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Non-Zero-Sum Stochastic Games

ANDRZEJ S. NOWAK∗ and KRZYSZTOF SZAJOWSKI∗

Abstract

Abstract. This paper treats stochastic games. A nonzero-sum aver-
age payoff stochastic games with arbitrary state spaces and the stopping
games are considered. Such models of games very well fit in some studies
in economic theory and operations research. A correlation of strategies
of the players, involving ”public signals”, is allowed in the nonzero-sum
average payoff stochastic games. The main result is an extension of the
correlated equilibrium theorem proved recently by Nowak and Ragha-
van for dynamic games with discounting to the average payoff stochastic
games. The stopping games are special model of stochastic games. The
version of Dynkin’s game related to observation of Markov process with
random priority assignment mechanism of states is presented in the paper.
The zero-sum and nonzero-sum games are considered. The paper also pro-
vides a brief overview of the theory of nonzero-sum stochastic games and
stopping games which are very far from being complete.

AMS 1980 Subject Classification. Primary:90D15, Secondary: 93C30.

Key Words: Average payoff stochastic games, correlated stationary equilibria,

nonzero-sum games, stopping time, stopping games.

1 Stochastic Markov Games

The theory of nonzero-sum stochastic games with the average payoffs per unit
time for the players started with the papers by Rogers [1] and Sobel [2]. They
considered finite state spaces only and assumed that the transition probabil-
ity matrices induced by any stationary strategies of the players are unichain.
Till now only special classes of nonzero-sum average payoff stochastic games are
shown to possess Nash equilibria (or ǫ-equilibria). Parthasarathy and Raghavan
[3] considered games in which one player is able to control transition probabilities
and proved the existence of stationary equilibria in such a case. Non-stationary
ǫ-equilibria were shown to exist in games with state independent transitions by
Thuijsman [4] and in games with absorbing states by Vrieze and Thuijsman [5].
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Parthasarathy [6] first considered nonzero-sum stochastic games with countable
state spaces and proved that every discounted stochastic game always has a
stationary Nash equilibrium solution. Federgruen [7] extended the works of
Rogers and Sobel to average payoff nonzero-sum stochastic games with count-
ably many states, satisfying a natural uniform geometric ergodicity condition.
Federgruen’s result [7] was strengthened by Borkar and Ghosh [8]. In [9] the
overtaking optimality criterion in the class of stationary strategies of the players
is considered for undiscounted stochastic games, satisfying a strong ergodicity
condition.

In many applications of stochastic games, especially in economic theory, it is
desirable to assume that the state spaces are not discrete; see for example Duffie
et al. [10], Dutta [11], Karatzas et al. [12], or Majumdar and Sundaram [13].
The mentioned papers deal with dynamic programming or discounted stochas-
tic games only. There are also some papers devoted to nonzero-sum average
payoff stochastic games with uncountable state spaces. Dutta and Sundaram
[14] studied a class of dynamic economic games. They proved the existence of
stationary Nash equilibria in a class of games satisfying a number of specific
conditions and a convergence condition imposed on discounted Nash equilibria
as the discount factor tends to one. Ghosh and Bagchi [15] studied games un-
der some separability assumptions and a recurrence condition which is stronger
than uniform geometric ergodicity.

Our main objective in this section is to describe the idea of correlated equilib-
rium notion and report a correlated equilibrium theorem proved for discounted
stochastic games by Nowak and Raghavan [16]. We will also report an extension
of this result to undiscounted stochastic games obtained by Nowak [17].

To describe the model, we need the following definition. Let X be a metric
space, (S,Σ) a measurable space. A set-valued map or a correspondence F from
S into a family of subsets of X is said to be lower measurable if for any open
subset G of X the set {s ∈ S : F (s)∩G 6= ∅} belongs to Σ. For a broad discus-
sion of lower measurable correspondences with some applications to control and
optimization theory consult Castaing and Valadier [18] or Himmelberg [19].

An N -person nonzero-sum stochastic game is defined by the following ob-
jects:

((S,Σ), Xk, Ak, rk, q)

with the interpretation that

(i) (S,Σ) is a measurable space, where S is the set of states for the game, and
Σ is a countably generated σ-algebra of subsets of S.

(ii) Xk is a non-empty compact metric space of actions for player k. We put
X = X1 ×X2 × · · · ×XN .

(iii) Ak’s are lower measurable correspondences from S into non-empty compact
subsets of Xk. For each s ∈ S, Ak(s) represents the set of actions available to
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player k in state s. We put

A(s) = A1(s) ×A2(s) × · · · ×AN (s), s ∈ S.

(iv) rk : S ×X → R is a bounded product measurable payoff function for player
k. It is assumed that rk(s, ·) is continuous on X, for every s ∈ S.

(v) q is a product measurable transition probability from S × X to S, called
the law of motion among states. If s is a state at some stage of the game and
the players select an x ∈ A(s), then q(· | s, x) is the probability distribution of
the next state of the game. We assume that the transition probability q has a
density function, say z, with respect to a fixed probability measure µ on (S,Σ),
satisfying the following L1 continuity condition:
For any sequence of joint action tuples xn → x0,

∫

S

| z(s, t, xn) − z(s, t, x0) | µ(dt) → 0 as n→ ∞.

The L1 continuity above is satisfied via Scheffe’s theorem when z(s, t, ·) is contin-
uous on X. It implies the norm continuity of the transition probability q(· | s, x)
with respect to x ∈ X.

The game is played in discrete time with past history as common knowledge
for all the players. An individual strategy for a player is a map which associates
with each given history a probability distribution on the set of available to him
actions. A stationary strategy for player k is a map which associates with each
state s ∈ S a probability distribution on the set Ak(s) of actions available to him
at s, independent of the history that lead to the state s. A stationary strategy
for player k can thus be identified with a measurable transition probability f
from S to Xk such that f(Ak(s) | s) = 1, for every s ∈ S.

Let H = S×X×S×· · · be the space of all infinite histories of the game, en-
dowed with the product σ-algebra. For any profile of strategies π = (π1, . . . , πN )
of the players and every initial state s1 = s ∈ S, a probability measure Pπ

s and
a stochastic process {σn, αn} are defined on H in a canonical way, where the
random variables σn and αn describe the state and the actions chosen by the
players, respectively, on the n-th stage of the game (cf. Chapter 7 in Bertsekas
and Shreve [20]). Thus, for each profile of strategies π = (π1, . . . , πN ), any finite
horizon T , and every initial state s ∈ S, the expected T -stage payoff to player k
is

ΦT
k (π)(s) = Eπ

s (

T
∑

n=1

rk(σn, αn)).

Here Eπ
s means the expectation operator with respect to the probability measure

Pπ
s . If β is a fixed real number in (0, 1), called the discount factor, then we can
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also consider the β-discounted expected payoff to player k defined as

Φβ
k(π)(s) = Eπ

s

(

∞
∑

n=1

βn−1rk(σn, αn)

)

.

The average payoff per unit time for player k is defined as

Φk(π)(s) = lim sup
T

1

T
ΦT

k (π)(s).

Let π∗ = (π∗
1 , . . . , π

∗
N ) be a fixed profile of strategies of the players. For

any strategy πk of player k, we write (π∗
−k, πk) to denote the strategy profile

obtained from π∗ by replacing π∗
k with πk.

A strategy profile π∗ = (π∗
1 , . . . , π

∗
N ) is called a Nash equilibrium for the

average payoff stochastic game if no unilateral deviations from it are profitable,
that is, for each s ∈ S,

Φk(π∗)(s) ≥ Φk(π∗
−k, πk)(s),

for every player k and any his strategy πk. Of course, Nash equilibria are
analogously defined for the β-discounted stochastic games.

It is still an open problem whether the β-discounted stochastic games with
uncountable state space have stationary equilibrium solutions. A positive an-
swer to this problem is known only for some special classes of games, where the
transition probabilities satisfy certain additional separability assumptions (cf.
Himmelberg et al., [21]), or some other specific conditions (cf. Majumdar and
Sundaram [13], Dutta and Sundaram [14], Karatzas et al., [12]). Whitt [22] and
Nowak [23] proved the existence of stationary ǫ-equilibrium strategies in dis-
counted stochastic games using some (different) approximations by games with
countably many states. The assumptions on the model in Nowak [23] are as in
(i) - (v) above plus some extra integrability condition on the transition prob-
ability density. Whitt [22] assumed that the state spaces are separable metric
and imposed some uniform continuity conditions on the payoffs and transition
probabilities. Breton and L’Ecuyer [24] extended Whitt’s result to games with
a weaker form of discounting. Mertens and Parthasarathy [25] proved the ex-
istence of non-stationary Nash equilibria for discounted stochastic games with
arbitrary state spaces. Finally, Nowak and Raghavan [16] obtained stationary
equilibrium solutions in the class of correlated strategies of the players with
symmetric information or ”public signals” (see Theorem 1 below). A related
result is reported in Duffie et al. [10]. They used some stronger assumptions
about the primitive data of the game, but showed that there exists a stationary
correlated equilibrium which induces an ergodic process. Nonstationary corre-
lated equilibria in a class of dynamic games with weakly continuous transition
probabilities were studied by Harris [26]. As already mentioned, Dutta and
Sundaram [14] proved an existence theorem for stationary Nash equilibria in
some undiscounted dynamic economic games.
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1.1 Correlated equilibria

In this subsection we extend the sets of strategies available to the players in the
sense that we allow them to correlate their choices in a natural way described
below. The resulting solution is a kind of extensive-form correlated equilibrium
(cf. Forges [27]).

Suppose that {ξn : n ≥ 1} is a sequence of so-called signals, drawn
independently from [0, 1] according to the uniform distribution. Suppose
that at the beginning of each period n of the game the players are in-
formed not only of the outcome of the preceding period and the current
state sn, but also of ξn. Then the information available to them is a vec-
tor hn = (s1, ξ1, x1, . . . , sn−1, ξn−1, xn−1, sn, ξn), where si ∈ S, xi ∈ A(si),
i = 1, . . . , n− 1. We denote the set of such vectors by Hn.

An extended strategy for player k is a sequence πk = (π1
k, π

2
k, . . .), where every

πn
k is a (product) measurable transition probability from Hn to Xk such that
πn

k (Ak(sn) | hn) = 1 for any history hn ∈ Hn. (Here sn is the last state in hn.)
An extended stationary strategy for player k is a strategy πk = (π1

k, π
2
k, . . .) such

that each πn
k depends on the current state sn and the last signal ξn only. In other

words, a strategy πk of player k is called stationary if there exists a transition
probability f from S× [0, 1] to Xk such that for every period n of the game and
each history hn ∈ Hn, we have πn

k (· | hn) = f(· | sn, ξn). Assuming that the
players use extended strategies we actually assume that they play a stochastic
game in the sense of Section 1, but with the extended state space S× [0, 1]. The
law of motion, say q̄, in the extended state space model is obviously the product
of the original law of motion q and the uniform distribution η on [0, 1]. More
precisely, for any s ∈ S, ξ ∈ [0, 1], a ∈ A(s), any set C ∈ Σ and any Borel set
D ⊆ [0, 1], q̄(C ×D | s, ξ, a) = q(C | s, a)η(D).

