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Abstract

It is well-known in evolutionary game theory that population clustering in

Prisoner’s Dilemma games allows some cooperative strategies to invade popula-

tions of stable defecting strategies. We adapt this idea of population clustering

to a two-person trust game. Without knowing it, players are typed based on

their recent track record as to whether or not they are trusting (Players 1) and

whether or not they are trustworthy (Players 2). They are then paired according

to those types: trustors with trustworthy types, and similarly non-trustors with

untrustworthy types. In the control comparisons, Players 1 are randomly repaired

with Players 2 without regard to type. We ask: are there natural tendencies for

people to cooperate more frequently in environments in which they experience

more cooperation in comparison with controls?
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1 Introduction

There are two related problems of cooperation in bargaining environments. The first

problem is to explain why and how people bargain their way to Pareto efficient, off-

equilibrium path outcomes. This problem has received considerable attention in the

recent literature (Guth, et al., 1982; BDMc, 1995; Roth, 1995; Fehr and Gächter, 2000;

McCabe, et al., 2001). The second problem is to say how cooperation can be sustained

once it emerges. The second problem has received comparably less attention than the

first.

Even though sustaining cooperation has received less attention in bargaining situa-

tions, it has been a primary focus in Prisoner’s Dilemma (PD) and public good games

(Andreoni and Miller, 1993; Andreoni and Varian, 1999; Axelrod, 1984, 1997; Bohnet

and Kübler, 2005; Kreps, et al., 1982; Ledyard, 1995). Consider the analysis of the

finitely repeated PD game in Axelrod (1984). In this game, always defecting is an

evolutionary stable strategy (ESS) in the sense that it does not pay to cooperate in

a population where everyone else always defects. Yet a small band of conditional co-

operators (say, tit-for-tat players) can invade a population of unconditional defectors

provided that the cooperators can cluster. That is, if these cooperators interact more

often with each other than with the defectors (or if the result of two cooperators meet-

ing is advantageous enough), then the population can be invaded. For clustering to

work, though, it must be the case that the probability of two members of the relevant

subpopulation meeting is greater than the probability of two arbitrary members of the

population at large meeting. The problem in populations without clustering is that the

chance of members from a small band of conditional cooperators meeting each other is

comparatively low.

We want to adapt this idea of population clustering to a simple two-person trust

game. The clustering in our trust game will be a function of recent behavior in this
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bargaining environment. An agent’s history of choices gives him a track record. Players

can be typed based on their recent track record as whether or not they are trusting (for

Players 1), and whether or not they are trustworthy (for Players 2). Once the players

are typed, they can then be paired according to those types: trustors with trustworthy

types, and similarly non-trustors with untrustworthy types. If some people are inclined

to trust, this sort of matching protocol will implement clustering within the population.

The empirical question that we want to address is whether this adaptation of clustering

to bargaining environments can sustain cooperative play analogous to the situation in

finitely repeated PD games. That is, if cooperative play emerges in the trust game, can

the level be maintained via an endogenous matching rule? This paper studies the effect

of an experimental treatment controlling for the history of cooperation by procedures

unknown to the subjects so that cooperation is not sustained by common knowledge

and expectations about the particular clustering mechanism in the population.

Why do we use a procedure in which subjects are not informed that cooperation (de-

fection) will result in their being matched with people who are also likely to cooperate

(defect)? We want to inquire whether the experience of cooperation reinforces innate

tendencies to cooperate causing it to grow relative to the occurrence of defection behav-

ior, and we want to do this without contaminating the measurements with advantages

gained by cooperative behavior deliberately chosen to gain access to other cooperators.

We want potential cooperators to discover they are in an environment conducive to

cooperation and then to do whatever comes naturally; not strategically choose that en-

vironment because it is incentive compatible. The equilibrium of the game is no longer

to defect, if defection reduces one’s access to those likely to cooperate. We do not

reveal the matching algorithm because the research hypothesis is not about behavior

when people know they are matched with someone likely to cooperate. Rather, it is

about what people do who, contrary to their immediate game theoretic self-interest,
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Fig. 1: Trust Game

initiate or reciprocate cooperation, and who find themselves in an environment with

other similarly disposed people. Does cooperation build, or does it deteriorate among

such individuals?

In the next section we describe a two-person extensive-form trust game and our

mechanism for clustering the population. We then discuss the design which consists of

two treatments: the baseline where players are matched randomly and another where

liked types have an increased likelihood of interacting and procedures (Section 3). Data

analysis follows in Section 4 and concluding remarks are contained in Section 5.

2 Sustaining Trust

In the trust game pictured in Figure 1, Player 1 is asked to choose from the following:

(1) You are given $40, which you can split evenly with another person—Player 2—in

which case the game is over or (2) You present Player 2 with two choices, either Player

2 can take $30 out of $45, leaving you $15; or she can split $50 evenly between the two

of you. Player 1 faces a $5 opportunity cost to interact with Player 2.

