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Chapter 1

Bilateral Approach to the
Secretary Problem

David Ramsey and Krzysztof Szajowski

ABSTRACT A mathematical model of competitive selection of the applicants
for a post is considered. There are N applicants of similar qualifications on an
interview list. The applicants come in a random order and their salary demands
are distinct. Two managers, 1 and II, will interview them one at a time. The
aim of the manager is to obtain the applicant which demands minimal salary.
The candidate can be accepted only at the moment of its appearance. When both
manager want to accept the same candidate, then some rule of assignment to
one of the manager is applied. Any candidate hired by the manager will accept
the offer with some given probability. An candidate can be hired only at the
moment of its appearance. At each moment n one candidate is presented. The
considered problem is a generalisation of the best choice problem with uncertain
employment and the game version of it with priority or random priority. The
general stopping game model is constructed. The algorithms of construction of
the game value and the equilibrium strategies are given. An example is solved.

1.1 Introduction

This paper deals with mathematical model of competitive selection of the appli-
cants for a post. There are N applicant of similar qualification on an interview
list. The applicants come in a random order and their salary demands are dis-
tinct. Two managers, called Player 1 and Player 2, will interview them one at a
time. The aim of the manager is to obtain the applicant which demands minimal
salary. The candidate can be accepted only at the moment of its appearance.
When both manager want to accept the same candidate, then some rule of as-
signment to one of the manager is applied. Any candidate hired by the manager
will accept the offer of job with some given probability. An candidate can be
hired only at the moment of its appearance. At each moment n one candidate
is presented. The considered problem is related both to the uncertain employ-
ment considered by [12] and to the competitive optimal stopping problem with
priority (see [4]) or more generally with random priority of the players (see [7],
14]).

Let us formulate the optimal stopping problem with uncertain employment
considered by Smith [12] (see also [15]) in rigorous way. Let a homogeneous
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FIGURE 1.1. The schemes of decision processes

Markov process (X,,, Fn, P.)Y_, be defined on probability space (€2, F, P) with
fixed state space (I, B). Define the gain function f : E — R. Let 9" be a set of
sequences i = {j,}N_, of {0,1}-valued random variables such that g, is F,-
measurable for every n. Let {n, }_, be a sequence of i.i.d. r.v. with the uniform
distribution on [0, 1], independent of {X,,}~_; and i and let o = {a,,}2_, be
the sequence of real numbers, o, € [0,1]. Define 7,(f) = inf{n > 0 : p, =
1,7, < a,}. In the optimal stopping problem with uncertain employment the
aim is to find g* such that

B f(Xr,(@+)) = sup E.f(X, (n)) forallz € E
pemN
and to determine the function v(z) = E, f(X,_(z+)). We can look at the above
problem as a problem of one decision-maker who wants to accept, on the basis
of sequential observation, the most profitable state of the Markov process which
appeared in the realization but the solicited state is available with some proba-
bility only. The availability is unknown before solicitation. If the decision-maker
has made unsuccessful stop he is able to choose any next state under the same
rules. The availability is described by the sequence a.

In bilateral approach each player can get at most one of the state from the re-
alization of the Markov chain. Since there is only one random sequence {X,,}V_,
in a trial, at each instant n only one player can obtain a realization x,, of X,,.
Both players together can accept at most two objects. The problem of assigning
the objects to the players when both want to accept the same one can be solved
in may ways. In [2] Dynkin assumed that for odd n Player 1 can choose x,, and
for even n Player 2 can choose. Other authors solve the problem by more or
less arbitrary definition of the payoff function. Sakaguchi [11] considered some
version of the bilateral sequential games related to the no-information secretary
problem with uncertain employment. There were investigated the two-person
non-zero-sum games with one or two sets of NV objects in the condition of the
secretary problem. In the case of one set of objects it can happens that both
players attempt to accept the same object. In this case players have half success
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which is taken into account in the payoff function. Another approach assumes
the priority for one decision-maker (see papers by Sakaguchi [10], Enns & Fer-
enstein [3], Radzik & Szajowski [6], Ravindran & Szajowski [9]) or the random
priority (the paper by Fushimi[5], Radzik & Szajowski [7] and Szajowski [14]).