For any profile of extended strategies π = (π1, . . . , πN ) of the players, the
undiscounted [β-discounted] payoff to player k is a function of the initial state

s1 and the first signal ξ1 and is denoted by Ek(π)(s1, ξ1) [Eβ
k (π)(s1, ξ1)].

We say that f∗ = (f∗1 , . . . , f
∗
N ) is a Nash equilibrium in the average payoff

stochastic game in the class of extended strategies if for each initial state s1 ∈ S,

∫ 1

0

Φk(f∗)(s1, ξ1)η(dξ1) ≥

∫ 1

0

Φk(f∗−k, πk)(s1, ξ1)η(dξ1), (1)

for every player k and any his extended strategy πk.
A Nash equilibrium in extended strategies is also called a correlated equilib-

rium with public signals. The reason is that after the outcome of any period of
the game, the players can coordinate their next choices by exploiting the next
(known to all of them, i.e.,public) signal and using some coordination mech-
anism telling which (pure or mixed) action is to be played by each of them.
In many applications, we are particularly interested in stationary equilibria.
In such a case the coordination mechanism can be represented by a family of
N +1 measurable functions λ1, . . . , λN+1 : S → [0, 1] such that

∑N+1
i=1 λi(s) = 1
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for every s ∈ S. (We remind that N is the number of players. The number
N + 1 appears in our definition, because Caratheodory’s theorem is applied in
the proofs of the main results in [16] and [17].) A stationary Nash equilibrium
in the class of extended strategies can be constructed then by using a family
of N + 1 stationary strategies f1

k , . . . , f
N+1
k , given for each player k, and the

following coordination rule. If the game is at a state s on the n-th stage and a
random number ξn is selected, then each player k is suggested to use fm

k (· | s),
where m is the least index for which

∑m
i=1 λ

i(s) ≥ ξn. The λi’s and f i
k’s fixed

above induce an extended stationary strategy f∗k for each player k as follows

f∗k (· | s, ξ) = f1
k (· | s) if ξ ≤ λ1(s), s ∈ S,

and (2)

f∗k (· | s, ξ) = fm
k (· | s) if

∑m−1
i=1 λi(s) < ξ ≤

∑m
i=1 λ

i(s),

for s ∈ S, 2 ≤ m ≤ N + 1. Because the signals are independent and uniformly
distributed in [0, 1], it follows that at any period of the game and for any current
state s, the number λi(s) can be interpreted as the probability that player k is
suggested to use f i

k(· | s) as his mixed action. Now it is quite obvious that a
strategy profile (f∗1 , . . . , f

∗
N ) obtained by the above construction is a stationary

Nash equilibrium in the class of extended strategies of the players in a game iff
no player k can unilaterally improve upon his expected payoff by changing any
of his strategies f i

k, i = 1, . . . , N + 1.
The following result was proved by Nowak and Raghavan [16] by a fixed

point argument.

Theorem 1 Every nonzero-sum discounted stochastic game satisfying (i) -
(v) has a stationary correlated equilibrium with public signals.

To report an extension of this result to undiscounted stochastic games ob-
tained in Nowak [17], we need some additional assumptions on the transition
probability q. For any stationary strategy profile f and n ≥ 1, let qn(· | s, f)
denote the n-step transition probability determined by q and f . The following
condition is used in the theory of Markov decision processes (cf. Tweedie [28],
Hernández-Lerma et al. [29, 30] and their references):

C1 (Uniform Geometric Ergodicity): There exist scalars α ∈ (0, 1) and γ > 0
for which the following holds: For any profile f of stationary strategies of the
players, there exists a probability measure pf on S such that

‖qn(· | s, f) − pf (·)‖
ν
≤ γαn for each n ≥ 1.

Here ‖ · ‖ν denotes the total variation norm in the space of finite signed measures
on S.

It is well-known that C1 follows from the following assumption (cf. Theorem
6.15 and Remark 6.1 in Nummelin [31] or page 185 in Neveu [32]):
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M (Minorization Property): There exists a positive integer p, a constant
ϑ > 0, and a probability measure δ on S, such that

qp(D | s, f) ≥ ϑδ(D),

for every stationary strategy profile f, s ∈ S, and for each measurable subset D
of S.

Condition M was used in stochastic dynamic programming (one person
stochastic game) by Kurano [33] who proved only the existence of “p-periodic”
optimal strategies in his model. It is satisfied and easy to verify in some inven-
tory models (cf. Yamada [34]) and some control of water resources problems
(cf. Yakovitz [35]).

Condition C1 has often been used (even in some stronger versions) in control
theory of Markov chains (cf. Georgin [36], Hernández-Lerma et al. [29, 30], and
the references therein). We mention here some conditions which are known to
be equivalent to C1. By F we denote the set of all stationary strategy N -tuples
of the players.

C2 (Uniform Ergodicity): For each f ∈ F , there exists a probability measure
pf on S such that, as n→ ∞,

‖qn(· | s, f) − pf (·)‖
ν
→ 0, uniformly in s ∈ S and f ∈ F .

C3: There exist a positive integer r and a positive number δ < 1 such that

‖qr(· | s, f) − qr(· | t, f)‖ν ≤ 2δ, for all s, t ∈ S and f ∈ F .

Obviously C1 implies C2 and C3 follows immediadely from C2 and the
triangle inequality for the norm ‖ · ‖ν . Finally, C3 implies C1 by Ueno’s lemma
[37]. For details consult pages 275-276 in [36].

Another equivalent version of C1, called the simultaneous Doeblin condition,
was used by Hordijk [38] in control theory and Federgruen [7] in stochastic games
with countably many states. It can also be formulated for general state space
stochastic games following pages 192 and 221 in Doob [39].

C4: There is a probability measure ψ on S, a positive integer r, and a
positive ǫ, such that

qr(B | s, f) ≤ 1 − ǫ for each s ∈ S and f ∈ F if ψ(B) ≤ ǫ.

Moreover, for each f ∈ F , the Markov chain induced by q and f has a single
ergodic set and this set contains no cyclically moving subsets.

It turns out that C1 is equivalent to C4; see Chapter V in Doob [39] for
details. For a further discussion of several recurrence and ergodicity conditions
which have beed used in the theory of Markov decision processes in a general
state space consult Hernández-Lerma et al. [30]. Now the main result of Nowak
[17] can be formulated.
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Theorem 2 Every nonzero-sum undiscounted stochastic game satisfying (i)
– (v) and C1 has a stationary correlated equilibrium with public signals.

We now mention some special classes of nonzero-sum undiscounted stochastic
games, for which there exist Nash equilibria without public signals. First, we
consider games satisfying the following separability conditions:

SC1: For each player k and any s ∈ S, x = (x1, . . . , xN ) ∈ A(s),

rk(s, x) =

N
∑

j=1

rkj(s, xj),

where each rkj is bounded and rkj(s, ·) is continuous on Xj .
SC2: For any s ∈ S, x = (x1, . . . , xN ) ∈ A(s),

q(· | s, x) =

N
∑

j=1

qj(· | s, xj)/N,

where q(· | s, xj) is a transition probability from S ×Xj to S, norm continuous
with respect to xj ∈ Xj .

Himmelberg et al. [21] and Parthasarathy [40] already showed that nonzero-
sum β-discounted stochastic games satisfying SC1 and SC2 possess stationary
Nash equilibria. Their theorem was extended to undiscounted stochastic games
in Nowak [17].

Theorem 3 Every nonzero-sum undiscounted stochastic game satisfying (i)
– (v), C1 and separability conditions SC1 and SC2 has a stationary Nash
equilibrium without public signals.

By Theorem 2, the game has a stationary correlated equilibrium, say fλ.
For each player k and any s ∈ S, we define f∗k (· | s) to be the marginal of
fλ(· | s) on Xk and put f∗ = (f∗1 , . . . , f

∗
N ). It turns out that (f∗1 , . . . , f

∗
N ) is a

Nash equilibrium point for the stochastic game, satisfying SC1 and SC2.
A version of Theorem 3 with a recurrence assumption which is much stronger

than the uniform geometric ergodicity was independently proved (by a different
method) in Ghosh and Bagchi [15].

Parthasarathy and Sinha [41] showed that β-discounted stochastic games
with state independent transitions and finite action spaces have stationary Nash
equilibria. An extension of their result to the average payoff stochastic games,
obtained in Nowak [17] sounds as follows.

Theorem 4 Assume that the action spaces Xk are finite sets and Ak(s) =
Xk for each s ∈ S. Assume also that the transition probability q(· | s, x) depends
on x only and is non-atomic for each x ∈ X. If (i), (iv), (v), and C1 are also
satisfied, then the nonzero-sum average payoff stochastic game has a stationary
Nash equilibrium without public signals.
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We do not know if condition C1 can be dropped from Theorem 4. When
we deal with zero-sum average payoff stochastic games with state independent
transitions, then no ergodicity properties of the transition probability q are
relevant (cf. Thuijsman [4] for the finite state space case or Theorem 2 in
Nowak [42] for general state space games).

The basic idea of the proof of Theorem 2 is rather simple. Let L be any
positive number such that |rk| ≤ L for every player k. Then, for every discount
factor β, and any stationary correlated equilibrium fλ

β obtained in Theorem 1,

(1 − β)Φk(fλ
β )(·) is in a compact ball B(L) with radius L in L∞(S,Σ, µ) space,

endowed with the weak-star topology σ(L∞, L1). Therefore, it is possible to find
a sequence {βn} of discount factors which converges to one and (1−βn)Φk(fλ

βn
)

converges to some function Jk ∈ B(L). Using C1, it is shown that Jk are
constant equilibrium functions of the players, and fλ

βn
converges (in some sense)

to a stationary correlated equilibrium for the undiscounted game.
As far as two-person zero-sum games are concerned, it is possible to drop

the assumption that the transition probability is dominated by some probability
measure µ. To prove the existence of stationary optimal strategies of the players,
one can use the following assumption (see Nowak [42]).

B: Assume (i)-(iv) and that q(D|s, ·) is continuous on X = X1×X2 for each
D ∈ Σ. Let vβ(·) be the value function of the β-discounted game, β ∈ (0, 1).
We assume that there exists a positive constant L such that

|vβ(s) − vβ(t)| ≤ L for all s, t ∈ S and β ∈ (0, 1).