A standard backward induction argument verifies that the unique subgame perfect
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equilibrium (SPE) of this game is the (20, 20) outcome determined by the pure strategy

(R, d): a rational Player 2 would strictly prefer $30 to $25, and so would choose down

(d) at her decision node; knowing this a rational, self-interested Player 1, who prefers

$20 to $15, would therefore choose Right (R) at his decision node.

Although the pure strategy profile (R, d) is the unique SPE, it is not an evolutionary

stable strategy: (R, d) is a Nash equilibrium but it is not strict, and thus cannot be

an ESS (Weibull, 1995, Proposition 5.1). Intuitively, the situation is this. Consider

a population in which Players 1 all play R and Players 2 all play d. Players 2 are

susceptible to a certain amount of drift: a mutant Player 2 who would play r were she

given the chance has the same fitness as a non-mutant Player 2. So selection pressures

cannot rule out that such mutant Players 2 will thrive equally as well as their non-

mutant peers. Consequently, a mutant Player 1 who plays D instead of R may well

meet a mutant Player 2. If the proportion of mutant Players 2 is high enough, then

such a Player 1 will achieve a higher level of fitness than his non-mutant peers, namely

a payoff of 20. And so it cannot be ruled out that the population of (R, d) players will

be destabilized due to the drift of Player 2 and subsequent mutation of Player 1.

This raises the empirical question with which we are concerned. Since (R, d) is

not an ESS we know that it is possible for cooperation to emerge in this environment.

What we want to know is what the behavioral and institutional preconditions are for

such cooperation to actually emerge and be sustained. This is an empirical question.

In particular, is the mere possibility of random drift enough to allow cooperation to

emerge and be sustained, or can the level of cooperation and its stability be encouraged

by population clustering?

5



2.1 Clustering in the Trust Game

We implement the idea of clustering by typing players based on their observed moves

in the trust game above, and in one treatment match players based on their types.

Types come in the form of a “trust score”, τ j
n, where j= 1 or 2 for player role, n

indicates the round, and τ ∈ [0, 1]. τ is defined algorithmically. See Appendix A for a

detailed description of the algorithms for both players. A move by Player i is a labeled

a defection move just in case it is i’s strategy in the subgame perfect strategy profile.

A move by Player i is labeled a cooperative move just in case it is not a defection

move. The idea is each player will have a score that is updated following each round.

A player’s trust score is essentially a fraction, where the numerator is the number of

times the player has cooperated, and the denominator is the number of chances the

player has had to cooperate.

If Player 1 chooses a cooperative move, then the numerator of their trust score is

incremented by 1; otherwise it remains the same. If the current Round n ≤ 5, then the

denominator of their trust score is n; otherwise it is 5. That the divisor, when n > 5, is

always 5 puts a premium on the last five interactions of the players. Pre-theoretically,

there is a recency effect of goodwill—recent acts of goodwill overshadow distant acts of

ill-will and vice versa. The trust score algorithm for Player 1 codifies this intuition by

only keeping track of the behavior over the most recent five rounds.

To compute the trust score of a Player 2 after Round n, we need to first compute

the number of times that Player 2 has had an opportunity to make a choice—the idea

being that her trust score should neither be incremented nor decremented in cases

where Player 1 chooses his outside option.1 This will be recorded as Player 2’s oppor-

1Why would one adopt a prior that observing Player 1 defect would not affect Player 2’s cooperative
propensities? One might indeed think that a Player 2’s trust score should be decremented in cases
where Player 1 chooses his outside option; the idea being that Player 2’s cooperative propensity, in
such cases, gets infected by the observation of non-cooperative play by Player 1. Whether or not some
portion of the population reacts in this way is an empirical question. But even assuming this view is
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tunity score. We need to make a similar allowance to codify the recency effect of trust

and trustworthiness. Instead of tracking the behavior of Player 2 (for the purposes

of computing her trust score) over the most recent five rounds, we need instead track

it over the most recent five rounds in which she had an opportunity to make a deci-

sion. We simply need to verify if Player 1 moved down (right), in which case Player

2’s opportunity score is (not) incremented. We will call this queue her omega queue.

Player 2’s trust score is calculated almost exactly as Player 1’s, but the denominator is

opportunity score, rather than round.

We assume that both Player 1 and Player 2 begin with a trust score of zero. At

the end of each round, the algorithm begins by looping through the decisions made

by all the Players 1 and calculating their respective score and then does the same for

all the Players 2. At the completion of each round, each player has a trust score that

essentially tracks the relative frequency of cooperative moves up to that round.

2.2 Experimental Treatments

The two treatments reported below differ according to their matching protocol. In the

baseline condition—the Random treatment— subjects are randomly paired each period.

