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Abstract

　 Many empirical studies argue that the inertial behavior of the policy rates in

industrialized countries can be well explained by a linear partial adjustment version

of the Taylor rule. However, the explanatory power of the lagged interest rate has

been questioned from various points of view. This paper formally examines a situation

in which a central bank has an aversion for frequent policy reversals. Imposing an

irreversibility constraint on the control space makes the lagged interest rate a state

variable, but the policy function cannot then be expressed as a partial adjustment

form even if the original Taylor rule is the correct policy function in the absence of

the constraint. The simulation results reveal that the conventional regression tends to

falsely support the functionally misspecified partial adjustment model. This implies

that the significant role of the lagged interest may simply reflect the central banks’

reversal aversion.
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1 Introduction

It is widely recognized that the credibility of central banks is a key to the effectiveness of

monetary policy. Major central banks thus have an aversion for losing credibility, and that

this aversion would make them behave conservatively, especially when the future economic

condition is highly uncertain.

The gradual adjustment of the policy rates has long been deemed as good evidence

of the central banks’ preference for conservatism. The most popular way to measure the

extent of gradualism is to estimate the coefficient on the lagged interest rate in the following

Taylor rule:

it = ψiit−1 + (1 − ψi)(c0 + c1πt + c2yt),

where it is the policy rate at time t, and πt and yt are inflation and an output gap,

respectively. This partial adjustment version of the Taylor rule, which is occasionally

called the “generalized Taylor rule”, has been heavily used not only in empirical studies,

but also in theoretical studies especially in the new-Keynesian DSGE models (e.g., Clarida,

Gaĺı and Gertler, 1999, Woodford, 2003a,b).1

Despite its popularity, the partial adjustment version of the Taylor rule has been criti-

cized. Rudebusch (2002) argues that if the central bank conducts interest rate smoothing,

then future short-term interest rates must be predicted quite accurately. He shows that

the predictability of future short-term rates is not high enough to support interest rate

smoothing, insisting that the explanatory power of the lagged interest rate is due to the

presence of serially correlated omitted variables. Sack (2000) states that the presence of

parameter uncertainty would lead the Fed to act less aggressively compared to the optimal

policy under certainty. Trehan and Wu (2007) show that failing to include the time-varying

equilibrium real interest rate in the estimation equation can exaggerate the degree of in-

terest rate smoothing. More recently, Consolo and Favero (2009) reestimate the Taylor

rule using GMM, taking into account the possibility of weak instruments. They show that

GMM estimation that takes care of the weak instruments problem makes the estimated

coefficient on the lagged interest rate significantly smaller than suggested by the previous

studies.

In this paper, I present an alternative explanation about why the partial adjustment

model can be incorrect. I consider a situation in which a central bank has an aversion

for frequent policy reversals. In practice, the central banks apparently try to avoid policy

reversals, since reversals send a signal to the market that the policy shifts may be modified

or even neutralized in the near future. Such a possibility of altering policy directions

undermines the central bank’s credibility and thereby the effectiveness of monetary policy.

As of December 2009, the Fed has changed the Federal funds target 95 times since 1990,

and there are only two cases in which the Fed changed the direction of the policy shift

1See Sack and Wieland (2000) for a survey of the literature on interest rate smoothing.
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within two quarters. In fact, the shortest interval between opposite target shifts is about

5 months (Figure 1). This aspect of infrequent policy reversals is inconsistent with the

quarterly partial adjustment model that allows for immediate reversals.

The possibility that an aversion for policy reversals would lead the central banks to be

conservative is pointed out by Lowe and Ellis (1997), while I introduce the central banks’

reversal aversion in a more formal way. I consider a situation in which the central bank faces

an irreversibility constraint that prohibits the policy rate to move in opposite directions

over the two consecutive periods. This can be interpreted as a special case of the situation

in which the central bank bears the cost of policy-rate reversals without any restriction

on the control space. Thus, as noted by Lowe and Ellis (1997), this discussion is similar

to the irreversibility of investment (e.g., Dixit and Pindyck, 1994). The introduction of

irreversibility makes the optimal policy less aggressive than would be attained under no

constraint. This is simply because a larger policy shift would increase the probability that

the policy rate must be reversed in the next period. In other words, there arises an option

value to wait as is the case with investment irreversibility.