It is easy to see that C1 implies B. Moreover, B holds if the transition prob-
ability q is independent of the state variable. The main tool in the proof given
in [42] is Fatou’s lemma for varying probabilities (see Dutta [11] or Schäl [43]
for a related approach in dynamic programming). That is the main difference
between the proofs contained in [17] and [42]. The existence of value for undis-
counted stochastic games in the class of nonstationary strategies is discussed in
a paper of Sudderth which is included in this volume.

2 Stopping games

The theory of stopping games started with the paper by Dynkin [44]. He con-
ceived the zero sum game based on optimal stopping problem for discrete time
stochastic processes. Let {Xn}

∞
n=0 be a stochastic sequence defined on some

fixed probability space (Ω,F ,P). Define Fn = σ(X0, X1, . . . , Xn). If each
player chooses a strategy, λ, µ respectively both Markov times, the payoff is
given by R(λ, µ) = Xλ∧µ. The first player is to maximize the expected value of
R(λ, µ) and the other is to minimize. Dynkin [44] assumes a restriction on the
moves of the game. Namely, the strategies of the players are such that Player 1
can stop on odd moments n and Player 2 can choose even moments. Under
this assumption Dynkin proved the existence of the game value and optimal
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strategies. Kifer [45] obtained another existence condition. Neveu [46] modi-
fied the Dynkin’s game changing the payoff function following. There are two
preassigned stochastic sequences {Xn}

∞
n=0, {Yn}

∞
n=0 measurable with respect to

some increasing sequence of σ-fields Fn. The players’ strategies are stopping
times with respect to {Fn}

∞
n=0. The payoff equals

R(λ, µ) =

{

Xλ on {λ ≤ µ},
Xµ on {λ > µ},

(3)

with the condition

Xn ≤ Yn for each n. (4)

Under some regularity condition Neveu proved the existence of the game value
and ǫ-optimal strategies.

The restriction (4) has been suppressed in some cases by Yasuda [47]. He
considers the zero-sum stopping game with payoff equals

R(λ, µ) = XλI{λ≤µ} +WλI{λ=µ} + YnI{λ>µ},

where I is an indicator function. To solve the game the set of strategies has
been extended to a class of randomize strategies.

A version of Dynkin’s game for Markov chains was considered by Fried [48].
More general version of the stopping game for the discrete time Markov processes
was solved by Elbakidze [49]. Let (Xn,Fn,Px)∞n=0 be a homogeneous Markov
chain with state space (E,B), while g,G, e and C are certain B-measurable real
valued functions. There are two players. The process can be stopped at any
instant n ≥ 0. If the process is stopped by the first, second or simultaneously
by the two players, then the payoffs of the player are g(Xn), G(Xn) and e(Xn),
respectively. For an unlimited duration of the game the payoff of the first player
equals lim supn→∞ C(Xn). The strategies of the first and second player are given
by Markov moments relative to {Fn}

∞
n=0. Let L denote a class of B-measurable

functions f such that Ex{supn |f(Xn)|} <∞. It is assumed that

g(x) ≤ e(x) ≤ G(x), g(x) ≤ C(x) ≤ G(x), x ∈ E and g,G ∈ L

Under these assumptions the value of the game and ǫ-optimal strategies are
constructed.

Two-person nonzero-sum stopping games is investigated, among others, by
Ohtsubo [50]. Let {Xi

n}
∞
n=0, {Y i

n}
∞
n=0 and {W i

n}
∞
n=0, i = 1, 2, be six sequences

of real-valued random variables defined on fixed probability space and adapted
to {Fn}

∞
n=0. It is assumed that

(i) min(Xi
n, Y

i
n) ≤W i

n ≤ max(Xi
n, Y

i
n) for each i = 1, 2.

(ii) E[supn |Xi
n|] <∞ and E[supn |Y i

n|] <∞ for each i = 1, 2.
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The strategies of the players are stopping times with respect to {Fn}
∞
n=0. If

the first and the second players choose stopping times τ1 and τ2, respectively,
as their controls, then the i-th player gets the reward

gi(τ1, τ2) = Xi
τi

I(τi<τj) + Y i
τj

I(τj<τi)

W i
τi

I(τi=τj<∞) + lim sup
n

W i
nI(τi=τj<∞), i, j = 1, 2, j 6= i

Under the above assumption the Nash equilibrium for the game is constructed.
Ohtsubo [50] gave the solution for the version of the game for the Markov pro-
cesses. Recently, Ferenstein [51] solved the version of the nonzero-sum Dynkin’s
game with different, special, payoff structure.

Continuous time version of such a game problem was studied by Bensous-
san & Friedman [52], [53], Krylov [54], Bismut [55], Stettner [56], Lepeltier &
Maingueneau [57] and many others.

We focus our attention to a version of stopping game called the random
priority stopping game. The zero-sum version of the problem is considered in
Section 2.1 and the nonzero-sum case is presented in Section 2.2.

2.1 Zero-sum random priority stopping game

Let (Xn,Fn,Px)N
n=0 be a homogeneous Markov process defined on probability

space (Ω,F ,P) with fixed state space (E,B). The decision makers, henceforth
called Player 1 and Player 2, observe the process sequentially. They want to
accept the most profitable state of the process from their point of view.

We adopt the zero-sum game model for the problem. In view of this ap-
proach, the preferences of each player are described by gain function f : E×E →
ℜ. The function depends on the state chosen by both players. It would be nat-
ural to consider the stopping times with respect to (Fn)N

n=0 as the strategies of
the player if the players could obtain the state which they want. Since there is
only one random sequence (Xn)N

n=0 on a trial, therefore at each moment n only
one player can obtain realization xn of Xn. The problem of assigning an object
to the players when both want to accept the same one at the same moment
is solved by adopting the random mechanism i.e. a lottery chooses the player
who benefits. The player chosen by the lottery obtains realization xn and the
player thus deprived of the acceptance of xn at n < N may select any later
realization. The realization can only be accepted when it appears. No recall is
allowed. We can think about the decision process as an investigation of objects
with characteristics described by the Markov process. Both players together
can accept at most two objects.

The above described decision model is a generalization of the problems con-
sidered by Szajowski [58] and Radzik & Szajowski [59]. The related questions,
when Player 1 has permanent priority, have been considered by many authors
in the zero-sum game or the non-zero sum game setting. One can mention,
for example, the papers of Ano [60], Enns & Ferenstein [61], Ferenstein [62]
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and Sakaguchi [63]. Many papers on the subject were inspired by the secretary
problem (see the papers by Enns and Ferenstein [64], Fushimi [65], Majumdar
[66], Sakaguchi [67, 63], Ravindran and Szajowski [68] and Szajowski [69] where
non-zero sum versions of the games have been investigated). Sakaguchi [63] con-
sidered the nonzero-sum two-person game related to the full information best
choice problem with random priority. A review of these problems one can find
in Ravindran and Szajowski [68]. For the original secretary problem and its
extension the reader is referred to Gilbert & Mosteller [70], Freeman [71], Rose
[72] and Ferguson [73]. We recall the best choice problem in Section 2.1.2.

A formal model of the random priority is derived. The lottery is taken into
account in the sets of the strategies of the players. The very interesting question
concerns the influence of the level of priority on the value of the problem or the
probability of obtaining the required state of the process ( or, in other words,
the required object). The tip of the problem is shown by the example related
to the secretary problem. The simplest problem with asymmetric aims of the
players is considered. The first player’s aim is to choose the best applicant (BA)
and the second player wants to accept the best or the second best (BOS) but a
better one than the opponent. The numerical solution provides that the game is
fair when Player 1 has priority p ∼= 0.7579 (in the limiting case when N → ∞).
More examples and further considerations can be found in [74].

2.1.1 Random priority and stopping the Markov process

Let a homogeneous Markov chain (Xn,Fn,Px)N
n=0 be defined on a probability

space (Ω,F ,P) with a state space (E,B) and let f : E × E → ℜ be a B × B
real valued measurable function. Horizon N is finite. The players observe
the Markov chain and they try to accept the “best realization” according to
function f and a possible selection of another player. Each realization xn of
Xn can be accepted by only one player and each player can accept at most one
realization. If the players have not accepted previous realizations, they evaluate
the state of the Markov chain at instant n and they have two options, either
to accept the observed state of the process at moment n or to reject it. If
both players want to accept the same realization, the following random priority
mechanism is applied. Let ξ1, ξ2, . . . , ξN be a sequence of i.i.d. r.v. with the
uniform distribution on [0, 1] and α = (α1, α2, . . . , αN ) be a given vector of real
numbers, αi ∈ [0, 1]. When both players want to accept realization xn of Xn,
then Player 1 obtains xn if ξn ≤ αn, otherwise Player 2 benefits. If Player 1
rejects the applicant, then Player 2 turns to exercise one of his options which
also consists in accepting the observed state of the Markov chain or rejecting
it. If one of the players accepts realization xn of Xn, then the other one is
informed about it and he continues to play alone. If, in the above decision
process, Player 1 and Player 2 have accepted states x and y, respectively, then
Player 2 pays f(x, y) to Player 1. When only Player 1 (Player 2) accepts state
x (y) then Player 1 obtains f1(x) = supy∈E

f(x, y) (f2(y) = infx∈E f(x, y)) by
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assumption. If both players finish the decision process without any accepted
state, then they gain 0. The detail construction of the model is given in [74]. A
brief is presented below.

Let SN be the aggregation of Markov times with respect to (Fn)N
n=0. We

admit that Px(τ ≤ N) < 1 for some τ ∈ SN (i.e. there is a positive probability
that the Markov chain will not be stopped). The elements of SN are possible
strategies for the players with the restriction that Player 2 cannot stop at the
same moment than Player 1. If the players declare willingness to accept the same
object, the random device decide which player is endowed. Let us formalize these
consideration. Denote SN

k = {τ ∈ SN : τ ≥ k}. Let ΛN
k and MN

k be copies of

SN
k (SN = SN

0 ). One can define set of strategies Λ̃N = {λ, {σ1
n}) : λ ∈ ΛN , σ1

n ∈

ΛN
n+1 for every n} and M̃N = {(µ, {σ2

n}) : µ ∈ MN , σ2
n ∈ MN

n+1 for every n}

for Player 1 and 2, respectively. Denote F̃n = σ(Fn, ξ1, ξ2, . . . , ξn) and let S̃N

be the set of stopping times with respect to (F̃n)N
n=0. Define τ1 = λI{λ<µ} +

(λI{ξλ≤αλ} + σ1
µI{ξλ>αλ})I{λ=µ} + σ1

µI{λ>µ} and τ2 = µI{λ>µ} + (µI{ξµ>αµ} +
σ2

λI{ξµ≤αµ})I{λ=µ} + σ2
λI{λ≤µ}.

Lemma 1 Random variables τ1 and τ2 are Markov times with respect to
(F̃n)N

n=0 and τ1 6= τ2.

