now the unique best response as ε approaches zero, and since it converges to x′i as

ε tends to zero, xi is a perfect response to x−i.

“Only-if”-part Since xi is a perfect response only if it is a best response, xi >

BRinf(x
′) and xi < x′ are necessary conditions. In addition, xi ≤ DR(1) is a necessary

condition, since xi = DR(1) weakly dominates all x′i > DR(1) by Lemma A.1, and

hence strictly dominates them under full support.

Definition A.4 (Cautious response). Same as perfect response with support of fε, j

restricted to [0,x j] for all ε and all j 6= i.

Lemma A.5 (Cautious response). Fix x′ ∈ [0,1) and xi ∈ [0,1], and assume n ≥ 3

as well as BRinf(x
′) > 0. xi is a cautious response to x−i = {x′}N\{i} if and only if

xi ∈ (BRinf (x
′) ,DR(x′)].

Proof. The proof is very similar to that of Lemma A.3, noting that xi ≤ DR(x′) is a

necessary condition in this case. For, by Lemma A.1, xi := DR(x′) weakly dominates

all x′i > DR(x′) in response to x−i ∈ [0,x′]N\{i}, and hence, it strictly dominates all

such x′i if the support for trembles is restricted correspondingly.

Proof of Proposition 2.2 First, since xi = 1 is not a best response to any strategy

profile in case p < 1, it is not rationalizable. Any xi < 1, in turn, is a best response

to any strategy profile x−i satisfying x j ∈ (xi,xi/p) for all j 6= i. Such x−i exist due

to p < 1 for all xi < 1, and hence all xi < 1 are rationalizable. Second, Lemma A.1

implies that all xi > DR(1) are not perfectly rationalizable, and thus p < 1 implies

that xi = DR(1) is not perfectly rationalizable either. Lemma A.3 shows that for

all xi < DR(1) there exists x′ < DR(1) such that xi is a perfect response to x−i =
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{x′}N\{i}, and hence all xi < DR(1) are perfectly rationalizable. Third, note that

for all x ∈ [0,1], Lemmas A.1 and A.5 imply that xi is a cautious response to some

x−i ∈ [0,x]N\{i} if and only if xi ≤ DR(x). Hence xi is level-k cautiously rationalizable

if and only if xi ≤ DRk(1), and thus xi is cautiously rationalizable if and only if

xi ≤ limk→∞ DRk(1) = 0.

Proof of Proposition 2.3 Since iterated response sequences must converge to ra-

tionalizable strategies as k tends to infinity, convergence toward r as restricted in the

proposition for either of the three cases is a necessary condition (see Prop. 2.2). The

following shows that the proposed restrictions are also sufficient. Fix i ∈ N, y ∈ [0,1],

and x−i = {y}N\{i}. The guess xi ∈ [0,1] is a best response to x−i iff xi < y and

1

2
(xi + y) > p/n

[

xi +(n−1)y
]

⇔ xi >
n∗ (2p−1)−2p

n−2p
· y =: xi, (24)

i.e. iff xi ∈ (xi,y) in case xi > 0 and xi ∈ [0,y) otherwise. Now fix any r ∈ [0,x1) and

consider the following sequence (xk) for ε sufficiently close to zero.

∀k > 1 : xk =

{

r + εk, if r ≥ n∗p−2p
n−2p

· xk−1,
n∗p−2p

n−2p
∗ xk−1, otherwise.

(25)

Note that p < 1 implies 2p− 1 < p, and hence
n∗p−2p

n−2p
> n∗(2p−1)−2p

n−2p
. It follows

that for all k > 1, xk is a best response when all opponents choose xk−1, and since
n∗p−2p

n−2p
< 1, the sequence converges to r. By Lemma A.3, (xk) is also a perfect re-

sponse sequence if r ∈ [0,DR(1)), and by Lemma A.5 it is a cautious response se-

quence if r = 0 and n > 2. As for n = 2, Lemma A.5 implies that the unique cautious

response sequence (xk) satisfies xk = 0 for all k > 1 and consequently converges to

zero as well.

Proof of Proposition 2.4 Fix y∈ [0,1), ε > 0, and let Πi(xi|y,ε) denote the expected

payoff of i ∈ N in response to x−i = {y}N\{i} (under the assumed perturbations). Note

that Πi(xi|y,ε) can be expressed as

Πi(xi|y,ε) = Π0
i (xi|y)+

(

n−1

1

)

∗ε∗Π1
i (xi|y)+

(

n−1

2

)

∗ε2 ∗Π2
i (xi|y)+ . . . (26)
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if Πm
i (xi|y) denotes the expected payoff of i ∈ N in case m ≤ n players randomize

uniformly on [0,1] and the remaining opponents pick y with probability 1. Note

also that dΠ0
i (xi|y)/dxi = 0 for all xi < y, and if we focus on dxi > 0, as we do in

the following, dΠm
i (xi|y)/dxi is well-defined and finite for all m ≥ 0 and all xi <

y. Hence, as ε approaches zero, dΠi(xi|y,ε)/dxi ≈ dΠm
i (xi|y)/dxi in the sense that

sign(dΠi(xi|y,ε)/dxi) = sign(dΠm
i (xi|y)/dxi) if dΠm

i (xi|y)/dxi 6= 0. We will see that

dΠm
i (xi|y)/dxi 6= 0 for all xi < y, and hence the optimal xi in response to y is x∗i =

sup{xi < y|dΠm
i (xi|y)/dxi > 0} if x∗i < y, and an optimal xi does not exist if x∗i = y.