The simulation results reveal that the conventional regression tends to yield a wrong

conclusion that the linear partial adjustment model is correct. Obviously, the linear partial

adjustment equation is functionally misspecified and omits an important state variable as

long as the central bank faces the irreversibility constraint. I also show that the applica-

tion of English, Nelson and Sack’s (2003) specification test, which simultaneously allows

for both the partial adjustment term and serial correlations, would not correctly detect

the misspecification. This suggests that the widely used partial adjustment model may

be falsely accepted since the policy rates under irreversibility are observationally indistin-

guishable from those under the partial adjustment model. If this is the case, the use of the

partial adjustment version of the Taylor rule in a theoretical study will be subject to the

Lucas critique.

2 A simple model of gradualism

This section presents a very simple model in which there is no interaction between the

central bank’s policy action and the desired level of interest rate for the purpose of clarifying

the pure effect of introducing an irreversibility constraint. Assume that the central bank

knows the process of the desired interest rate, which is given as

i∗t = ρi∗t−1 + εt, ρ ∈ [0, 1), (1)

where i∗t is the current desired interest rate and εt ∼ N(0, σ2
ε ). i∗t is called the “desired”

interest rate in the sense that the central bank always sets its policy rate, it, at i∗t if there

is no restriction on the behavior of the policy rate. However, if the central bank has an

aversion for frequent policy reversals, then i∗t is not necessarily the optimal interest rate
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since the previous policy rate becomes an upper (a lower) bound for the current policy rate

when the policy rate was previously lowered (increased).

A central bank that has an aversion for policy reversals not only avoids current pol-

icy reversal, but also takes into account the influence of its current policy action on the

likelihood of future policy reversals. For example, suppose that the desired level of the

interest rate is currently quite high, but is likely to decline in the next period. In this

situation, an upward shift in the policy rate will increase the probability of policy reversal

(i.e., a negative policy shift) in the next period. The central bank may decide to keep the

level of the policy rate unchanged if such a future policy reversal is highly likely. Thus, the

decision-making of a central bank that tries to avoid frequent policy reversals is intrinsically

a dynamic problem and the optimal policy will be forward-looking.

Assume that the central bank has a quadratic return function that takes the maxi-

mum value zero when the policy rate is equal to i∗t . One way to incorporate the central

bank’s reversal aversion is to directly introduce an irreversibility constraint in the Bellman

equation:

V (it−1, δt−1, i
∗

t ) = max
it∈Ωt

{−(it − i∗t )
2 + βEtV (it, δt, i

∗

t+1)}, (2)

where V (·) is the value function of the central bank, δt = sign(it − it−1) and β is the

discount factor. The control space for it is constrained by Ωt, where

Ωt = {it| it ≤ it−1, it ∈ Ω} if δt−1 = −1,

= Ω if δt−1 = 0, (3)

= {it| it ≥ it−1, it ∈ Ω} if δt−1 = 1.

Ω denotes the overall control space. There are three state variables in the value function.

The most obvious one is the desired level of the policy rate.2 In addition, it−1 and δt−1

become state variables since they determine the current control space. It should be noted

that the current policy not only affects the one-period return, −(it − i∗t )
2, but also deter-

mines the next period’s state variables it and δt, which constrain the future control space.

It is this forward-looking aspect that creates the possibility that the central bank favors

gradualism.

Another possible way to examine the central bank’s aversion for policy reversals is to

introduce penalties or costs of reversals. In this case, the control space is not constrained

by the direction of previous policy shifts, but policy reversals impose penalties or costs

on the central bank through the one-period return function. This type of problem setting

is called the penalty method or the barrier method, in which case the solution could be

obtained by a perturbation method once the constraint is rewritten as ∆it∆it−1 ≥ 0.3

However, a shortcoming of the penalty method is that the problem is not exactly the

2It is assumed that the i∗t is observable at the time the central bank sets it.
3See, for example, Luenberger (2003) for an explanation of the penalty and barrier methods.
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same as the corresponding constrained problem unless the size of the penalty is infinite

outside the boundary. den Haan and Wind (2009) also argue that for the perturbation

methods to be accurate, the penalty function must not have a singularity, say x∗, since

the radius of convergence of the Taylor series is bounded above by ||x̄ − x∗||, where x̄ is

the point at which the approximation is based.4 This requires the penalty function or

the barrier function to be differentiable at the boundary, but this is done at the expense

of solution accuracy around the boundary. These properties will cause a serious problem

since the irreversibility constraint demands arbitrary accuracy around the boundary due to

the fact that the next period’s control space depends largely on sign(∆it). For this reason,

introducing a penalty function or a barrier function will be inappropriate for a problem

with the irreversibility constraint.