Trust scores in the Random treatment are tracked, but not used in matching Players

1 and Players 2. The experimental treatment—the Sorted treatment—pairs subjects

according to their trust scores. The matching protocol for the Sorted treatment is

straightforward: At the end of Round n Players 1 are rank-ordered by their trust scores

(high to low). Similarly for Players 2. Then the matching rule simply pairs the highest

correct, the result of using our trust score algorithms (which are not sensitive to this posited behavior)
in the matching experiments would be that some Players 2 have an artificially high trust score. Thus,
when matched according to trust scores, some such Players 2 may be matched with (real) trusting
Players 1. But notice that this would make the observation of sustained cooperative play rather more
difficult to achieve. Hence, if the experimental results indicate such sustained cooperative behavior
even using our scoring algorithms, then those results should be thought of as rather robust.
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ranked Player 1 with the highest ranked Player 2 for interaction in Round n + 1, the

next to highest ranked Player 1 with the next to highest ranked Player 2 for interaction

in Round n + 1, and so on.2

3 Experimental Design and Procedures

Our experiments were conducted with undergraduate students from a variety of majors

at The University of Arizona. A total of eight experimental sessions were run: four

sessions of the Sorted treatment and four sessions of the Random treatment.3 Each

experimental session consisted of 16 subjects.4

A subject is paid $5 for showing up on time and immediately (and randomly) seated

at a computer terminal in a large room containing 40 terminals. Each terminal is in a

separate cubicle, and the subjects are dispersed so that no subject can see the terminal

screen of another. Each person is randomly assigned a role (Player 1 or 2) and keeps

this role for the entirety of the experiment. The instructions for each experiment do not

use words like ‘game’, ‘play’, ‘player’, ‘opponent’, ‘partner, ‘trust’, etc.; rather neutral

terms such as ‘decision problem’, ‘decision maker 1 (DM1)’, ‘DM2’, ‘your counterpart’,

etc. are used in order to provide a baseline context.

The interactions in the experiment consist of anonymous pairings in a computerized

game. By using a mouse, each Player 1 can click on the right or down arrows. A player

confirms his choice by clicking on a “Send” button. This move information is then

displayed on their counterpart’s screen. If Player 1 moves down, Player 2 would be

prompted to click on the right or down arrow (again confirming her choice by clicking

on a “Send” button). This move information is then displayed on Player 1’s screen.

2Ties in trust scores are broken randomly.
3The first session was run on 09/05/00. In order to control for some variability we ran all of the

sessions at the same time of day, taking two weeks to complete.
4Two randomized treatments only had 14 subjects due to no shows.
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Sessions Subjects Observations
Sorted 4 64 1280
Random 4 60 1200

Table 1: Experimental Design

Earnings are shown to both Player 1 and Player 2 after each period. The game is

sequential in structure—i.e. we do not employ the strategy method to elicit choices.

Subjects respond to actual move information when making a decision.

The payoffs represent the experimental dollar amounts the subjects could earn with

an exchange rate of 20 experimental dollars equal to 1 U.S. dollar; both the payoffs and

the exchange rate are common information. The games were played sequentially for 20

periods, although the subjects do not know the total number of periods until the session

is complete.5 At the end of the experiment, their accumulated earnings were paid to

them privately (single-blind protocol). The experiments lasted on average a little under

one hour, from arrival to completion. Subjects’ earnings (not including the show-up

fee) average $21.00 (s = 1.8) in the Random treatment and $23.00 (s = 2.1) in the

Sorted treatment. The subjects did not have prior experience with this environment

or others like it. Each subject participated in one and only one such experiment. See

Table 1 for a summary of the experimental design.

The instructions stated the following about matching (see Appendix B for detailed

instructions): “Each period you will be paired with another individual: your counterpart

for that period. You will participate for several periods, being re-paired each period.”

We did not reveal the exact assignment rule to any of the subjects because we were

5The subjects did know that they were recruited for a one-hour experiment and each of the sessions
lasted almost the entire time. It is true that by not reveling the end point to the subjects, we may have
introduced a bias in favor of seeing more cooperation relative to a condition where subjects know the
end point. However, that being said, the information the subjects have is the same across treatments,
and we are interested in comparison of treatments so we do not worry too much about this potential
bias in our results.

9



concerned that such information might generate a difference in strategic behavior. This

is especially the case in the Sorted environment—knowing that cooperators are being

matched each period might lead individuals to alter their type for strategic reasons

rather than due to reciprocity type motives.

Anonymously matched subjects in a single play trust game have a strong incen-

tive to choose dominant strategies and to expect the same of their counterpart. They

have no knowledge of the types with which they are paired, yet many subjects exhibit

trusting/trustworthy behavior. Since they make more money than if they play non-

cooperatively, they can hardly be said not to be rational. If such behavior is deeply

ingrained in a subset of every sample of subjects, then the greater experience of reci-

procity in repeat interaction, the greater should be the use of such strategies by these

subjects. The sorting protocol enables clustering to occur while controlling for the

information that would allow clustering to be the deliberate, constructively rational

choice of those who otherwise would choose non-cooperatively.