The model of competitive choice of the required object with the uncertain
employment and the random priority has been formulated and preliminary re-
sults have been obtained by Szajowski [13]. At each moment n the state of the
Markov process x,, is presented to both players. If the players have not already
made an acceptance there are following possibilities. If only one of them would
like to accept the state then he tries to take it. In this moment the random
mechanism assign availability to the state (which can depend on the player and
the moment of decision n).

Model A. This is the approach which has been considered by the authors in
[8].

(i) If both of them are interested in this state then at first the random
device chooses the player who will first solicit the state. The avail-
ability of the state is similar as in the situation when only one player
want to take it.

(ii) If state is not available for player chosen by random device then the
observed state at moment n is lost as in the case when both players
reject it. The next state in the sequence is interviewed.

Model B. The model differs from Model A only in the case when both players
would like to accept the same state. So that point (i) is there same.

If random device chooses Player 1 and the state is not available for him
(lottery decides about that) then the observed state at moment n is so-
licited by Player 2. The state is available for him as in the situation when
only Player 2 tries to take it (the random experiment decides about it). If
the state is not available then it is lost and the next state in the sequence
is interviewed.

Model C. The model differs from Model A and B in the case when both
players would like to accept the same state. This model admits that if
the state is not available for the player chosen by device then the another
player is able to solicited the state.

Fig. 1.1 presents the scheme of the decision process in each model. The lottery
Pr, assigns the priority to the players. The random devices I, and I, describe
availability of the state to Player 1 and Player 2, respectively. In Model B
there is a door between I, and II;, which can be opened from the room I. In
Model C the door handles are from both sides.

This paper deals with the extended model described in the point Model C.
In Section 1.2 the formal description of two step random assignment is given.
The algorithms solution of the game related to the model described in Section
1.2 is presented in Section 1.3. The examples are solved in Section 1.4.
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1.2 Two Step Random Assignment

Let (X, Fn, P2)N_, be a homogeneous Markov chain defined on a probability
space (0, F,P) with state space EXE and let f; : EXE — Rand fo : EXE — R
be B x B real valued measurable functions. The horizon N is finite. Player i
(i € {1,2}) observes the Markov chain and tries to maximise his payoff defined
by the function f;. Each realisation x, of X, can be accepted by at most one
player and neither player can accept more than one realisation of the chain.
It is assumed there is a lottery, which decides which player has priority when
both players wish to accept the same realisation. Also, it is assumed that if a
player wishes to accept a realisation x,, of X,, and has priority, then that player
obtains that realisation with some probability strictly non-zero and strictly less
than one (ie uncertain employment). If a player has not accepted any of the
previous realisations at stage n, then he has two options. The first is to solicit
the observed state of the process, the second is to reject it. Once a player has
accepted one of the realisations, then he no longer takes part in the game.

If both players wish to accept the same realisation, then the lottery chooses
which player has priority. Let ({€,})_g,{an}2_,) be the description of lot-
tery, where the €;, ¢ = 0,1,..., N are a sequence of i.i.d r.v.s from the [0, 1]
uniform distribution and the oy, i = 0,1,..., N are real numbers, «; € [0,1].
When both players wish to accept the same realisation x,, of X,,, then Player
1 has priority if €, < a.,, otherwise Player 2 has priority. Similarly, the lottery
({ni ¥, {BL ) describes the availability of the nth realisation of the chain
to the ith player. When only Player 1 (Player 2) accepts state x (y) then Player
1 obtains g1 (x) = sup,cg f1(z,y) (92(y) = infrex f1(2,y)) by assumption. Sim-
ilarly, when only Player 1 (Player 2) accepts state « (y) then Player 2 obtains
g3(x) = infyer fa(x,y) (ga(x) = sup,eg fo(x,y)). If neither player accepts a
realisation, then they both gain 0.