2.1 Stochastic simulation

The introduction of an irreversibility constraint makes the central bank’s policy function

highly nonlinear, and an analytical solution is thus no longer available even in this otherwise

simple linear-quadratic framework. In the following, I solve the dynamic programming

numerically using value function iteration.

The baseline parameters and grid sizes are as follows. β = .9, σε = .005 and I consider

two alternative cases regarding the persistence of the desired interest rate: ρ = .8 and

0. Ω = [−.03, .03], and the grid size for state it−1 is set at .0025. As for i∗t , the AR(1)

process is discretized by the method proposed by Tauchen (1986). The number of nodes

for i∗t is 11.5 The optimal policy in each iteration is obtained by using a modified golden

search algorithm, where the optimal value attained by the standard golden search method

is compared with the value under no policy shift (i.e., it = it−1). Such a modification

is necessary because the standard golden search method often fails to calculate corner

solutions.6 The next period’s expected value is approximated using piece-wise linear spline

at points not on the grid.7 The approximated value function is given by

V (̂ij , δ̂k, î∗l ) = max
ī∈Ωj,k

{−(̄i − î∗l )
2 + β

11
∑

m=1

P (l,m)V (̄i, sign(̄i − îj), î
∗

m)}, (4)

where the current control space depends on indices j and k since the space is determined

by the previous interest, îj, and the previous increment, δ̂k. P (l,m) denotes the transition

probability from state î∗l to î∗m.

Figure 2 illustrates sample paths of the policy rate and the desired rate. The figure

shows that there is a large discrepancy between the two interest rates. The point is that
4See also Judd (1998, Theorem 6.1.2).
5The maximum and minimum values of i∗t are .015 and -.015, respectively.
6Recall that it−1 becomes an upper or a lower bound of it when δt−1 is nonzero. See Miranda and

Fackler (2002) for an explanation of the standard golden search algorithm.
7The criterion of convergence is ||V k(·)−V k−1(·)

V k−1(·)
||∞ < 10−6, where V k(·) is the value after kth iterations.
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the discrepancy is not observed only when the irreversibility constraint is binding. The

policy rate often deviates from the desired rate when the constraint is not binding. The

latter phenomenon corresponds to the central bank’s gradualism, where the central bank

moves the policy rate to a lesser extent than the change in the desired rate. As noted

above, this is because a larger shift in the policy rate will increase the probability of the

next period’s policy reversal.

Another interesting feature is that the size of the discrepancy between the policy rate

and the desired rate depends on the degree of persistence, ρ. It turns out that, on average,

the discrepancy is wider under ρ = 0 than under ρ = .8. The intuition is that the central

bank follows changes in the desired rate more frequently as the degree of persistence in-

creases since the probability of reversal in the desired rate is decreasing in ρ. This implies

that the extent of gradualism is endogenously determined, depending on the behavior of

the desired rate.

Figure 3 shows the policy function when it−1 = 0. The two figures reconfirm the two

properties shown in the simulated paths: i) the central bank that faces the irreversibility

constraint conducts gradual monetary policy even when the constraint is not binding, and

ii) the degree of gradualism depends on the degree of persistence in i∗t . In particular, Figure

3a reveals that it is optimal to do nothing when the change in the desired rate is sufficiently

small and the persistence of the desired rate is sufficiently small. The relationship between

the extent of gradualism and the persistence in i∗t is far from linear.

2.2 Conventional regression: A partial adjustment model

Since the influential work by Taylor (1993), a large number of empirical studies have

attempted to estimate a simple policy rule, and many of them supports a linear partial

adjustment model of the form:

it = ρiit−1 + (1 − ρi)ci∗i
∗

t + ξt, (5)

where ξt is a residual term and i∗t typically represents the original Taylor rule, or the

“Taylor rate”, that depends only on inflation and an output gap.