4 Results

Table 2 provides the conditional outcome frequencies by blocks of five trials for the

Sorted and Random conditions. Note that in the first trial block (rounds 1–5) roughly

half of the play occurs at the SPE in both treatments and about half of the cooperative

ventures by Player 1 are reciprocated. There is not a statistically significant differ-

ence between either the amount of play which reaches the SPE (p = 0.4691) or the

amount of play which reaches the efficient outcome (p = 0.5775).6 By the second trial

block, however, there are significant differences in the mean proportion of outcomes

across treatments. This is most pronounced in the last trial block. When subjects

6p-values being reported are from two sample t-tests examining whether or not the means in question
are different, unless otherwise noted.
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Player 1 Player 2

Trials No Trust (%) Trust (%) Trustworthy (%) Not Trustworthy (%)

Sorted

1–5 46.25 53.75 51.16 48.84
6–10 50.00 50.00 72.50 27.50
11–15 48.13 51.88 84.34 15.66
16–20 46.88 53.13 83.53 16.47

Random

1–5 48.67 51.33 46.75 53.25
6–10 62.67 37.33 42.86 57.14
11–15 62.00 38.00 38.60 61.40
16–20 72.67 27.33 51.22 48.78

Table 2: Conditional Outcomes by Trial Block

are sorted based on their trust scores there are far fewer pairs ending up at the SPE;

when subjects are sorted, more pairs reach the cooperative outcome than when they

are randomly matched each round. Players 1 reach the SPE 46.88% of the time in

the Sorted treatment as compared to 72.67% in the Random treatment (p = 0.0088).

Furthermore, Players 2 who are paired with trusting Players 1 respond in kind in the

Sorted treatment 83.53% of the time compared with 51.22% of the time in the Random

treatment (p = 0.0128).7 One question is how well trusting Players 1 do compared to

playing the SPE outcome in both treatments. In the Sorted treatment, the expected

value of trust based on the average frequencies of cooperation and defection moves by

Players 2 is $22.29.8 In the Random treatment, the expected value of trust based on

the average frequencies of cooperation and defection moves by Players 2 is $19.49.9 So

in the Sorted treatment, it pays for the Players 1 to be trusting; this is not the case in

7It was interesting watching the results come in from these experiments. What was easy to observe
is that by Round 10 in the Sorted treatment around half of the Players 1 were playing SPE (i.e.
playing Right), so their trust scores began deteriorating rapidly and about half were trusting (i.e.,
playing Down), keeping their trust scores near the maximum. Most of the trusting interactions were
met with trustworthiness by their counterpart, keeping more than half of the Players 2 trust scores
high as well. This was not the case in the Random treatment.

8EV(trust|sorted) = 0.7288($25) + 0.2712($15) = $22.288 > $20 = EV(spe).
9EV(trust|random) = 0.4485($25) + 0.5515($15) = $19.485 < $20 = EV(spe) .
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Fig. 2: Percent of Players 1 Trusting Over Time

the Random treatment.

The above is aggregated in trial blocks. The dynamics of play over time reveals

the same trends, albeit more graphically. Figures 2 and 3 show the mean fraction of

each type of play over the 20 rounds for both treatment conditions. The trends are

unmistakable: as play proceeds through the later rounds, cooperation emerges and

is sustained among the sorted subjects, but there is no similar round-effect for the

randomly paired subjects.

4.1 Trust Scores

Along these same lines, it is interesting to look at the trust scores.10 Remember that

in both the Random and Sorted treatment a trust score is calculated for each player

based on their decisions, but only the Sorted treatment matches players according to

10One potential concern about our particular algorithm is given the sequential nature of the game
Players’ 2 trust scores are slow to increment. However, Player 2’s first chance (second chance) to move
occurs early in the Sorted treatment—round 2.34 (round 4.56). This is not significantly different from
the Random treatment. Since Players’ 2 first and second opportunity to move occurs early in the
game, their trust scores are in fact not slow to be incremented.
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their score.

Since the trust scores track the behavioral data, it is not surprising that an exami-

nation of the scores tells a very similar story to that of the outcome frequencies. The

average trust score over the first 10 rounds—slightly smaller than a half—is statistically

the same for the two treatments (p = .4850 for 1–5 and p = .2690 for 6–10, using a

Kolmogrov–Smirnov test for equality of distributions). However, in the last 10 rounds

the trust scores are significantly higher under the Sorted condition than in the Random,

with an average of 0.5 in the former and 0.36 in the latter (p = .0000 for 11–15 and

p = .0000 for 16–20, using a K–S test).