Let Exf
+
1 (Xn) <∞ and Exf

−
2 (Xm) <∞ for n,m = 0, 1, . . . , N and x ∈ E.

Let s ∈ Λ̃N and t ∈ M̃N . Define R̃(x, s, t) = Exf(Xτ1 , Xτ2) as the expected
gain of Player 1. In this way the normal form of the game (Λ̃N , M̃N , R̃(x, s, t))
is defined. This game is denoted by G. The game G is a model of the considered
bilateral stopping problem for the Markov process.

Definition 1 Pair (s∗, t∗), s∗ ∈ Λ̃N , t∗ ∈ M̃N is an equilibrium point in
the game G if for every x ∈ E, s ∈ Λ̃N and t ∈ M̃N we have

R̃(x, s, t∗) ≤ R̃(x, s∗, t∗) ≤ R̃(x, s∗, t).

The aim is to construct the equilibrium pair (s∗, t∗). To this end, the following
auxiliary game Ga.

Define s0(x, y) = S0(x, y) = f(x, y) and

sn(x, y) = inf
τ∈Sn

Eyf(x,Xτ ),

Sn(x, y) = sup
τ∈Sn

Exf(Xτ , y)

for all x, y ∈ E, n = 1, 2, . . . , N . By the theory of optimal stopping for the
Markov processes [75], the function sn(x, y) (Sn(x, y)) can be constructed by
the recursive procedure as sn(x, y) = Qn

minf(x, y) (Sn(x, y) = Qn
maxf(x, y)),

where Qminf(x, y) = f(x, y)∧T2f(x, y) (Qmaxf(x, y) = f(x, y)∨T1f(x, y)) and
T2f(x, y) = Eyf(x,X1) (T1f(x, y) = Exf(x, y)). (∧, ∨ denote minimum and
maximum, respectively). Operations ∧ and T2 (∨ and T1) preserve measurabil-
ity. This can be proved in a standard way. Hence sn(x, y) (Sn(x, y)) are B ⊗ B



14 A. S. NOWAK & K. SZAJOWSKI

measurable (cf. [76]). If Player 1 is the first to accept x at moment n, then his
expected gain is

h(n, x) = ExsN−n−1(x,X1), (5)

for n = 0, 1, ..., N − 1 and h(N, x) = f1(x). When Player 2 is the first then the
expected gain of Player 1 is

H(n, x) = ExSN−n−1(X1, x), (6)

for n = 0, 1, ..., N − 1 and H(N, x) = f2(x). Functions h(n, x) and H(n, x)
are well defined. They are B-measurable of the second variable, h(n,X1) and
H(n,X1) are integrable with respect to Px. Let ΛN andMN be sets of strategies
in Ga for Player 1 and Player 2, respectively. For λ ∈ ΛN and µ ∈ MN , define
payoff function

r(λ, µ) =







h(λ,Xλ)(I{λ<µ} + I{λ=µ,ξλ≤αλ})
+H(µ,Xµ)(I{λ>µ} + I{λ=µ,ξµ>αµ}) if λ ≤ N or µ ≤ N ,
0 otherwise,

(7)
where IA is a characteristic function of set A. As a solution of the game we
search for equilibrium pair (λ∗, µ∗) such that

R(x, λ, µ∗) ≤ R(x, λ∗, µ∗) ≤ R(x, λ∗, µ) for all x ∈ E, (8)

where R(x, λ, µ) = Exr(λ, µ). By (7) we can observe that Ga with the sets
of strategies ΛN and MN is equivalent to the Neveu’s stopping problem [46]
considered by Yasuda [47] if the sets of strategies are extended to the set of
stopping times not greater than N + 1 and the payoff function is (7). The
monotonicity of gains are not fulfilled here, but the solution is still in pure
strategies. Because the Markov process is observed here, one can define a se-
quence vn(x), n = 0, 1, . . . , N + 1 on E by setting vN+1(x) = 0 and

vn(x) = val

[

h(n, x)αn + (1 − αn)H(n, x) h(n, x)
H(n, x) Tvn+1(x)

]

(9)

for n = 0, 1, . . . , N , where Tv·(x) = Exv·(X1) and val A denotes a value of the
two person zero-sum game with payoff matrix A (see [77], [47]).

To prove the correctness of the construction let us observe that the payoff
matrix in (9) has the form

A =

s f

s

f

[

(a− b)α+ b a
b c

]

, (10)

where a, b, c, α are real numbers and α ∈ [0, 1]. By direct checking we have
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Lemma 2 The two person zero-sum game with payoff matrix A given by
(10) has an equilibrium point (ǫ, δ) in pure strategies, where

(ǫ, δ) =















(s,s) if a ≥ b,
(s,f) if c ≤ a < b,
(f,s) if a < b ≤ c,
(f,f) if a < c < b.

Notice that vN+1 is measurable. Let us assume that functions vi, i = N,N −
1, . . . , n+ 1 are measurable. Denote

Ass
n = {x ∈ E : h(n, x) ≥ H(n, x)}

Asf
n = {x ∈ E : h(n, x) < H(n, x), h(n, x) ≥ Tvn+1(x)}

Afs
n = {x ∈ E : h(n, x) < H(n, x), H(n, x) ≤ Tvn+1(x)}

and

Aff
n = E \ (Ass

n ∪Asf
n ∪Afs

n ).

By sets Ass
n , A

sf
n , A

fs
n ∈ B and Lemma 2 we have

vn(x) = [(h(n, x) −H(n, x))αn +H(n, x)]IAss
n

(x) + h(n, x)I
Asf

n
(x)

+H(n, x)I
Afs

n (x) + Tvn+1(x)I
Aff

n(x),

hence vn(x) is B-measurable.
Define λ∗ = infn{Xn ∈ Ass

n ∪Asf
n} and µ∗ = infn{Xn ∈ Ass

n ∪Afs
n}.

Theorem 5 ([74]) Game Ga with payoff function (7) and sets of strategies
ΛN and MN for Player 1 and 2, respectively, has a solution. Pair (λ∗, µ∗) is
the equilibrium point and v0(x) is the value of the game.

Let us construct an equilibrium pair for game G. Define (see [76])

σ1∗

n = inf{m > n : SN−m(Xm, Xn) = f(Xm, Xn)}, (11)

σ2∗

n = inf{m > n : sN−m(Xn, Xm) = f(Xn, Xm)}. (12)

Let (λ∗, µ∗) be an equilibrium point in Ga.

Theorem 6 ([74]) Game G has a solution. Pair (s∗, t∗) such that s∗ =
(λ∗, {σ1∗

n }) and t∗ = (µ∗, {σ2∗

n }) is the equilibrium point. The value of the game
is v0(x).

Proof. Let

τ∗1 = λ∗I{λ∗<µ∗} + (λ∗I{ξλ∗≤αµ∗} + σ1∗

µ∗I{ξλ∗>αλ∗})I{λ∗=µ∗} + σ1∗

µ∗I{λ∗>µ∗}
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and

τ∗2 = µ∗
I{λ∗>µ∗} + (µ∗

I{ξλ∗>αλ∗} + σ2∗

λ∗I{ξλ∗≤αλ∗})I{λ∗=µ∗} + σ2∗

λ∗I{λ∗<µ∗}.

We obtain by the properties of conditional expectation and by (11) and (12)

R̃(x, s∗, t∗) = Exf(Xτ∗
1
, Xτ∗

2
) = Ex[I{λ∗<µ∗}∪{λ∗=µ∗,ξλ∗≤αµ∗}f(Xλ∗ , Xσ2∗

λ∗
)

+ I{λ∗>µ∗}∪{λ∗=µ∗,ξλ∗>αλ∗}f(Xσ1∗

µ∗
, Xµ∗)]

= ExI{λ∗<µ∗}∪{λ∗=µ∗,ξλ∗≤αµ∗}EXλ∗ f(Xλ∗ , Xσ2∗

λ∗
)

+ ExI{λ∗>µ∗}∪{λ∗=µ∗,ξλ∗>αλ∗}EXµ∗ f(Xσ1∗

µ∗
, Xµ∗)

= R(x, λ∗, µ∗).

Let t = (µ, {σ2
n}) ∈ M̃N . We obtain

R̃(x, s∗, t∗) = R(x, λ∗, µ∗) ≤ R(x, λ∗, µ)

= Ex[I{λ∗<µ}∪{λ∗=µ,ξλ∗≤αµ}h(λ∗, Xλ∗)

+ I{λ∗>µ}∪{λ∗=µ,ξλ∗>αλ∗}H(µ,Xµ)]

= Ex[I{λ∗<µ}∪{λ∗=µ,ξλ∗≤αµ}EXλ∗ f(Xλ∗ , Xσ2∗

λ∗
)

+ I{λ∗>µ}∪{λ∗=µ,ξλ∗>αλ∗}H(µ,Xµ)]

≤ Ex[I{λ∗<µ}∪{λ∗=µ,ξλ∗≤αµ}EXλ∗ f(Xλ∗ , Xσ2
λ∗

)

+ I{λ∗>µ}∪{λ∗=µ,ξλ∗>αλ∗}EXµ
f(Xσ1∗

µ
, Xµ)]

= Ex[I{λ∗<µ}∪{λ∗=µ,ξλ∗≤αµ}f(Xλ∗ , Xσ2
λ∗

)

+ I{λ∗>µ}∪{λ∗=µ,ξλ∗>αλ∗}f(Xσ1∗
µ
, Xµ)]

= Exf(Xs∗ , Xt) = R̃(x, s∗, t)

Similarly one can show that for every s ∈ Λ̃N we have R̃(x, s, t∗) ≤ R̃(x, s∗, t∗).
Hence (s∗, t∗) is the equilibrium pair for G.

✷

2.1.2 The best vs the best or the second best game

Two employers, Player 1 and Player 2, are to view a group of N applicants for
a vacancies in their enterprises sequentially. Each of the applicant has some
characteristic unknown to the employer. Let K = {x1, x2, . . . , xN} be the set of
characteristics, assuming that the values are different. The employer observes a
permutation η1, η2, . . . , ηN of the elements of K sequentially. We assume that all
permutations are equally likely. Let Zk denote the absolute rank of the object
with the characteristics ηk , i.e.

Zk = min{ r : ηk =
∧

1≤i1<...<ir≤N

∨

1≤j≤r

ηij
},
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(
∧

,
∨

denote minimum and maximum, respectively). The object with the
smallest characteristics has the rank 1. The decisions of the employer at each
time n are based on the relative ranks Y1, Y2, ..., YN of the applicants and the
previous decisions of the opponent, where

Yk = min{ r : ηk =
∧

1≤i1<...<ir≤k

∨

1≤j≤r

ηij
}.