Eq.(5) is obviously not a correct policy function in the presence of the irreversibility

constraint, while the gradual adjustment of the simulated optimal policy shown in Figure 2

does not seem inconsistent with the partial adjustment model. Even in theoretical studies,

it is often assumed that the linear partial adjustment model can well capture the actual

central banks’ conservative behavior, which is called “interest rate smoothing”. However,

if the central banks’ conservativeness stems from the aversion for policy reversals, then

such a conventional assumption will not hold true.

One might argue that the partial adjustment model may still describe the central banks’

conservatism as first-order approximation to the possibly nonlinear policy function. Unfor-

tunately, the policy function under the irreversibility constraint is not only nonlinear, but
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also depends on additional state variable δt−1. Therefore, any linear partial adjustment

model is functionally misspecified even around the steady state.

In the following I estimate eq.(5), using simulated data obtained by the model presented

in the previous subsection. If the estimated values of ρi and ci∗ are statistically significant,

then the possibility arises that the conventional regression of the partial adjustment model

may be spurious.

2.3 Estimation results

Since the data used in the previous studies are mostly quarterly and start from the late

80’s, I set the length of simulated data used in the estimation at 100. In doing so, I

generated 5000 sets of 200-period-long data, and the initial 99 periods were discarded.8

The distributions of the OLS estimates are shown in Figures 4 and 5.

First, it turns out that the coefficient on the lagged interest rate, ρi, is significantly

different from 0 in both cases and its size tends to be larger under ρ = 0 than under ρ = .8.

This difference in the estimated values of ρi can be thought of as reflecting the extent of

discrepancy between the policy rate and desired rate. Second, the coefficient on i∗t , ci∗ , is

less than 1 in most cases, while ci∗ should be unity under the assumption that the linear

partial adjustment model is correct.

Figures 4d and 5d also show that the Breusch-Godfrey’s LM test often fails to reject the

null hypothesis that the OLS residuals are serially uncorrelated.9 Although, in general, the

presence of omitted variables often makes the OLS residuals serially correlated, the result

that serial correlations are not detected does not necessarily mean that the estimated

equation correctly contains all the true explanatory variables. Obviously, the estimated

policy rule is functionally misspecified in terms of nonlinearity and a key state variable

δt−1 is incorrectly omitted from the model. The Monte Carlo experiments reveal that this

type of error is more likely to occur as the desired rate becomes more persistent.

This simple simulation exercise clearly states that the OLS estimation of the function-

ally misspecified equation can easily lead to an incorrect conclusion that the actual policy

rate can be expressed by a linear partial adjustment model. Recall that the above results

are obtained under the assumption that the current desired rate, i∗t , is known with cer-

tainty. Many empirical studies focus on correctly estimating the Taylor rate i∗t , but the

conventional regression would be inappropriate even if we have accurate information about

the Taylor rate.

8I discarded 99 periods, not 100 periods, since lagged data are needed.
9The Durbin-Watson test is inappropriate when the regression contains a lagged dependent variable, for

the test statistic will be biased toward a finding of no serial correlation (e.g., Nerlove and Wallis, 1966).
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3 The Ball-Svensson backward-looking model

3.1 The basic framework

Thus far, I examined the situation in which the central bank’s policy action does not affect

the level of the desired interest rate. In practice, however, explanatory variables in the

policy rule, typically inflation and an output gap, are inevitably affected by the policy rule

itself. This section employs a simple structural model in order to take into account the

interaction between the policy rule and its explanatory variables.

The economic structure is expressed by the following Ball-Svensson’s model:10

yt+1 = ρyyt − δy(it − Etπt+1) + νt+1, (6)

πt+1 = γππt + απyt + ηt+1, (7)

where yt is an output gap and πt is the rate of inflation. νt+1 and ηt+1 are white noises

whose variances are σ2
ν and σ2

η, respectively. Since the expected inflation is expressed as

Etπt+1 = γππt + απyt, the output gap in period t + 1 leads to

yt+1 = (ρy + δyαπ)yt − δyit + γπδyπt + νt+1. (8)