Let QY be the aggregation of sequences & = {w,, })_, of {0, 1}-valued random
variables such that w,, is Fj,-measurable, n = 0,1..., N. If a player uses 7, then
0, = 1 means that he declares willingness to accept the realisation z,, of X,,.
If o, = 0, then the player is not interested in accepting the realisation z,.
Denote QY = {7 : 09 =0,01 =0,...,04_1 = 0}. Let AY and '} be copies of
QN (QF = Q). One can define the sets of strategies A = {\{oL}) - A e
AN 7, € AN, ,Vn} and = {7, {72}) : 7 e 'V, 52 € T, ,Vn} for Players 1
and 2 respectively. The strategies A and 7 are applied by Player 1 and Player 2
respectively, until the first of the two players has obtained one of the realisations
of the Markov chain. After that point the other player, Player i say, continues
alone using strategy ., i = 1,2.

Let E,f; (X,) < 00, B, fi (X,) < 00, Exfof (Xom) < 0o and E, f5 (X)) < 00
for n,m = 0,1,...,N and = € E. Let ¢ € KN and 7 € fN. Based on the
strategies 1) and 7 used by Player 1 and Player 2 respectively, the definition
of the lotteries and the type of model used, the expected gains R o(,1),T)
and Rs + (2,1, 7) for Player 1 and Player 2 respectively can be obtained. In this
way the form of of the game (KN,fN, Rie(x,9,7), Ra.e(z,v, 7)) is defined. This
game is denoted by G*. For zero sum games the normal form of the game can be
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simply defined by (KN,TN,RL.(J:,MT)) since Ry o(2,9,7) = —Rae(x,1,T).
The three models considered in the introduction are presented in the following
section for both zero sum and non-zero sum games.

Definition 1.2.1 The pair (¢*,7*) is an equilibrium point in the game G* if
for everyx € E, ¢ € A and T € ™ the following two inequalities hold

El,o(xawﬂ—*) < El,'(‘rvw*vT*) (11
EZ-(I,I/J*,T) < EZO(I,w*’T*) (12)

~—

In the particular case of zero-sum games, these conditions simplify to
Rie(x, 0, 7°) < Ry o(w, 0", 7°) < Ry o(m, 0%, 7) (1.3)

The aim is to construct equilibrium pairs (¢*,7*). After one of the players
accepts realisation x, at time n, the other player will try to maximise his
gain without any disturbance from the player choosing first, as in the optimal
stopping problem with uncertain employment (see Smith [12]). Thus, if neither
player has accepted a realisation up to stage n, the players must take into
account the potential danger from a future decision of the opponent, in order
to decide whether or not to accept the realisation x, of X,,. In order to do this,
they consider some auxiliary game GJ.

Let v = (Xa {5711}) and 7 = (77 {Ei}) Define So(.T,y) = ﬁ%vf?(xvy) + (1 -
B3)gs(x), So(w,y) = By fi(z,y) + (1 — By)g2(y) and

sp(z,y) = sup Eny(ana('r,ﬂQ)) (1'4)
tery

Sn(z,y) = sup Eofi(Xow,p1),y) (1.5)
SEAN_,

forall z,y € E, n =1,2..., N, where o(¢, ') =inf{0 <n < N:0o} = 1,3} <
B} and o(r, %) =inf{0 <n < N : 02 = 1,72 < 32}. By backward induc-
tion (see Bellman [1]), the functions s,(x,y) can be constructed as s, (z,y) =
max{[2 fo(x,y) +(1—B2)T28,-1(x,y), Tesn—1(z,y)} and the functions S, (z,y)
has the form S, (z,y) = max{f. fi(z,y) +(1 — BL)T1Sn_1(2,y), T1Sn_1(z,y)}
respectively, where T f(z,y) = E, f(z, X1) and To f(z,y) = E, f(X1,z). The
operations minimum, maximum, 75 and 7; all preserve measurability. Hence
$n(x,y) and S, (x,y) are B ® B measurable. If Player 1 has obtained x at mo-
ment n and Player 2 has not yet obtained any realisation, then the expected
gain of Player 2 is given by ha(n,z) (i € {1,2}), where

hg(’l%.’l?) = EwSN,n,1(1‘7X1) (16)

forn =0,1,...,N — 1 and ha(N,z) = gs3(x). Let the future expected reward
of Player 1 in such a case be denoted hq(n,z). If the game is a zero sum game,
then hy(n,z) = —ha(n, x).