Figures 4 and 5 allow comparison of the number of people (i.e., Count) with a par-

ticular trust score over time across the two conditions. Notice that Count for those

with the lowest trust score (τ j
1 ≤ 0.1) is the same across treatments, and Count for

those with the highest trust score (τ j
1 = 1) following round 1 is the same across treat-

ments indicating the two treatments have the same initial conditions for the number

of people with low and high trust scores. Furthermore, it is interesting to note that
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the trends for the number of people with the lowest trust score is also the same across

the two treatments, yet the trends for τ j
n = 1 differ dramatically. In Random, there

is a significant drop in the number of people with the maximum trust score, demon-

strated by the flattening of the height of the bar of τ j
n = 1 as Round increases from 1

to 20, whereas in Sorted there is significant growth in the number of players with the

maximum trust score, seen in the growth of the peak τ j
n = 1 (especially after Round

10). Our sorting mechanism has little effect on those at the extremely low end of the

trust/trustworthy spectrum, but it does have a dramatic impact on the high end of

the cooperative spectrum. In Random, there is significant noise in the population as is

indicated by the amount of players in the middle of the trust score range. However, in

Sorted these “middle players” get pushed into the high range with the result that the

population becomes much more segregated under sorting.
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4.2 Trust and Trustworthiness

Here we report logit regression results which examine Players 1 trust and Players 2

trustworthiness over time (see Table 3). The data columns for Trust shows the logit

coefficient estimates and t-statistics for the regression of ln p(t)
1−p(t)

, t = 1, 2, . . . , 20, where

p(t) is the probability a Player 1 is trusting (i.e., moves Down) in Round t, and 1−p(t)

is the probability that Player 1 will not be trusting. The independent variables are

Trust Trustworthy

Coeff. t-stat Coeff. t-stat

Constant -.43 −2.26∗ Constant -2.35 −9.13∗∗∗

Round -.06 −4.13∗∗∗ Round -.05 −2.68∗∗

Treat 0.10 0.69 Treat 0.10 0.33
Rnd × Treat 0.07 3.22∗∗∗ Rnd × Treat 0.12 4.62∗∗∗

iType 1.09 8.97∗∗∗ iType 2.09 12.86∗∗∗

N = 1240 N = 1240
pseudo R2 = 0.0726 pseudo R2 = 0.2006

∗ p-values: ∗ ≤ 0.05, ∗∗ ≤ .01, ∗∗∗ ≤ .001.

Table 3: Trust and Trustworthiness Logits
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Round, which takes on the values of 1, 2, . . . , 20; Treat, which is a dummy variable

with a value of 1 for the Sorted treatment, 0 for the Random treatment; Rnd ×

Treat is the interaction effect between Round and Treat; and itype, which is a

dummy variable with a value of 1 if Player 1 is an initial cooperator (i.e., moved Down

in Round 1), 0 otherwise.11 The Round coefficient is negative, but small in magnitude.

While Treat is insignificant, the interaction effect Rnd × Treat is highly significant,

indicating that the essence of the treatment effect on trust involves the interaction

between round and treatment. Trust needs time to develop, and is much more likely to

develop over time in the Sorted treatment than in the Random treatment.

The data columns for Trustworthy shows the logit coefficient estimates and t-statistics

for the regression of ln p(t)
1−p(t)

, t = 1, 2, . . . , 20, where p(t) is the probability a Player 2 is

trustworthy (i.e., moves right) in Round t, and 1− p(t) is the probability that Player 2

is not trustworthy. The independent variables are Round, which takes on the values of

1, 2, . . . , 20; Treat, which is a dummy variable with a value of 1 for the Sorted treat-

ment, 0 for the Random treatment; Rnd × Treat is the interaction effect between

Round and Treat; and itype, which is a dummy variable with a value of 1 if Player 2

is an initial cooperator (i.e., moved right on her first opportunity), 0 otherwise.12 The

Round coefficient is negative, but small in magnitude. As in the regression on Trust,

Treat is insignificant, but the interaction term, Rnd × Treat, is highly significant

in explaining trustworthiness.13 This result indicates that the essence of the treatment

effect on trustworthiness involves the interaction between round and treatment. Trust-

worthiness needs time to develop, and is more likely to develop over time in the Sorted

treatment than in the Random treatment. The regression results in Table 3 report how

11itype, which captures the first move of Player 1, is included rather than a variable that tracks the
previous move of Player 1’s partner (PartnerCoop

t−1
) to avoid correlation with the treatment variable.

12itype, which captures the first move of Player 2, is included rather than a variable that tracks the
previous move of Player 2’s partner (PartnerTrustt−1) to avoid correlation with the treatment variable.

13Dropping the insignificant variable Treat only effects the constant term in the regression on Trust
and the regression on Trustworthiness.
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the initial typing as well as the interaction effect fuel the development of cooperation

under sorting over time. Overall, then, the econometric results indicate that there is

a significant divergence in the level of cooperative behavior being achieved over time

across the two treatments.