For all xi < y and dxi > 0, dΠ1
i (xi|y)/dxi can be expressed as the sum of da and db,

where (using α = p/n)

da =

{

(1−α)/α, if α · [1+(n−2)y+ xi] > (y+ xi)/2,

0, otherwise,
(27)

db =

{

−2, if xi < 2∗DR(y)

−1, otherwise.
(28)

Since n ≥ 3 is assumed, we know that (1 − α)/α > 2, i.e. the sign of da + db is

independent of the actual value of db (which is −2 or −1). Now, two cases can be

distinguished. First, if y > p
n−p(n−1) , the best response xi is characterized by α · [1 +

(n−2)y+ xi] = (y+ xi)/2 as ε approaches zero, i.e. it is

xi =
2α+[2α(n−2)−1]y

1−2α
. (29)

Hence, if x1 > p
n−p(n−1) , then the level-2 best response satisfies x2 > p

n−p(n−1) , and

as k approaches infinity, the best response sequence converges to
p

n−p(n−1) . Second,

if y ≤ p
n−p(n−1) , then da + db is positive for all xi < y, due to da = (1−α)/α > 2

for all xi < y, and thus a best response to y does not exist. As a result, under the

assumed perturbation, a best response sequence starting in some x1 ≤
p

n−p(n−1) does

not exist.

B ML estimates
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Table B.1: Parameter estimates of the non-strategic models

Level 1 Level 2 Level 3 Level 4 Categ-Pars

ρ0 ρ1 σ1 ρ2 σ2 ρ3 σ3 ρ4 σ4 x̃0 p̃

Laboratory

0.39 0.4491
(0.1342)

0.0838
(0.0302)

0.1609
(0.0719)

0.0239
(0.0081)

0.3296 0.5518
(0.1099)

0.1071
(0.0229)

0.1187
(0.0578)

0.0146
(0.0048)

0.401
(0.0637)

0.7676
(0.0662)

0 0.3241
(0.1258)

0.0618
(0.0262)

0.1701
(0.0729)

0.0234
(0.0071)

0.5058
(0.1199)

0.4918
(0.1222)

0.0028 0.1412
(0.0485)

0.01
(0.0048)

0.1802
(0.0555)

0.0165
(0.0053)

0.6758
(0.3263)

0.3997
(0.1665)

0.4936
(0.0174)

0.6925
(0.019)

0 0.3788
(0.1316)

0.0695
(0.0223)

0.1723
(0.0705)

0.0241
(0.0072)

0.4154
(0.1376)

0.6014
(0.2804)

0.0336
(0.0372)

0.0209
(0.0146)

0.0028 0.1412
(0.0447)

0.01
(0.0021)

0.1802
(0.0553)

0.0165
(0.0053)

0.6758
(0.3262)

0.3997
(0.1658)

0
(−)

−
(−)

0.4936
(0.0162)

0.6925
(0.0185)

Classroom

0 0.2112
(0.1026)

0.359
(0.1424)

0.7888
(0.1234)

0.1188
(0.0199)

0.0833 0.6611
(0.1041)

0.1931
(0.0532)

0.2556
(0.1043)

0.0438
(0.0122)

0.2157
(0.115)

0.9102
(0.2663)

0 0.156
(0.2619)

0.3825
(0.3787)

0.3719
(0.1851)

0.0738
(0.0161)

0.472
(0.2216)

0.204
(0.1233)

0 0.0783
(0.0302)

0.01
(0.0055)

0.393
(0.0945)

0.0516
(0.0096)

0.5287
(0.1024)

0.3267
(0.0418)

0.5953
(0.0385)

0.5555
(0.0343)

0 0
(−)

−
(−)

0.3511
(0.1268)

0.0735
(0.0173)

0.1279
(0.0733)

0.0329
(0.0119)

0.5211
(0.1221)

0.3313
(0.0444)

0 0.0789
(0.0301)

0.01
(8e−04)

0.3926
(0.0937)

0.0518
(0.0096)

0
(−)

−
(−)

0.5285
(0.1014)

0.3467
(0.0431)

0.5917
(0.0384)

0.5589
(0.0348)

Take-home

0 0
(−)

−
(−)