A virtue of this simple backward model is that the standard Taylor rule is obtained

as the optimal policy function. To see this, assume that the central bank has a quadratic

one-period return function. The Bellman equation is written as11

V (yt, πt) = max
it

{−y2
t − λπ2

t + βEtV (yt+1, πt+1)}. (9)

It can be easily shown that the policy function leads to

ĩt = γππt +
ρy + δyαπ

δy

yt +
γπβαπa

δy(1 + βα2
πa)

(γππt + αyyt), (10)

where a = (−(1 − λβα2
π − βγ2

π) +
√

(1 − λβα2
π − βγ2

π)2 + 4λβα2
π)/(2βα2

π). Thus, in the

absence of any restriction on the policy space, the optimal policy is to follow the Taylor

rule without the lagged interest term.

Now, let us define the problem under the irreversibility constraint. The Bellman equa-

tion is written as

V (it−1, δt−1, yt, πt) = max
it∈Ωt

{−y2
t − λπ2

t + βEtV (it, δt, yt+1, πt+1)}, (11)

10See Ball (1999) and Svensson (1997). Kato and Nishiyama (2005) investigate the effect of the zero-

lower bound for the policy rates within this model. The only difference from their model is that I allow the

non-unitary coefficient on πt, γπ. The reason for this modification is described below.
11Since it does not affect either πt or yt, the Bellman equation can be reformulated by employing Etyt+1

and Etπt+1 as a control variable and a state, respectively. However, I use eq.(9) in the following since i)

the values of πt and yt are needed in estimation and ii) the irreversibility constraint should be defined with

respect to the policy rate.
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where control space Ωt is defined in the same way as (3).

Since the Taylor rate can be defined as ĩt, the partial adjustment equation to be esti-

mated should be written as

it = φiit−1 + (1 − φi)̃it + ξt

= φiit−1 + (1 − φi)(φππt + φyyt) + ξt. (12)

The coefficients φi, φπ and φy will be estimated simultaneously.

3.2 Simulation

The parameter values are as follows: λ = 1, ρy = δy = γπ = .3 and απ = .05. The parameter

values for structural equations are all set at levels smaller than those used in Kato and

Nishiyama (2007) for two reasons. First, the aim of the simulation is not to replicate the

actual moment size of economic variables. Second, employing larger coefficients increases

the possibility of extrapolation when calculating the expected value. Since extrapolation

often undermines the accuracy of value function approximation, I set parameters sufficiently

small so that extrapolation is not needed. In doing so, I searched for the largest parameter

combination by gradually lowering each parameter value.

Determination of the overall control space Ω should also be done with great care. Since

our focus is neither on the upper nor the lower bound of interest rate, but on the effect

of the irreversibility constraint, any influence of restrictions other than the irreversibility

constraint must be eliminated. To do this, I chose a sufficiently large control space so that

the Taylor rate would be covered for all nodes of (yt, πt). Given that the optimal policy

under the irreversibility constraint is more conservative compared to the policy under no

constraint, this choice of control space will cover all the nodes for the optimal interest rate

under irreversibility.

Specifically, the maximum and minimum nodes for it−1 are .1 and -.1, respectively. The

maximum and minimum nodes for yt are .08 and -.08, respectively, while the maximum

and minimum nodes for πt are .04 and -.04, respectively. The grid size is .005 for all states

other than δt−1. The distributions for shocks, ν and η, are obtained in the same way as

above, where the variances are both set at .012. The number of nodes for each shock is

9. With these parameter values, the theoretical values of φy and φπ are 1.05 and 0.31,

respectively.12 The numerical value function is written as

V (̂ij , δ̂k, ŷl, π̂n) = max
ī∈Ωj,k

{−ŷ2
l − λπ̂2

n

+ β
9

∑

m=1

9
∑

s=1

qν,mqη,sV (̄i, sign(̄i− îj), ŷ+(ŷl, π̂n, ī, ν̂m), π̂+(ŷl, π̂n, η̂s))},(13)

12In this model, the well known Taylor principle does not need to be satisfied to ensure a stable process

for inflation and output. It can be shown that the solution is stable under a wide range of reasonable

parameter values.
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where ŷ+(ŷl, π̂n, ī, ν̂m)=(ρy+δyαπ)ŷl−δy ī+γπδyπ̂n+ν̂m and π̂+(ŷl, π̂n, η̂s)=γππ̂n+απŷl+η̂s.

qν,m and qη,s are probabilities that νt+1 and ηt+1 are in states νm and ηs, respectively.