When Player 2 is the first player to obtain a realisation at time n, then the
expected gain of Player 1 is given by Hjy(n,z), where

Hl(n,x) = EISN_n_l(XhQJ) (17)
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forn =0,1,...,N —1 and H{(N,x) = go(x). Let the future expected reward
of Player 2 in such a case be denoted Ha(n,z). If the game is a zero sum game,
then Ho(n,z) = —Hi(n, ).

Based upon the solutions of the optimisation problems when a player remains
alone in the decision process, we can consider such an auxiliary game G¢. The
form of this game depends on the model determining what happens when both
players wish to accept the same state.

1.3 The extended model

Assume that the model deciding the priority assignment is Model C, as given
in the introduction. The game related to Model C will be denoted G. The sets

of strategies available to Player 1 and Player 2 are AV and TV respectively. For

v =(\{oL}) € A and 7 = 7,{72}) € fN7 we define the following random
variables

Aaprpe(h,7) = mf{0<n<N:(A\=17m=1¢ < syt < BY)
or (Ap =17, = OﬂnvlL < ﬂyll)
or Ay = 1,7 =1,6n > an,m2 > 32,0 <81}
/7067/31“32(1#’7-) = inf{O <n<N: ()‘n =Ly =16 > O‘nvnr% < ﬁi)
or (A = 0,7, = L < f7)
or (A =17 =16, < ananrlz > @ﬁﬂli < ﬂi)}

Let
;01(1/1,7) = Aa,ﬁl,ﬁz(djaT)]I{)\aﬁly52(¢,7)<’ya751ﬁ2('¢),7)}
+ 551,52 (¥, ﬂl)H{/\a,ﬁl’Lﬂ (0 7)>74 p1 52 (,7)}
and
P2 (7/17 T) = Ya,p1,p82 ("/}a T)I[{Aa#ﬂﬂz (0, 7)>7, p1,52(,7)}
2
+ OX, 51,32 (1,8 )]I{,\aﬁlﬁz(¢,T)<ya‘[,1ﬁg (,7)}
We have

Rl,C(xv 1/)7 T) = Eﬂﬂfl (Xpl (1/% T)a XP2 (1/), T))
RQ,C(l‘vw?T) EﬂcfQ(Xpl (¢7T)’Xp2(¢a7—))

In the auxiliary game G¢, the sets of strategies available to Player 1 and
Player 2 are A and I'N respectively. For A € AY and 5 € I'V we define the
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random variables

Aagrpz(N) = mf{0<n<N:(A =1y =16 <oy, < B)
or (\n = 1,79 = 0,m, < 3,)
or (An =1Ly =1,€n > o, 15 > G111y < 5,)}

Vap p2NT) = W{0<n<N: (=17 =16 >a,n <52)
or (A\p = 0,7, = 1777721 < Bi)
or (A =17 =16, < Ofmmlz > ﬂiﬂ?z < /8727,)}

As long as A\, g1 52(A\,7) < N or Vo815 (\,7) < N, the payoff function for
the i-th player is defined as follows

Ti(Aa,81,82 (A7) Voo 52 (A7) = hz‘(xa,ﬁl,m(xﬁ)vXxwlﬁz(xﬁ))

XU ot e ) <A gt 2 ()
(1.8)

+H; (Yo, p1,52 (A7), mel 82 (Xﬁ))
XU ot e )27 gt 2 ()

otherwise the payoff to each player is 0.
Firstly, we consider zero sum games. As a solution to such a game, we look
for an equilibrium pair (A ,5*) such that

R(%,Xa751752 (Xa 7*)37a,51,ﬁ2 (Xa 7*)) S R(xvxoc,ﬂl,[ﬁ (X*77*)77a,ﬁ1,ﬁ2 (X*aﬁ*))
(1.9)
< R a2V ) Fas,e (V7))
for all z € E, where
R(xvxoqﬁl,BQ (X7 7)77a7ﬁl,[32 (X7 7)) = Eﬂfrl (Xa,ﬁl,ﬂQ (X7 7)’7(1,51,52 (X? 7))