4.3 Efficiency Measure

In every interaction in this environment every joint decision affects more than merely

one’s own monetary costs and benefits. Each player’s trust score is also affected.14 Also

at stake are the gains from exchange, and in particular we can think of whether or not

the players actually achieve the efficient allocation—that is, whether they reach the

off-equilibrium cooperative outcome or not. There is a strong intuition that a good

mechanism is one which rewards those who have a history of trusting/trustworthy be-

havior: such agents should get what they deserve. In the present context this means

that if a person has a history of trusting/trustworthy behavior prior to a certain inter-

action, then there ought to be a premium on her reaching the cooperative outcome in

that interaction. This is a “social variable” in the sense that it is sensitive to more than

just one’s own payoffs and actions, since one’s counterpart has a role in determining

whether or not the cooperative outcome is reached. A society has an interest in seeing

agents with high values of such a variable.

We can capture what is significant about this dimension of social value by intro-

ducing a score for each player j at round n, νj
n ∈ [0, 1]. We will call νj

n Player j’s

efficiency score at round n. From the point of view of an agent j getting what she

deserves, the best outcome is if j is maximally trusting/trustworthy up to round n and

also reaches the cooperative outcome in n. Conversely, it is far less desirable, socially

14The subjects, of course, do not know that the value of such a score is at stake. But this does not
change the fact that every joint decision reached by a pair of subjects affects each subject’s trust score.
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speaking, if a maximally untrusting/untrustworthy agent up to round n finds himself

at the cooperative outcome or a maximally trusting/trustworthy agent finds herself

defected upon. Clearly ranking below both of these is the desirability of maximally

untrusting/untrustworthy agents acting in ways consonant with their histories. With

this in mind, then, we define νj
n as follows:

νj
n =

τ j
n + d

2

where d = 0 if Player j did not reach the cooperative outcome in Round n and d = 1

if she did. This variable tracks how efficient play is with respect to the potential social

gains, in the sense described above, to be had from exchange.

The efficiency scores begin in Round 1 at less than 0.40 for both treatments and

remain similar in magnitude through, roughly, the first nine rounds. However, in the

later rounds, the efficiency being achieved in each condition is significantly different: in

the last trial block the average efficiency score in the Sorted treatment is 0.48; whereas

in the Random treatment it is 0.25 (p = .0333). The level of efficiency with respect to

achieving both high trust scores and reaching the cooperative outcome is significantly

greater when subjects are being matched according to their trust score.

4.4 Types and Outcome

Is cooperation being “crowded out” in the Random treatment? That is, supposing

that the initial propensity to cooperate among subjects is the same across treatments,

then the fact that behavior tends toward high levels of repeated cooperative play in the

Sorted treatment, and the fact that behavior tends toward subgame perfect play in the

Random treatment would indeed be evidence that cooperative behavior is reinforced in

the Sorted treatment and crowded out (or undermined) in the Random treatment. To
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Random Sorted

Coop 16/14∗ 17/17
NonCoop 14/16 15/15

∗a/b where a = number of P1s, b = number of P2s.

Table 4: Distribution of Initial Player Types

examine this question, we can classify subjects as either a non-cooperator or cooperator

based on their first observed move.15 Players 1 are a non-cooperating type if in Round 1

they chose (20, 20) and a cooperating type if they chose to play down, passing the game

to their counterpart. Similarly, for Players 2. A Player 2 is a non-cooperating type if

when her counterpart first played down, she chose the defection outcome (15, 30), and

a Player 2 is a cooperating type if she chose the cooperative outcome (25, 25) on her

first available move. See Table 4 for the distribution of initial player types, in which

rows indicate initial player types and columns indicate the matching protocol. Note

that the initial distribution of player types is the same across treatments.

Once we establish this typing, we can analyze how play differs among these groups

depending on whether they are being sorted by their trust scores or simply being ran-

domly re-paired. We want to focus on the last 10 rounds in particular (see Figure 6).

Initial cooperators fare much better when they are meeting other cooperators under

the sorting mechanism than when they randomly meet their counterparts—the last 10

interactions result in an outcome of (25, 25) 62% of the time in the Sorted treatment

compared to only 18% of the time in the Random treatment (p = .0000). This is not

the case for initial non-cooperative types. In fact, there is no treatment effect for the

defecting types: the percentage of cooperative outcomes reached in the last 10 rounds

is not statistically different between the Random and Sorted treatments (p = .1187).

15Basing type on only the first observed move attempts classification of agents according to their
innate tendencies toward cooperation. The first observed move by a Player 2 occurs early: in the
Sorted treatment the median is 1.5 rounds and in the Random treatment it is round 1.
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This suggests that cooperation is crowded out in the Random treatment and fostered

in the Sorted treatment.
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Fig. 6: Cooperators—Trustors/Trustworthy on Initial Decision versus Non-
cooperators—No Trust/Non-Trustworthy on Initial Decision: Percent of Each Type
Reaching the Cooperative Outcome of (25, 25) in the Last 10 Rounds
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4.5 Summary

Here are the three central results from this sorting experiment:

Result 1. In the last 10 rounds, the fraction of subjects reaching the SPE (cooperative

outcome) is dramatically lower (higher) in the Sorted treatment than in the Random

treatment.