The paths of the optimal interest rate and the Taylor rate, ĩt, are shown in Figure

6. The fundamental properties are the same as those observed in Figure 2: the policy

rate often deviates from the Taylor rate in periods when the irreversibility constraint is

not binding. This can also be confirmed by Figure 7, which illustrates policy responses to

output and inflation.

Figure 8 shows the distribution of the OLS estimates of the coefficients in (12). The

coefficient on the lagged interest rate, φi, is estimated to be around .4 and is statisti-

cally significant. Interestingly, as is the case with the simple model above, the estimated

coefficients on inflation and output are both biased downward. This has an important

implication that the central banks’ conservatism could not be captured only by the lagged

interest rate. In the literature, it is often presumed that the value of φi represents the de-

gree of policy inertia, but the influence of conservatism would also affect the coefficients in

the Taylor rate. This suggests that the central banks in industrialized countries may have

had more hawkish Taylor rates over the past two decades than suggested by the previous

empirical studies.

As argued in the previous sections, the optimal policy under the irreversibility constraint

may lead to a misleading conclusion that the inertial policy rule can be expressed as a partial

adjustment model. The analysis of this section shows that such a misperception could also

occur in an environment in which the policy rate and its explanatory variables interact

with each other. The coefficient on the lagged interest rate can be viewed as reflecting the

central bank’s gradualism stemming from the irreversibility constraint, which should be

distinguished from the conventional interest rate smoothing expressed by the linear partial

adjustment model.

4 The English-Nelson-Sack test

Rudebusch (2002, 2006) argue that the explanatory power of the lagged interest rate in the

Taylor rule arises if a serially correlated variable is incorrectly omitted from the estimated

equation. If this is the case, the standard estimation of the coefficient on the lagged interest

will be biased due to the omitted variables, and the lagged interest rate cannot be able to

correctly capture the extent of gradualism.

Based on this argument, English, Nelson and Sack (2003) proposed a hypothetical

function that allows for both serially correlated residuals and the lagged interest rate. The

equations to be simultaneously taken into account are:

it = φiit−1 + (1 − φi)̃it + ut, (14)

ut = θut−1 + ζt, (15)
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where, as above, ĩt is the Taylor rate, ut is the possibly serially correlated residual, and ζt

is a white noise. Combining the two equations yields

∆it = (1 − φi)∆ĩt + (1 − φi)(1 − θ)(̃it−1 − it−1) + φiθ∆it−1 + ζt,

= b1∆ĩt + b2(̃it−1 − it−1) + b3∆it−1 + ζt. (16)

As long as θ is nonnegative, the estimation result will be one of the following four cases

1. b1 = b2 = 1, b3 = 0: No inertia, no serial correlation,

2. b1 = 1, b2 ∈ (0, 1), b3 = 0: No inertia, serial correlation,

3. b1, b2 ∈ (0, 1), b3 = 0: Inertia, no serial correlation,

4. b1, b2, b3 ∈ (0, 1): Inertia, serial correlation.

English, Nelson and Sack (2003), Gerlach-Kristen (2004) and Castelnuovo (2007) show that

case 4 is most likely. Here, I estimate b1, b2 and b3 without imposing parameter restrictions.

Let us first consider the simplest model of section 2. Figures 9 and 10 illustrate the

distributions of the OLS estimates. It turns out that the coefficients b1, b2 and b3 are

all greater than zero and less than one in most cases. This is consistent with the results

obtained by English, Nelson and Sack (2003), Gerlach-Kristen (2004) and Castelnuovo

(2007), who insist that the joint formalization of the two hypotheses will be the best

approximation to policy rules. Figure 11 shows the estimation results under the backward-

looking model. The figure states that the essential results are the same as those of the

simple model.