1
(0.0925)

0.2156
(0.0162)

0 0.6354
(0.2492)

0.2622
(0.0453)

0.3646
(0.2446)

0.1195
(0.0365)

0.2116
(0.0291)

0.99
(0.0913)

0 0.1638
(0.0392)

0.01
(0.001)

0.4445
(0.1303)

0.2964
(0.0505)

0.3917
(0.1281)

0.125
(0.0285)

0 0.1643
(0.0385)

0.01
(0.0034)

0.4708
(0.1711)

0.2968
(0.0499)

0.3649
(0.1688)

0.1355
(0.0505)

0.5421
(0.1684)

0.6133
(0.1904)

0 0.1716
(0.0399)

0.01
(0.0035)

0.103
(0.0341)

0.01
(0.0028)

0.5136
(0.1495)

0.3175
(0.0503)

0.2119
(0.1407)

0.1353
(0.049)

0 0.1714
(0.039)

0.01
(0.0755)

0.1047
(0.0337)

0.01
(0.0036)

0.5152
(0.1504)

0.3189
(0.0506)

0.2086
(0.1425)

0.1366
(0.0505)

0.5037
(0.0106)

0.6603
(0.0111)

Theorists

0.0917 0
(−)

−
(−)

0.9083
(0.0455)

0.2133
(0.0183)

0.1137 0.627
(0.0587)

0.2237
(0.0243)

0.2593
(0.0396)

0.01
(0.002)

0.1
(0.055)

0.1
(0.0143)

0.0978 0
(−)

−
(−)

0
(−)

−
(−)

0.9022
(0.0415)

0.1795
(0.0159)

0.1054 0.5333
(0.0815)

0.2492
(0.0314)

0.2368
(0.0431)

0.01
(0.0035)

0.1244
(0.0718)

0.0573
(0.0241)

0.1
(0.0233)

0.1
(0.0165)
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Level 1 Level 2 Level 3 Level 4 Categ-Pars

ρ0 ρ1 σ1 ρ2 σ2 ρ3 σ3 ρ4 σ4 x̃0 p̃

0.1217 0
(−)

−
(−)

0
(−)

−
(−)

0
(−)

−
(−)

0.8783
(0.0482)

0.1669
(0.0178)

0.1063 0.0926
(0.0372)

0.0104
(0.0043)

0
(−)

−
(−)

0.5327
(0.0666)

0.2535
(0.0291)

0.2684
(0.0408)

0.01
(9e−04)

0.5942
(1.947)

0.1016
(0.3299)

Newsgroup

0.1016 0
(−)

−
(−)

0.8984
(0.0464)

0.1852
(0.0173)

0.0927 0.7072
(0.0572)

0.2778
(0.0259)

0.2
(0.0364)

0.01
(0.0025)

0.1
(0.0642)

0.1
(0.0157)

0.1131 0.0808
(0.0435)

0.01
(0.0212)

0
(−)

−
(−)

0.8061
(0.0627)

0.1777
(0.0182)

0.1048 0.6903
(0.0567)

0.2222
(0.0356)

0
(NaN)

0.1892
(0.1272)

0.2049
(0.0365)

0.01
(9e−04)

0.99
(0.0665)

0.1
(0.0393)

0.1196 0.0893
(0.0287)

0.01
(0.0768)

0.0378
(0.027)

0.01
(0.0768)

0
(−)

−
(−)

0.7532
(0.0591)

0.1871
(0.0193)

0.1292 0.6429
(0.0553)

0.1281
(0.02)

0
(−)

−
(−)

0
(−)

−
(−)

0.228
(0.0375)

0.01
(0.0012)

0.99
(0.0648)

0.2165
(0.0197)

Newspaper

0.1101 0
(−)

−
(−)

0.8899
(0.0068)

0.178
(0.0025)

0.1111 0.8002
(0.0079)

0.2371
(0.0019)

0.0886
(0.0045)

0.01
(7e−04)

0.5161
(0.1135)

0.1
(0.0081)

0.1258 0
(−)

−
(−)

0
(−)

−
(−)

0.8742
(0.0067)

0.1787
(0.0026)

0.1328 0.7563
(0.0089)

0.1713
(0.0047)

0
(−)

−
(−)

0.1109
(0.0053)

0.0115
(6e−04)

0.99
(0.0108)

0.16
(0.0057)

0.1424 0.0768
(0.0038)

0.01
(6e−04)

0
(−)

−
(−)

0
(−)

−
(−)

0.7808
(0.0081)

0.1803
(0.0029)

0.133 0.5659
(0.1004)

0.1308
(0.0114)

0.1184
(0.1025)

0.2778
(0.043)

0.0821
(0.0254)

0.0616
(0.0133)

0.1005
(0.0063)

0.0111
(8e−04)

0.99
(0.0107)

0.217
(0.0133)

0.1314 0.0799
(0.0039)