The random priority assignement model is applied when both players want to
accept the same applicant. We assume that αn = p, p ∈ [0, 1] for every n. If the
applicant is viewed the employer must either accept or reject her. Once accepted
the applicant cannot be rejected, once rejected cannot be reconsidered. Each
employer can accept at most one applicant. The aim of Player 1 is to accept
BA and Player 2 is to accept BOS but a better one than that chosen by the
opponent. Both players together can accept at most two objects. It makes
the problem resembling to the optimal double stop of Markov process (cf. [78],
[79], [76]). It is a generalization of the optimal choice problem. We adopt
the following payoff function here. The player obtains +1 from another if he
has chosen the required applicant, −1 when the opponent has done it and 0
otherwise.

Let us describe the mathematical model of the problem. With sequential
observation of the applicants we connect the probability space (Ω,F ,P). The
elementary events are a permutation of the elements of K and the probability
measure P is the uniform probability on Ω. The observable sequence of relative
ranks Yk, k = 1, 2, . . . , N defines a sequence of σ-fields Fk = σ(Y1, . . . , Yk),
k = 1, 2, . . . , N . The random variables Yk are independent and P(Yk = i) = 1/k.
Denote by SN the set of all Markov times τ with respect to the σ-fields {Fk}

N
k=1.

The problem considered can be formulated as follows. For s ∈ Λ̃N and t ∈ M̃N

denote A1 = {ω : Xτ1
= 1} and A2 = {ω : Xτ2

= 1} ∪ {ω : Xτ2
= 2, Xτ1

6= 1}.
Define the payoff function g(s, t) = IA1 − IA2 and the expected payoff G(s, t) =
Eg(s, t). We are looking for (s∗, t∗) such that for every s ∈ Λ̃N and t ∈ M̃N

G(s, t∗) ≤ G(s∗, t∗) ≤ G(s∗, t).

It is obvious that the essential decisions of the players can be taken when
applicants with relative rank 1 or 2 have appeared. We will call them candi-
dates. For further consideration it is convenient to define the following random
sequence (Wk)N

k=1. Let W1 = (1, Y1) = (1, 1), ρ1 = 1. Define

ρt = inf{r > ρt−1 : Yr ∈ {1, 2}}, t > 1,

(inf ∅ = ∞) and Wt = (ρt, Yρt
). If ρt = ∞ then we put Wt = (∞,∞). Markov

chain (Wt,Gt,P(1,1))
N
t=1 with state space E = {(s, l) : l ∈ {1, 2}, s = 1, 2, ..., N}∪

{(∞,∞)} and Gt = σ(W1,W2, ...,Wt) is homogeneous. One step transition
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probabilities are following.

p(r, s) = P{Wt+1 = (s, ls) |Wt = (r, lr)}

(14)

=







1
2 if r = 1, s = 2,

r(r−1)
s(s−1)(s−2) if 2 ≤ r < s,

0 if r ≥ s or (r = 1, s 6= 2),

p(∞,∞) = 1, p(r,∞) = 1 − 2
∑N

s=r+1 p(r, s) for ls, lr ∈ {1, 2} and 1 ≤ r ≤ s ≤
N . We will call this Markov chain the auxiliary Markov chain (AMC ).

The solution of the two decision makers problem will use partially the so-
lution of the problem of choosing BOS (see [70], [80], [68]). The problem can
be treated as an optimal stopping problem for AMC with the following payoff
function

fBOS(r, lr) =

{

r(2N−r−1)
N(N−1) if lr = 1,

r(r−1)
N(N−1) if lr = 2.

(15)

Let T N = {τ ∈ SN : τ = r ⇒ Yr ∈ {1, 2}}. It is a set of stopping times with
respect to Gt, t = 1, 2, . . . , N . We search τ∗ ∈ SN such that

P{Zτ∗ ∈ {1, 2}} = sup
τ∈SN

P{Zτ ∈ {1, 2}} = sup
σ∈T N

E(1,1)fBOS(Wσ).

Denote Γ(r, s) = {(t, lt) : t > r, lt = 1} ∪ {(t, lt) : t > s, lt = 2}. Let
r < s and c(r, s) = E(r,lr)fBOS(Wσ), where σ = inf{t : Wt ∈ Γ(r, s)}. Denote

c(r) = E(r,lr)fBOS(Wσ1) = 2 r(N−r)
N(N−1) , where σ1 = inf{t : Wt ∈ Γ(r, r)}. We have

c(r, s) =
r

N(N − 1)

s−1
∑

i=r+1

2N − i− 1

i− 1
+

r

s− 1
c(s− 1) (16)

for r < s, r, s = 1, 2, . . . , N (
∑s

r = 0 if s < r). Define ra = inf{1 ≤ r ≤ N :
fBOS(r, 2) ≥ c(r, r)} and rb = inf{1 ≤ r ≤ ra : fBOS(r, 1) ≥ c(r, ra)}. Denote

c̃BOS(r, lr) = sup
τ∈SN

r+1

P{Zτ ∈ {1, 2} | Yr = lr}.

We have

c̃BOS(r, lr) = c̃BOS(r) =







c(r) if ra ≤ r ≤ N,
c(r, ra) if rb ≤ r < ra,
c(rb − 1, ra) if 1 ≤ r < rb.

(17)

The optimal stopping time for the one decision maker problem of choosing BOS
is σ∗ = inf{t : Wt ∈ Γ(rb, ra)} ∈ T N or τ∗ = inf{r : (r, Yr) ∈ Γ(rb, ra)} ∈ SN .
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We have a = lim
N→∞

ra

N
= 2

3 , b = lim
N→∞

rb

N
∼= 0.3470 and lim

N→∞
c̃BOS(1) ∼= 0.5736

(cf. [81], [80], [82]).
To solve the two person competitive stopping problem described at the be-

ginning of the section let us perform a strategy of the players when one of them
accepts some observation at moment r with relative rank Yr = lr. Since the
aims of the players are different we have to consider independently the situation
when Player 1 has stopped as the first and when Player 2 has done it. We
introduce useful denotation

hik(r, lr) = P(Ak|τi = r, τj > τi, Yr = lr)

for k, i, j = 1, 2, i 6= j, r = 1, 2, . . . , N , lr = 1, 2.
Let Player 1 stop the process as the first at the moment r on the object with

Yr = lr. As he wants to accept the object with the absolute rank 1, it is obvious
that he will stop on the relatively first object. He will also accept probably,
in some circumstances, the relatively second objects to disturb Player 2 in the
realization of his aims. We will see that this supposition is true. Player 2 staying
alone will use a strategy σ2

r

∗
= ς∗(r, lr) defined by

h(r, lr) = E(r,lr)g((r, σ1
µ), (µ, ς∗(r, lr))) = inf

σ∈SN
r+1

E(r,lr)g((r, σ1
µ), (µ, σ)), (18)

where the expectation is taken with respect to P(r,lr) of AMC . To perform
strategy ς∗(r, lr) let us consider the possible essential situations. Let Wt =
(r, lr). Since Player 2 minimizes his expected loss (cf. (18)), he can do it by
stopping on some object with relative rank 1 or 2. If lr = 1 then he cannot
change the payoff stopping on the objects with relative rank 2 before another
one having relative rank 1 has appeared. Let Ws = (m, 1) and Wu = (n, 2)
for u = t + 1, t + 2, . . . , s − 1. Player 1 can be the winner in this case if
Ws+1 = (∞,∞) and Player 2 does not accept the m-th object. We see that
it is the first moment after the accepting decision of Player 1 when Player 2
can change the gain of Player 1. We want to know if it is optimal to stop at
(m, 1) for Player 2. If he stops, he has −1 with the probability fBOS(m, 1) (
see (15)). When he passes over and he will behave optimally in future, he has
−1 with probability c̃BOS(m). Since he minimizes his loss therefore his optimal
strategy in (m, 1) is the same as in the mentioned one player problem. If it
happens that n < m < rb, then according to the optimal strategy in the one
player choosing BOS problem, m-th object will not be accepted and Player 2
will behave according to σ∗. It means Player 1 will have +1 if n-th object is the
best or it happens that his candidate is the absolutely second and the best one
will not be chosen by Player 2 (because she has appeared before rb). Hence, by
(14), (17) and (15) we have

h12(r, lr) = P{A2 | τ1 = r, τ2 > τ1, Yr = lr}

=

{

∑N
s=r+1

r
s(s−1) max

{

s(2N−s−1)
N(N−1) , c̃BOS(s)

}

if lr = 1,

c̃BOS(r) if lr = 2,



20 A. S. NOWAK & K. SZAJOWSKI

where σi∗

n = ς∗(n, Yn), s = (λ, {σ1
n

∗
}) and t = (µ, {σ2

n

∗
}). The optimal strategy

ς∗, after the first acceptance has been done at moment r on Yr = lr has the
form

ς∗(r, lr) =







{

ϑr if ϑr ≥ rb,
σ∗

ϑr
if ϑr < rb

for lr = 1,

σ∗
r for lr = 2,

(19)

where ϑr = inf{s > r : Ys = 1} and σ∗
r = inf{s > r : (s, Ys) ∈ Γ(rb, ra)}.

Consequently,
h(r, lr) = h11(r, lr) − h12(r, lr),

where we have h11(r, lr) = r
N

for lr = 1 and 0 otherwise.
Let us assume that Player 2 has stopped the process as the first on some

object at moment r with relative rank Yr = lr. Player 1 will use a strategy
σ1

r

∗
= δ∗(r, lr). The strategy δ∗(r, lr) is such that

H(r, lr) = E(r,lr)g1((λ, δ∗(r, lr)), (r, σ2
λ)) = sup

σ∈SN
r+1

E(r,lr)g1((λ, σ), (r, σ2
λ))

.
Let Wt = (r, lr). Since Player 1 maximizes his expected gain and he would

like to choose the best object he can do it by stopping on some object with
relative rank 1. Denote c̃BA(r) = sup

τ∈SN
r+1

P{Zτ = 1|Yr = lr}, rc = inf{1 ≤ r ≤

N :
∑N

i=r+1
1

i−1 ≤ 1} and τ∗r = inf{s > r : Ys = 1, s ≥ rc}. The optimal
strategy δ∗ of Player 1, after the first acceptance done at the moment r on
Yr = lr by Player 2, has the form

δ∗(r, lr) =







{

ϑr if ϑr ≥ rc,
τ∗ϑr

if ϑr < rc
for lr = 1,

τ∗r for lr = 2,
(20)

where ϑr is the first moment after r when Yr = 1. We have

H(r, lr) = h21(r, lr) − h22(r, lr),

where

h21(r, lr) =

N
∑

s=r+1

p(r, s)[max{
s

N
, c̃BA(r)} + c̃BA(r)] = c̃BA(r)

and

h22(r, lr) = P{A2 | τ2 = r, τ1 > τ2, Yr = lr}

=











r
N

+

{

0 if r ≥ rc
∑rc−1

s=r+1
r

s(s−1)
s(s−1)