Obviously, the theoretically correct policy function under irreversibility cannot be es-

timated by (16) even if one allows for the possibility of serially correlated errors. The

“statistically significant” serially correlated errors (ut) arose as a result of failing to incor-

porate nonlinearity and state variable δt−1, which would make a standard OLS estimation

inconsistent. Therefore, the English, Nelson and Sack’s modification to the traditional re-

gression will not work when the central banks’ gradualism stems from irreversibility. The

results illustrated in Figures 9, 10 and 11 reveal that it would be hard to distinguish be-

tween the irreversible monetary policy and the inertial policy under the partial adjustment

model just by looking at the estimates of the nested equation eq.(16).

5 Term structure implications

While the above results suggest observational equivalence between the policies under the

irreversibility constraint and the policies based on the partial adjustment form, there re-

mains another question: which type of policy is more plausible as a description of the Fed’s

behavior? To address this issue, it is useful to recall Rudebusch’s (2002, 2006) argument
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that the actual policy rate contains less information about future policies than suggested

by the partial adjustment model.

Unfortunately, however, the simulated statistics obtained by using the simple models

above cannot be directly compared with the actual statistics shown by Rudebusch since the

models are too simple to capture quantitative details. Therefore, I conduct some exercises

to show the relation between the policy rate and future interest rates. It could be said that

for the irreversible policies to be plausible, the policy rate under irreversibility should not

have much information about future policies.

5.1 The term structure regression

Firstly, let us consider the standard term structure regression employed by Rudebusch

(2002):

it+j − it+j−1 = c0 + c1(Etit+j − Etit+j−1) + ξt+j, j = 1, 2, 3. (17)

Under rational expectations, it+j = Etit+j + et+j , where et+j denotes the expectational

error which has no correlation with time-t information. Therefore, it is expected that

c0 = 0 and c1 = 1 if the future changes in the short-term rates are forecast in an unbiased

manner. Moreover, if the current policy rate has sufficient information to forecast future

policy rates, then the obtained R2 would take a value close to one.

In order to obtain simulated data on expected interest rates, an “expectations function”

needs to be obtained by conducting simulation since it is impossible to obtain interest

expectations analytically. Here, I adopt the following procedure:

1. For a given combination of state variables, 500 sets of (n + 1)-period-long interest

rate data are generated.

2. The mean of period (j + 1)’s simulated interest rates is calculated for j = 1, 2, . . . , n.

3. Repeat steps 1-2 for all the combinations of state variables.

I obtained expectations functions of various horizons up to 3 periods ahead (i.e., n = 3).

Table 1 reports the 95% confidence intervals for c1 and R2 under alternative models.13

It shows that the predictive power of the current policy rate, which is measured by R2,

deteriorates dramatically as the forecast horizon increases, although the predictive accuracy

is not very different between j = 1 and 2 in the backward-looking model. Judging from

Rudebusch’s (2002) discussion that the forecastability of 2-period-ahead policy shift is

very low, R2 in the case of j = 2 in the backward model seems too high.14 This would

be because there are too many cases where the constraint is binding. For example, if it

13The case of ρ = 0 under the simple model is not considered since the current desired rate has no

predictive power regarding future interest rates.
14Rudebusch (2002) reports that R2 is 0.11 when j = 2.
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is highly likely that the constraint is binding in the next period, then the forecast of the

next policy rate will necesarily be accurate. In other words, the simulated Taylor rate

may unrealistically exhibit many reversals. In fact, the confidence interval of R2 regarding

the forecast of the 2-period-ahead Taylor rate’s shift takes very low values because of the

frequent reversals in the Taylor rate. In the simple model, where reversals in the desired

rate are less frequent, R2 under the irreversible policy is not significantly different from

that under the no-constraint policy. This would be indirect evidence that the actual desired

rate is persistent enough to prohibit the irreversibility constraint from binding frequently.

In the case of j = 3, on the other hand, R2 is very close to zero in both models.

5.2 The policy rate’s correlation with long-term rates

Many authors, such as Goodfriend (1991), Amato and Laubach (1999) and Woodford

(2003b), argue that policy rate smoothing is useful for controlling long-term interest rates

since market participants are more likely to expect current policy shift to continue as the

persistence of the policy rate increases. On the other hand, the actual policy rate would

not have a close correlation with long-term rates if Rudebusch’s argument is correct.