0.01
(0.001)

0
(−)

−
(−)

0
(−)

−
(−)

0.0702
(0.0706)

0.3049
(0.0476)

0.1302 0.3335
(0.137)

0.1019
(0.0152)

0.2962
(0.1682)

0.2433
(0.0319)

0.1359
(0.0732)

0.1062
(0.0328)

0.017
(0.0206)

0.0212
(0.0082)

0.99
(0.0107)

0.2588
(0.0209)

Table B.2: Non-strategic models including “level” ∞

Level 1 Level 2 Level 3 Level ∞ Categ-Pars

ρ0 ρ1 σ1 ρ2 σ2 ρ3 σ3 ρ∞ σ∞ x̃0 p̃

Laboratory

0 0.5192
(0.1355)

0.0903
(0.0171)

0.4808
(0.133)

0.575
(0.1469)

0 0.567
(0.143)

0.0878
(0.0182)

0.433
(0.1354)

0.6789
(0.267)

0.4632
(0.9779)

0.6379
(1.3468)

0 0.3453
(0.1215)

0.0655
(0.0241)

0.1662
(0.0717)

0.0234
(0.0072)

0.4885
(0.1146)

0.606
(0.1529)

0 0.1446
(0.0507)

0.01
(0.0044)

0.1847
(0.0593)

0.0168
(0.0055)

0.6707
(0.1059)

0.5157
(0.0819)

0.4941
(0.0171)

0.6918
(0.0188)

0 0.3241
(0.1258)

0.0618
(0.0262)

0.1701
(0.0729)

0.0234
(0.0071)

0.5058
(0.1199)

0.4919
(0.1222)

0
(−)

−
(−)
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Level 1 Level 2 Level 3 Level ∞ Categ-Pars

ρ0 ρ1 σ1 ρ2 σ2 ρ3 σ3 ρ∞ σ∞ x̃0 p̃

0.0028 0.1412
(0.0478)

0.01
(0.0044)

0.1802
(0.0555)

0.0165
(0.0053)

0.6758
(0.3262)

0.3997
(0.1664)

0
(−)

−
(−)

0.4936
(0.0172)

0.6925
(0.0189)

Classroom

0.0748 0.204
(0.2097)

0.1275
(0.0535)

0.7212
(0.234)

0.2503
(0.0573)

0 0.4658
(0.1278)

0.0744
(0.0155)

0.5342
(0.1298)

0.3709
(0.0468)

0.3758
(0.9125)

0.5541
(1.3456)

0 0.0127
(0.4637)

0.4882
(2.4749)

0.4637
(0.1335)

0.0773
(0.0142)

0.5236
(0.4355)

0.3582
(0.2392)

0 0.0795
(0.0301)

0.01
(0.0069)

0.3937
(0.0928)

0.052
(0.0095)

0.5268
(0.1002)

0.3724
(0.0446)

0.5882
(0.0386)

0.5621
(0.0355)

0 0
(−)

−
(−)

0.3711
(0.1225)

0.0749
(0.0168)

0.12
(0.073)

0.0323
(0.0124)

0.5089
(0.1178)

0.3786
(0.0481)

0 0.0812
(0.0301)

0.01
(7e−04)

0.3646
(0.0886)

0.0474
(0.0098)

0.0414
(0.033)

0.01
(0.0829)

0.5127
(0.0953)

0.3787
(0.0458)

0.5809
(0.0219)

0.5692
(0.0193)

Take-home

0 0.4264
(0.2675)

0.1906
(0.031)

0.5736
(0.2699)

0.2633
(0.0812)

0 0.2667
(0.0887)

0.0602
(0.0152)

0.7333
(0.1071)

0.3344
(0.027)

0.4586
(0.9841)

0.6308
(1.3536)

0 0.1689
(0.0372)

0.01
(0.0052)

0.1057
(0.0333)

0.01
(0.0036)

0.7254
(0.0709)

0.3351
(0.0257)

0 0.1683
(0.0392)

0.01
(0.0035)

0.1069
(0.0323)

0.01
(0.0074)

0.7248
(0.0715)

0.3354
(0.0257)

0.503
(0.0112)

0.661
(0.0113)

0 0.1736
(0.0396)

0.01
(0.0031)

0.1085
(0.0312)

0.01
(0.0068)

0.5345
(0.1468)

0.312
(0.0468)

0.1835
(0.1364)

0.153
(0.0722)

0 0.1729
(0.043)

0.01
(0.0065)

0.1096
(0.0344)

0.01
(0.001)

0.5399
(0.154)

0.3123
(0.0476)

0.1776
(0.1407)

0.1517
(0.0769)

0.5031
(0.0127)

0.661
(0.012)

Theorists

0.1025 0.3617
(0.0678)

0.1509
(0.0257)

0.5358
(0.0592)

0.0478
(0.011)

0.1137 0.6275
(0.0588)