N(N−1) if r < rc
for lr = 1,

r(r−1)
N(N−1) for lr = 2



NONZERO-SUM STOCHASTIC GAMES 21

Denote hp(r, lr) = ph(r, lr) + (1 − p)H(r, lr). Define rd = min{1 ≤ r ≤
N : h(r, 2) ≥ H(r, 2)} and rℓ = min{1 ≤ r ≤ rd : h(r, 1) ≥ H(r, 1)}. During
the recursive construction of ṽ(r, lr; p) and the strategy according to Theorem
5 and 6 (see also (9)) for a large N we get that there exist rν(p) = min{r <
rd : H(r, 2) ≤ ṽ(r; p)} and p̃1 = min{0 ≤ p ≤ 1 : h(ℓ, 1) < ṽ(ℓ; p)}. For p ≥ p̃1

there exists rκ(p) = min{r ≤ rℓ : H(r, 1) ≤ ṽ(r; p)} and for p < p̃1 there exists
rκ(p) = min{r ≤ rℓ : h(r, 1) ≥ ṽ(r; p)}. These points rd, rℓ, rν(p), rκ(p) are such
that

v(r, lr; p) =



















hp(r, lr) if (r, lr) ∈ BrℓN (1) ∪ BrdN (2),
H(r, lr) if (r, lr) ∈ Brν(p)rd−1(2),

H(r, lr)I{p≥p̃1}

+ h(r, lr)I{p<p̃1} if (r, lr) ∈ Brκ(p)rℓ−1(1),

ṽ(r; p) if (r, lr) ∈ B1rκ(p)−1(1) ∪ B1rν(p)−1(2),

(21)

where

ṽ(r; p) = Tv(r, lr; p) =























w(r, r + 1, r + 1, r + 1; p) if rd ≤ r ≤ N,
w(r, r + 1, r + 1, rd; p) if rν(p) ≤ r < rd,
w(r, r + 1, rν(p), rd; p) if rℓ ≤ r < rν(p),
w(r, rℓ, rν(p), rd; p) if rκ(p) ≤ r < rℓ,
w(rκ(p), rℓ, rν(p), rd; p) if 1 ≤ r < rκ(p)

(22)

and

w(r, s, t, u; p) =

s−1
∑

j=r+1

r

j(j − 1)
[H(j, 1)I{p≥p̃1} + h(j, 1)I{p<p̃1}]

+

t−1
∑

j=s

r

j(j − 1)
hp(j, 1) +

u−1
∑

j=t

r(t− 2)

j(j − 1)(j − 2)
[hp(j, 1) +H(j, 2)]

+

N
∑

j=u

r(t− 2)

j(j − 1)(j − 2)
[hp(j, 1) + hp(j, 2)]

for r ≤ s ≤ t ≤ u. The optimal first stop strategy is given by sets
Ass

t = BrℓN (1) ∪ BrdN (2), Afs
t = (I{p≥p̃1}Brκ(p)rℓ−1(1)) ∪ Brν(p)rd−1(2), Asf

t =

I{p<p̃1}Brκ(p)rℓ−1(1), Aff
t = E \ (Ass

t ∪ Afs
t ∪ Asf

t ), t = 1, 2, . . . , N . Here we
adopt convention that for every set A we have 1 · A = A and 0 · A = ∅, where
∅- the empty set.

The function w(r, s, t, u; p) depends also on rb and rc. Let r ≤ s ≤ r ≤ t ≤ u.
When N → ∞ and r

N
→ x1, s

N
→ x2, t

N
→ y1, u

N
→ y2 we get

ŵ(x1, x2, y1, y2; p) = lim
N→∞

w(r, s, t, u; p)

= ŵ21(x1, x2, y1, y2; p)I{p≥p1} + ŵ22(x1, x2, y1, y2; p)I{p<p1},
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where

ŵ21(x1, x2, y1, y2; p) = x1[(ln
x1

x2
−

1

2
((lnx2)2 − (lnx1)2)I{x1>c}

− (
1

2
+ lnx2 +

1

2
(lnx2)2)I{x1≤c}]

+
x1I{x1>c} + cI{x1 ≤ c}

x2
ŵ1(x2, y1, y2; p),

ŵ22(x1, x2, y1, y2; p) = x1[((lnx2)2 − (lnx1)2 + x1 − x2 + 2 ln
x2

x1
)I{x1>b}

+ ((4 − 2b+ 2 ln b) ln
b

x1
+ (2 − b)(x1 − b)

+ (lnx2)2 − (ln b)2 − x2 + b+ 2 ln
x2

b
)I{x1≤b}]

+
x1I{x1>b} + bI{x1≤b}

x2
w1(x2, y1, y2; p)

and

ŵ1(x2, y1, y2; p) = x2[(3p− 1) ln
y1
x2

+
3p− 1

2
((ln y1)2 − (lnx2)2) − p(y1 − x2)]

+ x2y1[3(2p− 1)(
1

y1
−

1

y2
) + (3p− 2)(

ln y1
y1

−
ln y2
y2

)

+ (1 + p) ln
y1
y2

] + y2
1 [(p− 1)(

1

y2
− 1)

+ (4p− 2)(
ln y2
y2

+
1

y2
− 1) − (2p− 1) ln y2].

Parameter p1 is asymptotic equivalent of p̃1. The value of p1 can be determined
as the solution of some equation which will be given later.

Let d = lim
N→∞

rd

N
∼= 0.7587 and ℓ = lim

N→∞

rℓ

N
∼= 0.4237. We have ν(p) =

lim
N→∞

rν(p)
N

is the solution of the equation ŵ1(ν, ν, d; p) = Ĥ(ν, 2) in [ℓ, d]. Now

we can determine p1 as the solution of the equation ŵ1(ℓ, ν(p), d; p) = Ĥ(ℓ, 1)
with respect to p in [0, 1]. Such solution exists since ŵ1(ℓ, ν(p), d; p) is non-
decreasing function of p and Ĥ(ℓ, ν(1), d; 1) < ŵ1(ℓ, ν(1), d; 1). We have p1

∼=
0.5659.

Determine κ(p) = lim
N→∞

rκ(p)

N
. The decision point κ(p) is the solution of the

equation ŵ(κ, ℓ, ν(p); p) = ĥ(κ, 1)I{p<p1} + Ĥ(κ, 1)I{p≥p1}.

v̂(x; p) = lim
N→∞

ṽ(r; p) =























ŵ(x, x, x, x; p) if d ≤ x ≤ 1,
ŵ(x, x, x, d; p) if ν(p) ≤ x < d,
ŵ(x, x, ν(p), d; p) if ℓ ≤ x < ν(p),
ŵ(x, ℓ, ν(p), d; p) if κ(p) ≤ x < ℓ,
ŵ(κ(p), ℓ, ν(p), d; p) if 0 ≤ x < κ(p).

(23)
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We can formulate

Theorem 7 For a large N, in the competitive two person problem of choos-
ing the best vs the best or the second best applicant but a better than the oppo-
nent, the asymptotically optimal strategy of the first stop is described by the sets
Ass

t , A
fs
t , Asf

t and Aff
t . The second stop is according to ς∗ given by (19) for

Player 2 and δ∗ given by (20) for Player 1. The value function of the problem
is given by (21), the expected value with respect to P(r,lr) of AMC by (22) and
its limit by (23).

2.2 Nonzero-sum random priority stopping game

A construction of Nash equilibria for a random priority finite horizon two-person
non-zero sum game with stopping of Markov process is considered in this section.
Let (Xn,Fn,Px)N

n=0 be a homogeneous Markov
process defined on a probability space (Ω,F ,P) with a state space (E,B).

At each moment n = 1, 2, ..., N the decision makers (henceforth called Player 1
and Player 2) are able to observe the Markov chain sequentially. Each player
has his utility function gi : E → ℜ, i = 1, 2, and at each moment n each decides
separately if he accepts or rejects the realization xn of Xn. We admit gi are
measurable and bounded. If it happens that both players have selected the same
moment n to accept xn , then the similar random assignment mechanism, as in
the zero-sum game model described in Section 2.1, is applied. If a player has
not chosen any realization of Markov process he gets g∗i = infx∈E gi(x). The aim
of each player is to choose a realization which maximizes his expected utility. In
fact, the problem will be formulated as a two person non-zero sum game with the
concept of the Nash equilibrium as the solution. The problem with permanent
priority for Player 1 (i.e. αn = 1, n = 1, 2, . . .) has been solved by Ferenstein
[62]. This game is also strictly connected with optimal stopping of stochastic
processes. The ideas of Kuhn [83] and Rieder [84] as well as Yasuda [47] and
Ohtsubo [50] will be adopted to this random priority game model. Based on
this approach, as an example, we deal with non-cooperative two-person time
sequential non-zero-sum game version of the best choice problem (the secretary
problem). The example is a generalization of a game model of the problem
considered by Fushimi [65].

In non-cooperative non-zero sum games one of possible definitions of solution
is Nash equilibrium. This approach gives very often many different solutions in
stopping games (pairs of strategies for the players) with various gains for the
players. It is important to have knowledge about all possible solutions of the
game. Investigation of alternative solutions is also an interesting theoretical
problem. Consideration in this direction for the matrix games can be found,
for instance, in Moulin [85]. A tip from two person non-zero sum generalized
secretary problem with fixed priority has been given in Szajowski [69] and from
the random priority game in Sakaguchi [63]. A very interesting illustration of
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the problem in stopping games are models of two person best choice problems
considered by Fushimi [65]. One of them is generalized in this paper and can
be described as follows.

Two companies (Player 1 and Player 2) interview a sequence of applicants
one by one (as in the best choice problem which has been recalled above) every
morning independently of the other company, and the results of the interviews
are communicated to the applicant in the afternoon. If only one of the compa-
nies decides to accept the applicant, she agrees to this offer at once, the other
company is informed of this fact and continues the interviewing process. If, on
the other hand, both companies decide to accept the applicant, she selects one of
them with equal probabilities and the other company can continue interviewing
and employ another applicant. In Fushimi (1981) the threshold strategies for
the players were admitted. It was shown that equilibrium strategies for players
in the model are different. One of the players should behave more hastily than
in the original secretary problem and he should start solicitation at .2865 for the
limiting version of the problem. There are two Nash equilibria in the consid-
ered set of strategies for this game with values (.2865, .2963) and (.2963, .2865),
respectively.

The following generalization of the above problem has been considered in
Section 2.2.2. It is assumed that if both companies want to accept the same
applicant, Player 1 is selected with fixed probability α, Player 2 with prob-
ability 1 − α, α ∈ [0, 1], and the player who has not been chosen continues
interviewing and employs another applicant. Also a more general set of strate-
gies is admitted. This particular game problem is presented as interesting per
se. The mathematical model of the above formulated problem will be presented
and equilibria for each α will be derived. The problem need modified set of
strategies with respect to those applied in the zero-sum random priority game
(see Section 2.1). More details are in [86].