Result 2. The average efficiency score, i.e. how efficient play is with respect to the

potential social benefit, is higher in the Sorted treatment than in the Random treatment.

Result 3. In the last 10 rounds, the number of cooperative player types reaching coop-

erative outcomes is far greater in the Sorted treatment than in the Random treatment.

There is no treatment effect for non-cooperative types.

5 Conclusions

It is well-known in evolutionary game theory that population clustering in PD games

allows for some cooperative strategies to invade populations of stable defecting strate-

gies. Similarly, in the experimental community there are results which suggest that

a similar “clustering” phenomenon can be induced among subjects in public goods

games to sustain high levels of contributions (Gunnthorsdottir, et al., in press). The

results of the sorting experiments here suggest a similar story about behavior in simple

two-person bargaining games. Since the SPE in our trust game is not a strict Nash

Equilibrium, (R, d) is not an ESS. Thus, we know that it is, in principle, possible for

cooperative play to emerge randomly due to evolutionary drift of Players 2. But we

find no behavioral evidence of significant cooperative play which can be attributed to

random drift and mutation in the population. This is because in the Random treatment

the level of efficient outcomes is low and initial cooperators seem to be crowded out
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of the environment. On the other hand, we do find strong evidence that a behavioral

clustering mechanism in this sequential bargaining game increases cooperative play sig-

nificantly over levels reached by players randomly meeting. Sorting subjects by trust

scores accomplishes two tasks. First, it allows cooperative play, which is Pareto-superior

to the SPE to emerge. Second, once cooperative play emerges, sorting subjects does

not allow this behavior to be “infected” and compromised by either defecting Players

2 or by untrusting Players 1. Moreover, the emergence of cooperation is a response to

the experience of an environment of cooperative types, rather than a strategic choice

to enter such an environment.
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A Trust Score Algorithms

Algorithm 1 (Player 1 Trust Score). Let c1 (d1) indicate a cooperative (defection)

move by Player 1. Then the trust score of a Player 1 after Round n, τ 1
n, is given by the

following algorithm:

1. If n = 0: τ 1
0 = 0

2. If n ≤ 5: Let k be the number of c1 moves through Round n − 1. Then:

τ 1
n =











k
n

if d1 in Round n

k+1
n

if c1 in Round n

3. If n > 5: Let k be the number of c1 moves in Rounds n − 1, . . . , n − 4. Then:

τ 1
n =











k
5

if d1 in Round n

k+1
5

if c1 in Round n

Algorithm 2 (Player 2 Opportunity Score, Omega Queue). Let c1 (d1) indicate a co-

operative (defection) move by Player 1, and let c2 (d2) indicate a cooperative (defection)

move by Player 2. Then Player 2’s opportunity score in Round n, ρn, is given by the

following algorithm:

1. If n = 0: ρ0 = 0

2. If n ≥ 1:

ρn =











ρn−1 if d1 in Round n

ρn−1 + 1 if c1 in Round n

Where n ≥ 5, let Ωn−1 be the four most recent rounds prior to Round n in which Player

2 has had a chance to move.

Algorithm 3 (Player 2 Trust Score). Let c2 (d2) indicate a cooperative (defection)

move by Player 2. Then the trust score of a Player 2 after Round n, τ 2
n, is given by the

following algorithm:
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1. If n = 0: τ 2
0 = 0

2. If ρn = ρn−1: τ 2
n = τ 2

n−1

3. If ρn 6= ρn−1, ρn ≤ 5, and n ≤ 5: Let k be the number of c2 moves through Round

n − 1. Then:

τ 2
n =











k
ρn

if d2 in Round n

k+1
ρn

if c2 in Round n

4. If ρn 6= ρn−1, ρn ≤ 5, and n > 5: Let k be the number of c2 moves in Ωn−1. Then:

τ 2
n =











k
ρn

if d2 in Round n

k+1
ρn

if c2 in Round n

5. If ρn 6= ρn−1 and ρn ≥ 5: Let k be the number of c2 moves in Ωn−1. Then:

τ 2
n =











k
5

if d2 in Round n

k+1
5

if c2 in Round n
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B Computerized Instructions for Both Treatments

Page 1

In this experiment you will participate in a series of two person decision problems. The

experiment will last for several periods. Each period you will be paired with another

individual: your counterpart for that period. The joint decisions made by you and

your counterpart for that period will determine how much money you will earn in that

period. After each period you will be re-paired.

Your earnings will be paid to you in cash at the end of the experiment. We will not tell

anyone else your earnings. We ask that you do not discuss your earnings with anyone

else. Please read the following instructions carefully. If you have a question at any

time, please raise your hand and someone will come by to help.