0.2236
(0.0286)

0.2588
(0.0396)

0.01
(0.002)

0.1
(0.1008)

0.1
(0.1008)

0.0972 0
(−)

−
(−)

0.612
(0.0514)

0.1768
(0.0196)

0.2908
(0.0346)

0.01
(0.0024)

0.1072 0.4851
(0.0896)

0.1967
(0.0696)

0.1296
(0.0629)

0.0149
(0.0055)

0.2781
(0.0417)

0.01
(4e−04)

0.3431
(0.6982)

0.4012
(0.4221)

0.1089 0
(−)

−
(−)

0
(−)

−
(−)

0.614
(0.0548)

0.176
(0.0216)

0.2771
(0.0366)

0.01
(0.0025)

0.1068 0.4827
(0.0646)

0.2065
(0.0314)

0.0997
(0.0349)

0.01
(0.0012)

0.0385
(0.0283)

0.01
(0.0011)

0.2723
(0.0399)

0.01
(8e−04)

0.2342
(0.1178)

0.514
(0.1291)

Newsgroup

0.1281 0.2947
(0.0945)

0.0816
(0.0152)

0.5773
(0.0902)

0.1467
(0.0333)

0.128 0.6412
(0.0517)

0.1208
(0.0137)

0.2308
(0.0342)

0.01
(0.0021)

0.3945
(0.8772)

0.5925
(1.3175)

0.1295 0.0654
(0.1036)

0.0915
(0.0817)

0.5745
(0.1175)

0.118
(0.0217)

0.2306
(0.0371)

0.01
(0.0015)

0.1289 0.6043
(0.0665)

0.1176
(0.0126)

0.0333
(0.0507)

0.0266
(0.0271)

0.2335
(0.0324)

0.01
(0.0024)

0.4595
(0.1762)

0.5292
(0.1989)

0.1315 0.0884
(0.0301)

0.01
(0.0042)

0.4851
(0.1121)

0.1294
(0.0198)

0.0658
(0.0892)

0.0469
(0.0479)

0.2292
(0.0323)

0.01
(0.0032)
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Level 1 Level 2 Level 3 Level ∞ Categ-Pars

ρ0 ρ1 σ1 ρ2 σ2 ρ3 σ3 ρ∞ σ∞ x̃0 p̃

0.1186 0.0953
(0.0329)

0.01
(0.0048)

0.4224
(0.2289)

0.1395
(0.0342)

0.1317
(0.1883)

0.0554
(0.0242)

0.232
(0.0517)

0.01
(0.0065)

0.4536
(0.0553)

0.7217
(0.0884)

Newspaper

0.1354 0.0814
(0.0038)

0.01
(6e−04)

0.7832
(0.0082)

0.2224
(0.0031)

0.1354 0.0815
(0.0038)

0.01
(6e−04)

0.7831
(0.0082)

0.2224
(0.0031)

0.5004
(0.0275)

0.667
(0.0366)

0.1445 0.0849
(0.0038)

0.01
(7e−04)

0.0586
(0.0039)

0.01
(8e−04)

0.7119
(0.0094)

0.2167
(0.0035)

0.1446 0.085
(0.0038)

0.01
(7e−04)

0.0587
(0.0039)

0.01
(8e−04)

0.7118
(0.0094)

0.2166
(0.0035)

0.5007
(0.002)

0.6668
(0.0022)

0.124 0.0833
(0.004)

0.01
(8e−04)

0.2686
(0.0267)

0.2056
(0.0109)

0.3961
(0.0295)

0.1055
(0.0068)

0.1281
(0.0055)

0.0148
(8e−04)

0.1262 0.0831
(0.0039)

0.01
(6e−04)

0.2966
(0.0311)

0.1987
(0.011)

0.3723
(0.0328)

0.1087
(0.0077)

0.1218
(0.0066)

0.0141
(8e−04)

0.522
(0.0128)

0.6395
(0.0156)

0.1268 0.0833
(0.0039)

0.01
(7e−04)

0.0988
(0.0793)

0.1931
(0.0307)

0.2535
(0.0479)

0.0966
(0.0071)

0.1169
(0.0064)

0.0136
(8e−04)

0.1291 0.0832
(0.0039)

0.01
(1e−04)

0
(−)

−
(−)

0.1809
(0.0449)

0.0809
(0.0088)

0.1186
(0.0057)

0.014
(8e−04)

0.476
(0.0086)

0.7014
(0.0126)

Table B.3: Iterated best response with normal perturbations

Level 1 Level 2 Level 3 Equil

ρ0 ρ1 λ1 ρ2 λ2 ρ3 λ3 ρe λe m

Laboratory

0.0941 0.9059
(0.0907)

0.2798
(0.0048)

3.0115
(0.016)

0.2602 0.4809
(0.1121)

0.0826
(0.002)

0.2589
(0.1589)