As in Model A, we can define a sequence v,(z), n =0,1,...,N + 1 on E by
setting vy y1(x) = 0 and

an(ﬁ&nhl (n7 l‘) + (1 - ﬁi)g(nv xvﬂﬁ)) G(n,x, ﬁrll)
va(x) = val | +(1— o) (B2H (n,2) + (1~ B2) G, 2, 51)) (1.10)
g(n7x7ﬂ721) TU"+1(x)

for n = 0,1,..., N, where G(n,z,3.) = BLhi(n,z) + (1 — BL)Tv,41(x) and
g(nv €, ﬂ%) = 53LH1 (n7 (E)

+ (1= B2)Tv,41(x). By subtracting Tv,,,1(x) from each entry above, it can be
seen that the game above is equivalent to a game with matrix A, where

afa+ (1-pB)b) a
} = | +(1— a)(bb+ (1—7)a) (1.11)

0

A — aSS aSC
aCS aCC

where a,b, a, 8,7 are real numbers and «, 8,7 € [0, 1]. By direct checking we
obtain
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Lemma 1.3.1 The two person zero-sum game with payoff matriz A given above
has an equilibrium point (e,d) in pure strategies, where

(s,8) if(1—(1-a)y)a>afbnN(l—aBf)b<(1l-a)ya,
(e,8) = (s,f) ifa=0N(1—-aB)b>(1-a)ya,
’ (fvs) Zfbgom(l_(l_a)v)a<aﬂbv
(f,f) ifa<0nb>0.
(1.12)
Denote
A% = {zeE: (1—(1—a,)p%) (hi(n,z)— TvnH( ) (1.13)
> anﬂZ(Hl(n @) = Tvps1(2)), (1 = aBy) (Hi(n, @) = Tonia(2))
< (1 - an)fy(ha(n,x) — Tvn+1(17))}
A = {2 € ¢ hi(n,2) = T (@), (1 — anfh)(Hi(n, ) — Tons1(2)(1.14)
> (1= ag) By (M (n, ) = Tonga (2))}
Al* = {2z ek : Hi(n,x) < T (z), (1 — (1 —an)B2)(hi(n,z) — Tvnsi(z))
< o (Hi(n, 2) — Tvpg1(2))} (1.15)
and
AlT =B\ (Asf U AT U AS®) (1.16)

By the definition of the sets A%, A3/ Al¢ € B and Lemma 1.3.1 we have

va(@) = [on(By(ha(n,2) — Tvnsa(2)) (1.17)
+ (1= B,)B;(Hi(n,x) = Tvpga(x)))
(1 = ) (B3 (Hy (n, ) — Tvni ()
+ (1= 33)Bn(ha(n, ) = Tvnga(2)))]Laze ()
+ B (h1(n, 2) = Tonga(2)Ly. (2)
+ B (Hi(n,x) — Tvn+1<$))HA;f (@) + Tvnta(2)

T

Define
. 1 if X, € Ass U A3
An = { 0 otherwise (1.18)
. 1 if X, € AsU Afs
Tn = { 0 otherwise (1.19)

The stopping times A¥ and ~ are defined by Equations (1.18) and (1.19)
with the appropriate A? given by Equations (1.13) - (1.16).

Theorem 1.3.2 Game GG with payoff function (1.8) and sets of strategies AN
and TN available to Player 1 and Player 2 respectively, has an equilibrium pair
(N*,~*) defined by Equations (1.18) and (1.19), based on (1.13) - (1.16). The
value of the game to Player 1 is vo(x).
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Now we construct an equilibrium pair (¢*,7*) for game G. Let (X", 7*) be
an equilibrium point in G¢.
Define (see [12] and [15])

1 _ 1 ZfSN—m(XmaXn)
nm =0 if SN (X Xn)

2% _{ 1 ZfSme(Xnme)
B (

f(‘(’ITL? ‘('77/)7

X, X,0) (1.20)
)s
\ (1.21)

Theorem 1.3.3 Game G has a solution. The equilibrium point is (*,7%),
such that v* = (X, {GL'}) and 7 = (7, {52 }). (\',7*) is an equilibrium
point in GS and the strategies {7 } and {G2 } are defined by Equations (1.20)
and (1.21) respectively. The value of the game is vo(x), where v, (x) is given by
Equation (1.17).