2.2.1 The payoff functions and strategies

In the problem of optimal stopping the basic class of strategies T N are Markov
times with respect to σ-fields {Fn}

N
n=1. We admit that P(τ ≤ N) < 1 for some

τ ∈ T N . The class of strategies described in Section 2.1 is not sufficient in the
nonzero-sum stopping game. To extend the class of strategies we consider a
class of randomized stopping times. It is assumed that the probability space is
rich enough to admit the following constructions.

Definition 2 (see Yasuda [47]) A strategy for each player is a random se-
quence p = (pn) ∈ PN or q = (qn) ∈ QN such that, for each n,

(i) pn, qn are adapted to Fn;

(ii) 0 ≤ pn, qn ≤ 1 a.s. .

If each random variables equals either 0 or 1 we call it a pure strategy.
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Let A1, A2, . . . , AN and B1, B2, . . . , BN be i.i.d.r.v. of the uniform distri-
bution on [0, 1] and independent of Markov process (Xn,Fn,Px)N

n=0. Let Hn

be the σ-field generated by Fn, {A1, A2, ..., An} and {B1, B2, ..., Bn}. A ran-
domized Markov time λ(p) for strategy p = (pn) ∈ PN and µ(q) for strat-
egy q = (qn) ∈ QN are defined by λ(p) = inf{N ≥ n ≥ 1 : An ≤ pn} and
µ(q) = inf{N ≥ n ≥ 1 : Bn ≤ qn}, respectively. We denote by ΛN and MN

the sets of all randomized strategies of Player 1 and Player 2. Clearly, if each
pn is either zero or one, then the strategy is pure and λ(p) is in fact an {Fn}-
Markov time. In particular an {Fn}- Markov time λ corresponds to the strategy
p = (pn) with pn = I{λ=n}, where IA is an indicator function of the set A.

Denote T N
k = {τ ∈ T N : τ ≥ k}. One can define the set of strategies

Λ̃N = {(p, {σ1
n}) : p ∈ PN , {σ1

n} ∈ T N
n+1 for every n} and let M̃N = {(q, {σ2

n}) :
q ∈ QN , {σ2

n} ∈ T N
n+1 for every n} for Player 1 and Player 2, respectively.

Let ξ1, ξ2, ... be i.i.d.r.v. uniformly distributed on [0, 1] and indepen-

dent of
∨N

n=1 Hn and the lottery is given by ᾱ = (α1, α2, ..., αN ). Denote

H̃n = σ{Hn, ξ1, ξ2, . . . , ξn} and let T̃ N be the set of Markov times with re-
spect to (H̃n)N

n=0. For every pair (s, t) such that s ∈ Λ̃N , t ∈ M̃N we define
τ1(s, t) = λ(p)I{λ(p)<µ(q)} +(λ(p)I{ξλ(p)≤αλ(p)} +σ1

µ(q)I{ξλ(p)>αλ(p)
})I{λ(p)=µ(q)} +

σ1
µ(q)I{λ(p)>µ(q)} and τ2(s, t) = µ(q)I{λ(p)>µ(q)}+(µ(q)I{ξµ(q)>αµ(q)}+σ2

λ(p)I{ξµ(q)≤αµ(q)
})I{λ(p)=µ(p)}+

σ2
λ(p)I{λ(p)<µ(q)}. The random variables τ1(s, t), τ2(s, t) ∈ T̃ N for every s ∈ Λ̃

and t ∈ M̃ .

Definition 3 The Markov times τ1(s, t) and τ2(s, t) are selection times of
Player 1 and Player 2 when they use strategies s ∈ Λ̃ and t ∈ M̃ , respectively,
and the lottery is ᾱ.

For each (s, t) ∈ Λ̃N ×M̃N and given ᾱ the payoff function for the i-th player
is defined as fi(s, t) = gi(Xτi(s,t)). Let R̃i(x, s, t) = Exfi(s, t) = Exgi(Xτi(s,t))
be the expected gain of i-th player if the players use (s, t). We have defined
the game in normal form (Λ̃N , M̃N , R̃1, R̃2). This random priority game will be
denoted Grp.

Definition 4 A pair (s∗, t∗) of strategies such that s∗ ∈ Λ̃N and t∗ ∈ M̃N

is called a Nash equilibrium in Grp if for all x ∈ E

v1(x) = R̃1(x, s∗, t∗) ≥ R̃1(x, s, t∗) for every s ∈ Λ̃N ,

v2(x) = R̃2(x, s∗, t∗) ≥ R̃2(x, s∗, t) for every t ∈ M̃N .

The pair (v1(x), v2(x)) will be called the Nash value.

Denote hi(n,Xn) = esssup
τ∈T N

n

EXn
gi(Xτ ) and σ∗i a stopping time such that

hi(0, x) = Exgi(Xσ∗i) for every x ∈ E, i = 1, 2. Let Γi
n = {x ∈ E : hi(n, x) =

gi(x)}. We have σ∗i = inf{n : Xn ∈ Γi
n} (cf. Shiryaev (1978)). Denote
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σ∗i
k = inf{n > k : Xn ∈ Γi

n}. Taking into account the above definition of
Grp one can conclude that the Nash values of this game are the same as in the
auxiliary game Gwp with the sets of strategies of the players PN , QN and payoff
functions (cf. Yasuda (1985))

ϕ1(p, q) = g1(Xλ(p))I{λ(p)<µ(q)} + h̃1(µ(q), Xµ(q))I{λ(p)>µ(q)} (24)

+
[

g1(Xλ(p))αλ(p) + h̃1(λ(p), Xλ(p))(1 − αλ(p))
]

I{λ(p)=µ(q)},

ϕ2(p, q) = g2(Xµ(q))I{µ(q)<λ(p)} + h̃2(λ(p), Xλ(p))I{µ(q)>λ(p)} (25)

+
[

g2(Xλ(p))(1 − αλ(p)) + h̃2(λ(p), Xλ(p))αλ(p)

]

I{λ(p)=µ(q)},

for each p ∈ P, q ∈ Q, where h̃i(n,Xn) = esssup
τ∈T N

n+1

EXn
gi(Xτ ) = EXn

hi(n +

1, Xn+1). Denote Ri(x, p, q) = Exϕi(p, q) for every x ∈ E, i = 1, 2.
Let PN

n = {p = (pn) ∈ P : p1 = ... = pn−1 = 0, pN = 1} and QN
n =

{q = (qn) ∈ Q : q1 = ... = qn−1 = 0, qN = 1}. We will use the following
convention: if p ∈ PN then (pn, p) is the strategy belonging to PN in which the
n-th coordinate is changed to pn.

Definition 5 A pair (p∗, q∗) ∈ PN
n × QN

n is called an equilibrium point of
Gwp at n if

v1(n,Xn) = EXn
ϕ1(p∗, q∗) ≥ EXn

ϕ1(p, q∗)for every p ∈ PN
n , Px-a.s.,

v2(n,Xn) = EXn
ϕ2(p∗, q∗) ≥ EXn

ϕ2(p∗, q)for every q ∈ QN
n , Px-a.s. .

A Nash equilibrium point at n = 0 is a solution of Gwp. The pair (v1(0, x), v2(0, x))
of values is a Nash value corresponding to (p∗, q∗) ∈ PN ×QN .

Theorem 8 ([86]) There exists a Nash equilibrium (p∗, q∗) in the game Gwp.
The Nash value and an equilibrium point can be calculated recursively.

Proof. At moment N the players play the following bimatrix game
(

(g̃1(N,XN ), g̃2(N,XN )) (g1(XN ), g∗2)
(g∗1 , g2(XN )) (g∗1 , g

∗
2)

)

where g̃1(n, x) = αng1(x) + (1 − αn)h̃1(n, x) and g̃2(n, x) = (1 − αn)g2(x) +
αnh̃2(n, x). This game always has an equilibrium in pure or randomized strate-
gies on {ω : XN = x} for every x ∈ E. We denote a Nash equilibrium in PN

N ×QN
N

by (p∗N , q
∗
N ) and the corresponding Nash value by (v1(N, x), v2(N, x)). Let us

assume that an equilibrium (p∗, q∗) ∈ PN
n+1 × QN

n+1 has been constructed and
(v1(n + 1, x), v2(n + 1, x)) is the Nash value corresponding to this strategy on
{ω : Xn = x}. We consider the following bimatrix game

(

(g̃1(n,Xn), g̃2(n,Xn)) (g1(Xn), h̃2(n,Xn))

(h̃1(n,Xn), g2(Xn)) (ṽ1(n,Xn), ṽ2(n,Xn)

)

(26)
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where ṽj(n, x) is such that ṽj(n,Xn) = EXn
vj(n + 1, Xn+1), j = 1, 2. On the

set {ω : Xn = x} there is at least one equilibrium point in pure or randomized
strategies in this bimatrix game. By measurability of gi(x) there exists (p∗n, q

∗
n)

such that p∗n, q
∗
n ∈ Fn and (p∗n, q

∗
n) is a Nash equilibrium in the above bimatrix

game. We are now in a position to show that ((p∗n, p
∗), (q∗n, q

∗)) is an equilibrium
of Gwp in PN

n × QN
n . Let (pn, p) ∈ PN

n , where p ∈ PN
n+1. By properties of

conditional expectation and induction assumption we have Px-a.s.

EXn
ϕ1((pn, p), (q

∗
n, q

∗)) = pnq
∗
ng̃1(n,Xn) + pn(1 − q∗n)g1(Xn)

+ (1 − pn)q∗nh̃1(n,Xn)

+ (1 − pn)(1 − q∗n)EXn
EXn+1

ϕ1(p, q∗)

≤ p∗nq
∗
ng̃1(n,Xn) + p∗n(1 − q∗n)g1(Xn)

+ (1 − p∗n)q∗nh̃1(n,Xn)

+ (1 − p∗n)(1 − q∗n)EXn
v1(n+ 1, Xn+1) = v1(n,Xn).

for each x ∈ E. The same is valid for Player 2. This proves the theorem.
✷

The solution of the game Grp can be constructed based on the solution
(p∗, q∗) of the corresponding game Gwp.

Theorem 9 ([86]) Game Grp has a solution. The pair (s∗, t∗), where s∗ =

(p∗, {σ∗1
n}) ∈ Λ̃N and t∗ = (q∗, {σ∗2

n}) ∈ M̃N , is an equilibrium point. The
value of the game is (v1(0, x), v2(0, x).

In fact, the players play optimally Grp using a Nash equilibrium strategy
from Gwp. If the strategy of both players indicates stopping at moment n and
neither player has stopped earlier, then the lottery chooses one of them. The
player who has not been selected will accept any future realization according to
the adequate optimal strategy in the optimization problem.