0.2361
(0.035)

3.2561
(0.005)

0.2093 0.4598
(0.0945)

0.081
(8e−04)

0.1295
(0.063)

0.03
(0.0012)

0.2015
(0.1995)

0.3521
(0.0246)

3.0716
(0.0019)

0.1525 0.4786
(0.1036)

0.0819
(6e−04)

0.0943
(0.06)

0.0303
(0.003)

0.0496
(0.072)

0.0737
(0.005)

0.225
(0.3156)

0.4022
(0.0491)

3.4717
(0.0035)

Classroom

0.0891 0.9109
(0.0458)

0.1959
(0.0035)

3.2426
(0.0124)

0.0729 0.1077
(0.1477)

0.2165
(0.0201)

0.8194
(0.117)

0.1853
(0.0078)

3.2319
(0.0124)

0.0889 0.1062
(0.1965)

0.125
(0.0055)

0.1347
(0.0926)

0.0487
(2e−04)

0.6702
(0.2231)

0.1917
(0.0458)

3.217
(0.0182)

0.0476 0.1007
(0.0491)

0.0362
(0)

0.1647
(0.0306)

0.0309
(4e−04)

0.158
(0.0472)

0.0264
(4e−04)

0.5289
(0.1159)

0.2432
(2e−04)

3.1468
(8e−04)

Take-home

0 1
(0.0098)

0.2416
(0.0081)

2.8732
(0.1521)

0 0.1088
(0.3337)

0.2355
(0.1505)

0.8912
(0.1832)

0.2284
(0.0082)

3.3483
(0.9736)

0 0.0854
(0.5542)

0.232
(0.0084)

0.1054
(0.5755)

0.2477
(0.0797)

0.8092
(0.0763)

0.2256
(0.0299)

3.7506
(0.0168)
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Level 1 Level 2 Level 3 Equil

ρ0 ρ1 λ1 ρ2 λ2 ρ3 λ3 ρe λe m

0 0.0822
(1.2689)

0.2294
(0.0404)

0.0941
(5.5198)

0.2457
(0.0782)

0.1023
(4.2155)

0.2522
(0.0481)

0.7214
(0.1306)

0.2223
(0.0114)

3.8701
(0.0299)

Theorists

0.3792 0.6208
(0.0499)

0.0668
(2e−04)

3.832
(0.0024)

0.1044 0.2896
(0.0486)

0.131
(0.0019)

0.606
(0.0433)

0.0538
(0.003)

3.4584
(0.0022)

0.1044 0.2148
(0.0773)

0.1579
(0.0012)

0.1944
(0.0652)

0.0886
(8e−04)

0.4864
(0.0446)

0.0334
(1e−04)

3.0325
(0.0012)

0.1041 0.1795
(0.0298)

0.1365
(0.0095)

0.0997
(0.0669)

0.1261
(5e−04)

0.1293
(0.0547)

0.0496
(0.001)

0.4873
(0.0451)

0.0327
(0)

3.8984
(1e−04)

Newsgroup

0.1212 0.8788
(0.0433)

0.1782
(0.006)

3.1094
(0.0279)

0.0938 0.0402
(0.0159)

0.0032
(1e−04)

0.866
(0.0359)

0.1674
(0.0039)

5.4127
(0.0021)

0.1321 0.0507
(0.0173)

0.0039
(1e−04)

0.0023
(0.0083)

0.0105
(0.0201)

0.8148
(0.0467)

0.1611
(0.0058)

5.6461
(4e−04)

0.1131 0.0469
(0.0176)

0.0044
(1e−04)

0.0069
(0.0136)

0.0163
(2e−04)

0.1041
(0.0242)

0.001
(1e−04)

0.729
(0.0485)

0.1665
(0.0053)

5.5655
(7e−04)

Newspaper

0.1378 0.8622
(0.0063)

0.1782
(2e−04)

2.457
(6e−04)

0.1363 2e−04
(0.0034)

0.1915
(0.054)

0.8635
(0.0065)

0.1791
(4e−04)

2.6496
(0.0031)

0.1424 0
(−)

−
(−)

0
(−)

−
(−)

0.8576
(0.0064)

0.1768
(2e−04)

2.8562
(7e−04)

0.1406 3e−04
(0.0051)

0.2105
(0.0196)

4e−04
(0.0098)

0.2104
(0)

4e−04
(0.0084)

0.2104
(0.0012)

0.8583
(0.0072)

0.1767
(5e−04)

2.8579
(0.0025)

Table B.4: Iterated logit response

Level 1 Level 2 Level 3 QRE

ρ0 ρ1 λ1 ρ2 λ2 ρ3 λ3 ρe λe m

Laboratory

0 1
(0.1359)

4.8144
(0.0175)

3.2641
(0.0378)

0 0.2621
(0.1148)

8.2658
(0.0274)

0.7379
(0.1493)