Now we consider non-zero sum games. In this case we must search for an
equilibrium pair such that
Rl(xaxa,ﬂl,ﬁz(Xai*)aia,ﬂl,ﬁz(x77*)) < Rl(maxa,ﬁ‘lﬁ?(x ,7*)77a,61,52(x 77*))

<% <k <% ~*

RZ(:C>Xa,ﬂ1,ﬁ2()‘ 77)77&,B1,B2()\ 77)) < RZ(maxa,ﬁ1,62()‘ 77*)77(1,61,52()‘ 77*))

Let v1,,(x) (ve,,(x)) be the value of this game to the first (second) player on
observing the realisation x,. The payoff matrix for player 1 is of the same
form as the matrix given in Equation (1.10), except that vi o(x) replaces ve(x).
a,b, a, 3, are defined as before from the matrix given in Equation (1.11). The
payoff matrix for the second player has the form

an(ﬁrth2<n7 SL’) + (1 - ﬁ}z)g(na $7ﬁ721)) g<n’x7ﬁ’l’27,)
+(1 = an) (B2 Hz(n, ) + (1 — 82)G(n, 23})) (1.22)
G(n,z, L) Tvg pt1(x)

Subtracting Tvp,4+1(z) this matrix is equivalent to one of the form

a(az + (1 - B3)b2) by
A= { 2 2“ ] =]+ *a)(bzaj (1—7)az) . (1.23)

By direct checking we have

Lemma 1.3.4 The two person game with payoff matrices given by (1.11) and
(1.23) has an equilibrium point in pure strategies given by (e,0), where

(s,8) if(1—(1—a)y)a>apbn(l—af)bs > vyax(l —a),
_ ) (5f) ifa>0n(1-af)b: <vax(l - a),
(f,f) ifa<0nb: <O.

There is not necessarily a unique pure equilibrium in the game.
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1.4 Example

In all the games considered we assume that an applicant accepts a job offer
from Player ¢ with probability r;. If both players wish to accept an applicant,
then Player 1 has priority with probability p, otherwise Player 2 has priority. If
an applicant rejects an offer from the player with priority, that applicant then
accepts the offer from the other player with the appropriate probability. The
aim of each player is to employ the best applicant. Thus, the players should only
accept applicants, who are the best seen so far (such applicants will be hence-
forth known as candidates). We obtain asymptotic results for a large number
N of applicants. Let ¢t be the proportion of applicants already seen. t will be
referred to as the time.

In order to find the equilibrium strategies in the game, we first need to cal-
culate the optimal strategy of a lone searcher. Let U;(t) be the probability that
Player ¢ obtains the best candidate, given that he/she is searching alone at time
t. A player should accept a candidate at time ¢, iff ¢ > U;(¢). Smith [12] shows
that

T4 T4 .
Ui(t):{ (=) <t <,
t; 0<t<ty,
1/(1—r;)

where t; = 7; satisfies t; = U;(t;). Player i’s optimal strategy is to accept
a candidate, iff t > ;.

Example 1.4.1 Zero-sum game model In this case it is assumed that a
player’s payoff is 1 if he/she obtains the best candidate, -1 if the other player
obtains the best candidate and 0 otherwise. Define k; to be the probability that
Player i obtains a candidate when both players wish to accept that candidate.
It follows that ki = r1[p + (1 — p)(1 — 72)] and ko = 2[(1 — p) + p(1 — r1)].
Define ks to be the probability that neither player obtains a candidate, when
both players wish to accept a candidate. Hence, ks = (1 —r1)(1 —r2). Let w(t)
be the expected value of the game to Player 1 when both of the players are still
searching at time t. Thus w(0) is the value of the game to Player 1. The payoff
matriz on the appearance of a candidate for this game is given by