2.2.2 Two person best choice problem with random priority

The solution of the best choice problem (one player game), described in Sec-
tion 2.1.1, is auxiliary in the solution of the two person game with random prior-
ity. It is used in further consideration. Let us consider the two person nonzero-
sum game with random priority described in Section 2.2 related to the secretary
problem. We admit that both players observe Markov chain Wt, t = 1, 2, ... and
their utility functions gj(r) = f(r), j = 1, 2, r ∈ E. Let lottery ᾱ be constant,
i.e. αi = α, i = 1, 2, ..., N . Denote c̃(r) = c̃BA(r) defined in Section 2.1.1 and

ra = inf{1 ≤ r ≤ N :
∑N

i=r+1
1

i−1 ≤ 1} and τ∗r = inf{s > r : Ys = 1, s ≥ ra}.
We have g̃1(r) = αf(r)+(1−α)c̃(r), g̃2(r) = (1−α)f(r)+αc̃(r) and g∗i = 0. Our
aim is to determine the equilibria which give the highest and lowest value for
Player 1. At first, we construct the highest value Nash equilibrium for Player 1.
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By analysis of the matrices (26) we have that p∗r = q∗r = 1 is an equilibrium
point for r ≥ ra. We have then

ṽ1(r) =

N
∑

i=r+1

p(r, i)g̃1(i)

ṽ2(r) =
N
∑

i=r+1

p(r, i)g̃2(i)

for j = 1, 2. For r = ra−1 we have two pure equilibria in (26) in this case: (1, 0)
and (0, 1) and one in randomized strategies. Since for r < ra we have f(r) < c̃(r)
henceforth we can choose (1, 0) at r = ra − 1 and assume for induction that the
same strategy is optimal for r < ra. Under this assumption

ṽ1(r) =

ra−1
∑

i=r+1

p(r, i)g1(i) +
N
∑

i=ra

p(r, i)g̃1(i)

ṽ2(r) =

ra−1
∑

i=r+1

p(r, i)c̃(i) +

N
∑

i=ra

p(r, i)g̃2(i).

Since f(r) is increasing and c̃(r) is constant for r < ra the strategy (1, 0) can
be used as equilibrium in rb ≤ r ≤ ra, where rb = inf{r < ra : ṽ1(r) ≤ g1(r)}.
Denote rb′ = inf{r < ra : ṽ2(r) ≤ g2(r)}. For large N we have rb < rb′ if

α < α0 = min{α ∈ [0, 1] : 2
2+α

≥ e−
1−α

2 } ∼= 0.5299. Denote

w1(r, s, α) =

s−1
∑

i=r+1

p(r, i)f(i) +

N
∑

i=s

p(r, i)g̃1(i)

w2(r, s, α) =
s−1
∑

i=r+1

p(r, i)c̃(i) +
N
∑

i=s

p(r, i)g̃2(i).

For α < α0 we have

(p∗r , q
∗
r ) =







(1, 1) if r ≥ ra,
(1, 0) if rb ≤ r < ra,
(0, 0) if 1 ≤ r < rb,

(27)

and

vj(r) =







wj(r, r + 1, α) if r ≥ ra,
wj(r, ra, α) if rb ≤ r < ra,
wj(rb − 1, ra, α) if 1 ≤ r < rb,

(28)

j = 1, 2. The value of the game is (v1, v2) = (v1(1), v2(1)). When N → ∞ such
that r

N
→ x we obtain

v̂j(x) = lim
N→∞

vj(r) =







ŵj(x, x, α) if x ≥ a,
ŵj(x, a, α) if b ≤ r < a,
ŵj(b, a, α) if 0 ≤ r < b,
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where

ŵ1(x, y, α) = −x lnx+ (1 − α)x(ln y +
(ln y)2

2
),

ŵ2(x, y, α) = y − x− (1 − α)x ln y + αx
(ln y)2

2

and b = limN→∞
rb

N
= e−

3−α
2 . The asymptotic value of the game in this equi-

librium is

(v̂1, v̂2) = (e−
3−α

2 , e−1 −
α

2
e−

3−α
2 ). (29)

Let α ≥ α0. Denote

u1(r, s, t, α) =

s−1
∑

i=r+1

p(r, i)c̃(i) +

t−1
∑

i=s

p(r, i)f(i) +

N
∑

i=t

p(r, i)g̃1(i),

u2(r, s, t, α) =

s−1
∑

i=r+1

p(r, i)f(i) +

t−1
∑

i=s

p(r, i)c̃(i) +

N
∑

i=ra

p(r, i)g̃2(i).

Similar analysis as above leads to conclusion that

(p∗r , q
∗
r ) =















(1, 1) if r ≥ ra,
(1, 0) if rb ≤ r < ra,
(0, 1) if rc ≤ r < rb,
(0, 0) if 1 ≤ r < rc,

(30)

and

vj(r) =















uj(r, r + 1, r + 1, α) if r ≥ ra,
uj(r, r + 1, ra, α) if rb ≤ r < ra,
uj(r, rb, ra, α) if rc ≤ r < rb,
uj(rc − 1, rb, ra, α) if 1 ≤ r < rc,

(31)

j = 1, 2, where rc = inf{r < rb : ṽ2(r) ≤ g2(r)}. When N → ∞ such that
r
N

→ x we have

v̂j(x) = lim
N→∞

vj(r) =















ûj(x, x, x, α) if x ≥ a,
ûj(x, x, a, α) if b ≤ r < a,
ûj(x, b, a, α) if c ≤ r < b,
ûj(c, b, a, α) if 0 ≤ r < c,

where û1(x, y, z, α) = z − x z
y

+ x
y
ŵ1(y, z, α) and û2(x, y, z, α) = x ln y

x
+

x
y
ŵ2(y, z, α). The asymptotic value of the game for this equilibrium point is

(v̂1, v̂2) = (e−1 + e−
5
2+e

1−α
2 (1 − e

1−α
2 ), e−

5
2+e

1−α
2 ). (32)
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Theorem 10 In the random priority two person non-zero sum game of
choosing the best applicant the Nash equilibrium which gives the maximal prob-
ability of success for Player 1 is given by (27) for α < α0 and by (30) for
α ≥ α0. The Nash value for the equilibrium is (28) and (31), respectively. For
the limiting case the Nash value is given by (29) and (32), respectively.

Now, we construct the Nash equilibrium with the lowest probability of suc-
cess for Player 1. The same arguments as above suggest that one can choose
(0, 1) in ra − 1. Using backward induction procedure as long as possible we
minimize the Nash value of Player 1. In such a way we obtain the following
equilibrium strategy. For α ≥ 1 − α0

(p∗r , q
∗
r ) =







(1, 1) if r ≥ ra,
(0, 1) if rd ≤ r < ra,
(0, 0) if 1 ≤ r < rd,

(33)

and the Nash value

v∗j (r) =







w∗
j (r, r + 1, α) if r ≥ ra,

w∗
j (r, ra, α) if rd ≤ r < ra,

w∗
j (rd − 1, ra, α) if 1 ≤ r < rd,

(34)

where w∗
1(r, s, α) = w2(r, s, 1−α), w∗

2(r, s, α) = w1(r, s, 1−α) and rd = inf{r <
ra : ṽ∗1(r) ≤ g1(r)}.

For α < 1 − α0 we have

(p∗r , q
∗
r ) =















(1, 1) if r ≥ ra,
(0, 1) if rd ≤ r < ra,
(1, 0) if rf ≤ r < rd,
(0, 0) if 1 ≤ r < rf ,

(35)

and

v∗j (r) =















u∗j (r, r + 1, r + 1, α) if r ≥ ra,
u∗j (r, r + 1, ra, α) if rd ≤ r < ra,
u∗j (r, rd, ra, α) if rf ≤ r < rd,
u∗j (rf − 1, rd, ra, α) if 1 ≤ r < rf ,

(36)

where u∗1(r, s, t, α) = u∗2(r, s, t, 1 − α), u∗2(r, s, t, α) = u∗1(r, s, t, 1 − α) and rf =
inf{r < rd : ṽ1(r) ≤ g1(r)}. When N → ∞ such that r

N
→ x we obtain

rd

N
→ d = e−

2+α
2 and

rf

N
→ f = e−

5
2+e

α
2 . The asymptotic value of the game in

this equilibrium is

(v̂∗1 , v̂
∗
2) =

{

(e−
5
2+e

α
2 , e−1 + e−

5
2+e

α
2 (1 − e

α
2 )) if α < 1 − α0

(e−1 − 1−α
2 e−

2+α
2 , e−

2+α
2 ) if α ≥ 1 − α0.

(37)
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Theorem 11 In the random priority two person non-zero sum game of
choosing the best applicant the Nash equilibrium which gives the lowest prob-
ability of success for Player 1 is given by (33) for α ≥ 1 − α0 and by (35) for
α < 1 − α0. The Nash value for the equilibrium is (34) and (36), respectively.
For limiting case the Nash value is given by (37).

Remark 1 These solutions do not exhaust all Nash points in considered
game. The other pure Nash equilibria can be obtained, roughly speaking, by
more often “switches” between (1, 0) and (0, 1) strategy (when both strategies
are the Nash equilibria in bimatrix game (26)). This idea is used in Remark
3 to construct Nash equilibria, for α ∈ [1 − α0, α0], with equal Nash values for
both players.

Remark 2 For α ∈ (0, 1) and for r such that ṽ1(r) ≤ f(r) < c̃(r) and
ṽ2(r) ≤ f(r) < c̃(r) we can use the randomized Nash equilibrium (see Moulin
(1986) for details)

(p∗r , q
∗
r ) =

(

ṽ2(r) − f(r)

ṽ2(r) − f(r) + (1 − α)(f(r) − c̃(r))
,

ṽ1(r) − f(r)

ṽ1(r) − f(r) + α(f(r) − c̃(r))

)

.

Table 1. Decision points for selected α.

α d b
α0 .3677 .2908

.525 .3432 .2936

.520 .3335 .2966

.515 .3264 .2998

.510 .3205 .3032

.505 .3154 .3069

.500 .3109 .3109

Remark 3 Let α ∈ (1 − α0, α0). We have at least two Nash equilibria with
the same Nash values for both players equal exp(−(3 − α0)/2) (in the limiting
case). The first pair of strategies is (30) and the second pair is (35) with c =
f ∼= .2908 and b, d, chosen in an appropriate way. The values of b and c one
can obtain as solution of the system of equation û1(c, b, a, α) = û2(c, b, a, α) =
exp(−(3 − α0)/2). Similarly, d and f is solution of the system of equation
û∗1(f, d, a, α) = û∗2(f, d, a, α) = exp(−(3 − α0)/2). The values of b and d for
selected α are given in Table 1.

It seems that the concept of correlated equilibria applied to nonzero-sum
stopping games would be an interesting and important approach.
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