5.1959
(0.0306)

3.7069
(0.0291)

0 0.4855
(0.1291)

5.8368
(0.0397)

0.168
(0.0612)

15.9037
(0.0165)

0.3465
(0.1178)

0.7929
(0.0321)

4.2835
(0.0179)

0.0012 0.4848
(0.1394)

6.2194
(0.033)

0.163
(0.0567)

19.888
(0.0183)

0.0367
(0.0321)

15.2417
(0.046)

0.3142
(0.2457)

0.8367
(0.1193)

5.098
(0.0159)

Classroom

0 1
(0.0146)

6.249
(0.0318)

2
(0.0013)

0 0.0049
(0.0941)

6.7163
(0.3286)

0.9951
(0.0042)

6.2486
(0.0164)

2
(0.0057)
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Level 1 Level 2 Level 3 QRE

ρ0 ρ1 λ1 ρ2 λ2 ρ3 λ3 ρe λe m

0 0.0134
(0.0806)

5.8625
(0.035)

0.1119
(0.0311)

6.5013
(0.0146)

0.8747
(0.0916)

6.4678
(0.0204)

2
(0.0018)

0 0.0227
(0.0147)

5.8311
(0.0187)

0.1203
(0.0456)

6.5116
(0.018)

3e−04
(0.0243)

6.5222
(0.2945)

0.8566
(0.1178)

6.4689
(0.0308)

2
(0.0023)

Take-home

0 1
(0.1142)

4.9867
(0.0227)

2.6908
(0.0152)

0 0
(−)

−
(−)

1
(0.0044)

4.9056
(0.0234)

2.8806
(0.015)

0 0.0095
(0.2021)

1.8766
(0.0093)

0.1052
(0.1287)

7.3068
(0.0218)

0.8853
(0.2841)

5.0051
(0.0423)

2.8324
(0.0142)

0 0.0108
(0.2011)

1.8061
(0.0022)

0.1145
(0.1186)

8.406
(0.0224)

0
(−)

−
(−)

0.8747
(0.279)

5.0499
(0.0139)

2.7833
(0.0041)

Theorists

0.698 0.302
(0.0477)

15.832
(0.0458)

5.9584
(0.0128)

0.6709 0.0761
(0.007)

15.8849
(0.0411)

0.253
(0.0118)

17.5821
(0.0014)

7.0446
(0.0048)

0.6226 0.0494
(0.0256)

16.7127
(0.0099)

0.1052
(0.029)

16.711
(0.0332)

0.2228
(0.0101)

18.4968
(9e−04)

7.4117
(4e−04)

0.5639 0.0464
(0.0299)

17.2978
(0.0438)

0.0973
(0.0109)

17.5549
(0.0139)

0.1025
(0.0356)

17.0283
(0.0292)

0.19
(0.0421)

16.9117
(0.0334)

7.6555
(4e−04)

Newsgroup

0.3928 0.6072
(0.0998)

6.4708
(0.0441)

2.7282
(0.0121)

0.4472 0.0684
(0.0666)

8.9952
(0.0534)

0.4843
(0.1043)

7.3124
(0.0298)

2.6742
(0.0062)

0.5064 0.1094
(0.048)

18.8729
(0.0286)

0.0319
(0.0333)

13.2986
(0.0925)

0.3522
(0.0923)

9.1548
(0)

2.2357
(0)

0.5064 0.1098
(0.077)

19.5951
(0.0261)

0.0592
(0.0395)

19.3964
(0.0285)

0.097
(0.0444)

11.6919
(0.0366)

0.2276
(0.2435)

5.3098
(0.0405)

2.6508
(0.0035)

Newspaper

0.4263 0.5737
(0.0128)

7.7812
(0.0017)

2.7513
(1e−04)

0.4958 0.1091
(0.0082)

9.0895
(0.0044)

0.3951
(0.0106)

11.2319
(0.001)

2.5456
(0.001)

0.5608 0.1004
(0.0068)

10.7052
(0.0021)

0.0855
(0.0048)

9.6549
(0.0056)

0.2534
(0.0084)

13.7557
(0.0015)

2.8155
(4e−04)

0.5109 0.1113
(0.0064)

11.9588
(0.0107)

0.0898
(0.0041)

10.2531
(4e−04)

0.064
(0.0036)

9.1118
(0.0031)

0.2241
(0)

14.4376
(0)

2.8762
(1e−04)

Table B.5: Nested logit models
#1 =̂ GEV–Eq, #2 =̂ GEV–Eq+L1, #3 =̂ GEV-Aver–Eq, #4 =̂ GEV-Aver–Eq+L1

# λ1 β′
1 β′′

1 ρ1 λe β′
e β′′

e ρe m L/10

Laboratory

1 6.0689
(0.0245)

0
(NaN)

1
(0.0081)

4.2902
(0.045)

0.4008
(0.0143)