Page 2

Notice that another button, “Back”, has appeared at the bottom of the page. If at

any time you wish to return to a previous page, click “Back”. To continue reading the

directions, click “Next”.

Page 3

You will see a diagram similar to this one at the beginning of the experiment. You and

another person will participate in a decision problem like the diagram below. We will

refer to this other person as your counterpart.

SCREEN DIAGRAM

One of you will be DM 1. The other person will be DM 2. Beside the diagram we show

whether you are DM 1 or DM 2. In this example, for now, you are DM 1. Please click

“Next” to continue.

Page 4

Notice the boxes with letters in them. These letters will be replaced by numbers

representing Experimental Dollars during the experiment. For 20 Experimental Dollars

you will earn 1 U.S. dollar. The boxes with numbers show the different earnings in

Experimental Dollars that you and your counterpart can make. There are two numbers

in each box. The number on the top (which is indented now) is DM 1’s earnings if this

box is reached. The number on the bottom is DM 2’s earnings.
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SCREEN DIAGRAM

You and your counterpart will jointly determine a path through the diagram to an

earnings box. Please click “Next” to continue.

Page 5

A path is defined as sequence of moves through the diagram.

A move is a choice of direction in the diagram.

SCREEN DIAGRAM

The arrows in the diagram show the possible directions of moves that can be made.

Notice that the moves for both DM 1 and DM 2 are always DOWN or RIGHT. When

you click on either arrow, the path is highlighted.

The circles in the diagram with numbers in them indicate who gets to move at that

point in the diagram. Please click “Next” to continue.

Page 6

For example, DM 1 starts the process at the top of the diagram by moving right or

down. If DM 1 moves right the experiment is over. DM 1 earns ‘zig’ and DM 2 earns

‘zog’.

SCREEN DIAGRAM

If DM 1 moves down, it is DM 2’s turn to move. DM 2 can move right or down. If DM

2 moves right, DM 1 earns ‘wig’ and DM 2 earns ‘wog’. If DM 2 moves down, DM 1

earns ‘xig’ and DM 2 earns ‘xog’.

The decision path that was chosen will be highlighted. Please click “Next” to continue.

Page 7

We will now show you what the decisions look like from the point of view of DM 1.

When you are DM 1 you move first. The arrows show you can move right or down.

In order to move, click on the arrow for your choice. DM 2 will only see your decision

when you click the “Send” button to finalize your decision. To see how this works, click

the RIGHT ARROW now. Be sure to click “Send” to finalize your move.

SCREEN DIAGRAM

At this point the moves are over. The path taken is highlighted white and earnings

received are highlighted. Please click ‘Next’ to continue.
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Page 8

As another example as DM 1, move DOWN by clicking on the arrow. To confirm your

move click the ”Send” button.

SCREEN DIAGRAM

Once the subject makes the choice, the following appears: Since you moved Down as

DM 1, DM 2, seeing your move, now has a decision to make. If DM 2 moves right then

you would earn ‘wig’ and DM 2 would earn ’wog’. If DM 2 moves down then you would

earn ‘xig’ and DM 2 would earn ‘xog’. Please click Next to continue.

Page 9

We will now show you what decisions look like from DM 2’s point of view. Notice that

your earnings are indented and this is the BOTTOM NUMBER in the boxes. You will

only have a move if DM 1 moves down. Suppose DM 1 has moved down. You have to

decide to move right or down. Please make a choice now by clicking on the arrow of

your choice. Then click “Send” to confirm your move.

SCREEN DIAGRAM

Either the subject moves Right as DM 2 in which case she sees the following: Since you

moved Right as DM 2, DM 1’s earnings are ‘wig’. Your earnings are ‘wog’. Please click

“Next” to continue.

OR the subject moves Down as DM 2 in which case she sees the following: Since you

moved Down as DM 2, DM 1’s earnings are ‘xig’. Your earnings are ‘xog’. Please click

“Next” to continue.

Page 10

IMPORTANT POINTS:

∗ Each period you will be paired with another individual: your counterpart for that

period.

∗ You will participate for several periods, being re-paired each period.

∗ If you are DM 1, your counterpart will be DM 2. In this case, you will make a

decision first. On the other hand, if you are DM 2, your counterpart will be DM

1. If this is the case, you will have a decision to make if DM 1 chooses down.
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∗ If you are DM 1, your payoff in Experimental Dollars is the top number in the

box. If you are DM 2, your payoff in Experimental Dollars is the bottom number

in the box. You will receive that amount of money if the box is reached. For

every 20 Experimental Dollars you earn, you will receive 1 U.S. Dollar.

This concludes the directions. If you wish to return to them please click the “Back”

button. If you have any questions please raise your hand. Otherwise, to begin the

experiment, please click the green button, “Finished with directions”.
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