< kit — Us(t)] + ko[Ur(t) — t] + ksw(t)  71[t — Ua(t)] + (1 — ry)w(t) )
ro[Ur(t) — t] + (1 — ro)w(t) w(t) :

Rows 1 and 2 (Columns 1 and 2) give the appropriate payoffs when Player 1
(Player 2) accepts and rejects a candidate respectively. The game is solved by
recursion. For large t both of the players to accept a candidate at a Nash equi-
librium. From the form of the payoff matrix, both players accepting a candidate
forms a Nash equilibrium when the following inequalities are satisfied

TQ[Ul(t) — ﬂ + (1 — Tg)w(t) < k [t — Ug(t)] =+ k‘g[Ul(t) — t] + k‘3w(t)
S 1 [t — Ug(t)] + (1 — rl)w(t).

Suppose it is stable for both players to accept a candidate if t > to 5. Consid-
ering the distribution of the arrival time of the next candidate, it can be shown
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that L
t
w(t) = / ?{kl[s — Ua(8)] + ka[U1(s) — 8] + ksw(s) }ds.
t
Dividing by t and differentiating

(L= k) _h
t 12

ka
2

w'(t) —

Together with the boundary condition w(1) = 0, this gives

[Ua(t) —t] + [t — Ur(2)].

w(t) = Citt =k 4 Cot + Cst™ — Cyt™,

_ kot _ kira
where C3 = a2 Cy = o) and

(1 - kg)[kl’r‘g(l - 7“1) - k‘27‘1(1 - 7"2)]
7"17’2(1 —7’1)2(1 —7"2)2 ’
]{72(1 — 7'2) — kl(l — T'1)
(1—r1)2(1 —r9)2

In the case r1 = ro = 1 this simplifies to

_ 7'2(2]) — 1) r(2—r T
w(t)—w[@—r)t( ) —t—(1—r)t"). (1.25)

C, =

Cy =

In this case (here ta = t1), from the symmetry of the game it suffices to consider
p > 0.5. Intuitively, for p > 0.5 Player 1 should be the more choosy of the two
players. Hence, in this case we look for a Nash equilibrium of the form

(a/7 Cl) t 2 t2,27
(¢*7T*) = (7’, a) t2,1 S t < t2,23
(T‘, T‘) t < t2)1.

From the arguments presented above, it follows that t3 o satisfies
(1 + (2[) — 1)7")[15272 - Ul(tgvg)] == (1 - T)w(tgg). (126)

It follows from Equation ( 1.25) that w(t) > 0 for t € [ta2,1). Hence, it can
be seen that for p > 0.5, ta 2 > t1. For p = 0.5, w(t) = 0 on this interval and
hence to o = t1. In this particular case it is simple to show that for t < t, both
players reject a candidate at a Nash equilibrium. In the more general case, the
relation between ta 2 and the optimal thresholds for a lone searcher are not so
clear and so henceforth, results are given only in the case ry = ro. However, the
method of solution in the general case is similar.

1t can be shown that for p > 0.5 and ta 1 <t <ta2

w) - P20 Py )
t t

It should be noted here that Uy (t) changes form at t = t1. Considering the payoff
matric ta1 satisfies w(te 1) = Ulta1) —to,1. Forty <t <ta2

P In(t t
P m()Jr P

= P _
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where Cs is calculated from the boundary condition at tyo. Since w(t) > 0 on
this interval, it follows that to 1 < t1. On the interval [t21,t1], we have

pt
t) = Cot? + 11 + ——
w(t) = Cet” + 1t

where Cs is calculated from the boundary condition at t1. Fort <ty the value
function w(t) is constant. Table 1 gives results for p =1 (Player 1 always has
priority) and various values of r.

r tg’l t2’2 U)(O)
0.5 | 0.2139 | 0.2710 | 0.0571
0.6 | 0.2342 | 0.2995 | 0.0652
0.7 | 0.2512 | 0.3229 | 0.0716
0.8 | 0.2654 | 0.3419 | 0.0764
0.9 | 0.2771 | 0.3568 | 0.0797
0.95 | 0.2821 | 0.3628 | 0.0807

TABLE 1.1. Numerical Solution of the Bilateral Selection Problem
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