2 6.7586
(14.5168)

0.0031
(0.0256)

0.0942
(0.0094)

6.3437
(0.0152)

0.0081
(9e−04)

0.9058
(0.0236)

4.3538
(0.0176)

0.4002
(0.0134)
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# λ1 β′
1 β′′

1 ρ1 λe β′
e β′′

e ρe m L/10

3 6.1756
(0.0281)

0.8501
(0.003)

0
(NaN)

0.9983
(0.0072)

4.3623
(0.0152)

0.3
(0.1247)

4 6.317
(4.4954)

0.9247
(1e−04)

0.0049
(0.0292)

0.1
(0.1342)

5.7697
(0.009)

0.8883
(0.0082)

0.0018
(7e−04)

0.8984
(0.0529)

4.2652
(7e−04)

0.3165
(0.027)

Classroom

1 7.4446
(0.004)

0.7738
(0.0055)

1
(0.0087)

2.1387
(0.0152)

0.7932
(0.261)

2 7.3423
(25.378)

0
(NaN)

0.0828
(0.0325)

6.6816
(0.0032)

1.3199
(2e−04)

0.9172
(0.0327)

2
(0.079)

2
(0.0174)

3 1.3644
(0.0119)

2.3021
(0.0101)

0.006
(5e−04)

1
(0.0087)

2.6799
(0.0335)

0.5299
(0.0161)

4 7.3423
(25.378)

0 0
(NaN)

0.0828
(0.0325)

6.6816
(0.0032)

0 1.3199
(2e−04)

0.9172
(0.0327)

2
(0.079)

2
(0.0174)

Take-home

1 3.7128
(0.0121)

0.6282
(0.0019)

0.9981
(0.0038)

3.0181
(0.0097)

0.9009
(0.0166)

2 2.1751
(0.0084)

0
(NaN)

0.2004
(0.0772)

5.4347
(0.0157)

0.984
(0.0039)

0.634
(0.1407)

2
(0.1772)

2
(0.1682)

3 0.2593
(0.0145)

6.9833
(0.0134)

0.0161
(8e−04)

1
(0.009)

2.9418
(0.002)

0.5092
(0.0155)

4 2.1751
(0.0084)

0 0
(NaN)

0.2004
(0.0772)

5.4347
(0.0157)

0 0.984
(0.0039)

0.634
(0.1407)

2
(0.1772)

2
(0.1682)

Theorists

1 0.2763
(0.0111)

0.2131
(0.0256)

1
(0.0113)

3.3036
(0.0477)

2
(0.0096)

2 0.2763
(0.0346)

0.2344
(0.1691)

0.1
(0.0512)

0.304
(0.0224)

0.2131
(0.0095)

0.9
(0.0501)

3.3036
(0.0372)

2
(0.0096)

3 0.1021
(0.0121)

0.1558
(0.0282)

0.2143
(0.0441)

1
(0.011)

3.1904
(0.0418)

2
(0.0096)

4 0.1021
(1.0389)

0.1558
(4.2761)

0.2143
(0.0234)

0.1
(1.3201)

0.1021
(0.0031)

0.1885
(0.0135)

0.2143
(0.0307)

0.9
(1.3201)

3.1904
(0.0752)

2
(0.0046)

Newsgroup

1 0
(NaN)

0
(NaN)

0.9999
(0.0079)

6.7296
(NaN)

0.6181
(0.0299)

2 0.0117
(0.0027)

0
(NaN)

0.1015
(0.0279)

0
(NaN)

0
(NaN)

0.8985
(0.0288)

6.8449
(NaN)

0.6178
(0.0298)

3 0
(NaN)

0.2604
(NaN)

0.3228
(0.0384)

1
(0.0133)

4.2597
(NaN)

2
(0.0093)

4 0
(NaN)

0.2604
(NaN)

0.3906
(0.0042)

0.1
(3.29)

0
(NaN)

0.2604
(NaN)

0.3228
(0.2421)

0.9
(3.2899)

4.2597
(NaN)

2
(2e−04)

Newspaper

1 3.0158
(0.0016)

0.3955
(0.002)

1
(8e−04)

3.0067
(0.0021)

1.2001
(0.0013)

2 3.7746
(4e−04)

0
(NaN)

0.1169
(0.0116)

4.7766
(0.0121)

0.5043
(8e−04)

0.8831
(0.0162)

3.24
(0.0012)

1.2214
(8e−04)

3 1.8878
(0.0023)

1.4323
(0.0049)

0.4334
(9e−04)

1
(0.0013)

4.7483
(0.004)

1.2399
(0.0089)

4 2.0381
(3e−04)

1.8469
(0)

0.276
(0)

0.0981
(0.1061)

1.9649
(0.003)

1.4532
(0.0047)

0.4459
(0.0016)

0.9019
(0.1062)

4.9269
(0.0058)

1.255
(1e−04)
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