Figure 12 illustrates the correlation between the policy rate and long-term interest rates

under the expectations theory. The figure shows that if persistence in the policy rate comes

from the central bank’s reversal aversion, then the conventional argument is not necessar-

ily correct. While the introduction of policy irreversibility can increase the correlation

between the policy rate and interest rates of relatively short maturities, it weakens the

correlation of the policy rate with longer-term rates. This is because forecasting the value

of the additional state δt+k becomes more difficult as the time horizon k increases, and the

presence of this additional state variable turns into a disturbing factor when k is sufficiently

large. This kind of non-monotonic impact of gradualism on the relation between long- and

short-term interest rates would not arise under the linear partial adjustment version of

the Taylor rule. Arguably, the result that the policy rate may have less correlation with

long-term rates than the desired rate would is also consistent with Rudebusch’s finding

that the current policy rate contains little information about future policies.

6 Conclusion

This paper shows that the significant role of the lagged coefficient in the estimated Taylor

rule may reflect the central bank’s aversion for frequent policy reversals since the lagged

interest rate becomes a state variable in the presence of an irreversibility constraint. If

this is the case, the widely used partial adjustment model is functionally misspecified in

terms of nonlinearity and the presence of an omitted variable. This suggests that the

degree of policy inertia should be endogenously determined in accordance with the degree
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of persistence in the desired rate. The use of a partial adjustment policy rule in a theoretical

study thus lacks a microfoundation.

An important extension is to introduce forward-looking expectations in AS and IS

equations. While it is well understood within the linear quadratic framework that the virtue

of making the current policy rate dependent on the lagged policy rates comes from the

current policy rate’s increased influence on inflation expectations, it might not be the case

once policy irreversibility is taken into account. As discussed in section 5, “policy inertia”

stemming from the irreversibility constraint may make it even more difficult to controll

long-term rates. One difficulty of introducing expectations in structural equations is to

maintain the accuracy of the solution. Considering nonlinear policies under irreversibility

will be hard to justify as long as the forward-looking AS and IS equations are obtained

by a linearization technique. Ideally, therefore, the model should be solved by a non-local

approximation method.
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j = 1 j = 2 j = 3

Simple model (ρ = .8)

c1 (irreversibility) (.748, 1.30) (.659, 1.62) (.588, 1.45)

c1 (no constraint) (.700, 1.81) (.641, 1.78) (.525, 1.80)

R2 (irreversibility) (.214, .506) (.086, .284) (.047, .198)

R2 (no constraint) (.069, .184) (.028, .139) (.010, .109)

Backward model

c1 (irreversibility) (.758, 1.10) (.857, 1.25) (.530, 1.47)

c1 (no constraint) (.846, 1.18) (-2.37, 4.24) (-9.99, 12.16)

R2 (irreversibility) (.475, .698) (.341, .586) (.040, .247)

R2 (no constraint) (.410, .573) (0, .036) (0, .029)

Table 1: 95% confidence intervals for the estimates of eq.(17)
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Figure 2: Simulated paths: The simple model
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Figure 4: Distribution of the OLS estimates of eq.(5): ρ = 0. (Dashed vertical line: the

95% critical value for the Breusch-Godfrey LM test statistic.)
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Figure 5: Distribution of the OLS estimates of eq.(5): ρ = .8. (Dashed vertical line: the

95% critical value for the Breusch-Godfrey LM test statistic.)
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Figure 8: Distribution of the OLS estimates of eq.(12): The backward-looking model

(Dashed vertical lines: theoretical values (b and c), the 95% critical value for the Breusch-

Godfrey LM test statistic (d) ).
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Figure 9: The OLS estimates of English-Nelson-Sack equation (16): ρ = 0. (Dashed vertical

line: the 95% critical value for the Breusch-Godfrey LM test statistic.)
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Figure 10: The OLS estimates of English-Nelson-Sack equation (16): ρ = .8. (Dashed

vertical line: the 95% critical value for the Breusch-Godfrey LM test statistic.)
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Figure 11: The OLS estimates of English-Nelson-Sack equation (16): The backward-looking

model (Dashed vertical line: the 95% critical value for the Breusch-Godfrey LM test statis-

tic.)
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Figure 12: The correlation between the policy rate and long-term rates (solid line with

circles: correlations under irreversible policies. Solid line: correlations under no constraint

policies. 95% confidence intervals for irreversible and no-constraint policies are illustrated

by dashed and dotted lines, respectively.)
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