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Abstract

Macroeconomic practitioners frequently work with multivariate time
series models such as VARs, factor augmented VARs as well as time-
varying parameter versions of these models (including variants with mul-
tivariate stochastic volatility). These models have a large number of pa-
rameters and, thus, over-parameterization problems may arise. Bayesian
methods have become increasingly popular as a way of overcoming these
problems. In this monograph, we discuss VARs, factor augmented VARs
and time-varying parameter extensions and show how Bayesian inference
proceeds. Apart from the simplest of VARs, Bayesian inference requires
the use of Markov chain Monte Carlo methods developed for state space
models and we describe these algorithms. The focus is on the empiri-
cal macroeconomist and we o¤er advice on how to use these models and
methods in practice and include empirical illustrations. A website pro-
vides Matlab code for carrying out Bayesian inference in these models.

Keywords: Empirical macroeconometrics, Bayesian estimation, MCMC,
vector autoregressions, factor models, time-varying parameters
JEL Classi�cation: C11, C13, C15, C51, C52, C53, C87, E52

1 Introduction

Most questions of interest to empirical macroeconomists involve several variables
and, thus, must be addressed using multivariate time series methods. Many
di¤erent multivariate time series models have been used in macroeconomics,
but since the pioneering work of Sims (1980), Vector Autoregressive (VAR)
models have been among the most popular. It soon became apparent that, in
many applications, the assumption that the VAR coe¢cients were constant over
time might be a poor one. For instance, in practice, it is often found that the
macroeconomy of the 1960s and 1970s was di¤erent from the 1980s and 1990s.
This led to an increased interest in models which allowed for time variation in
the VAR coe¢cients and time-varying parameter VARs (TVP-VARs) arose. In

�Both authors are Fellows at the Rimini Centre for Economic Analysis. Address for corre-
spondence: Gary Koop, Department of Economics, University of Strathclyde, 130 Rottenrow,
Glasgow G4 0GE, UK. Email: Gary.Koop@strath.ac.uk
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addition, in the 1980s many industrialized economies experienced a reduction
in the volatility of many macroeconomic variables. This Great Moderation of
the business cycle led to an increasing focus on appropriate modelling of the
error covariance matrix in multivariate time series models and this led to the
incorporation of multivariate stochastic volatility in many empirical papers. In
2008 many economies went into recession and many of the associated policy
discussions suggest that the parameters in VARs may be changing again.
Macroeconomic data sets typically involve monthly, quarterly or annual ob-

servations and, thus are only of moderate size. But VARs have a great number
of parameters to estimate. This is particularly true if the number of dependent
variables is more than two or three (as is required for an appropriate mod-
elling of many macroeconomic relationships). Allowing for time-variation in
VAR coe¢cients causes the number of parameters to proliferate. Allowing for
the error covariance matrix to change over time only increases worries about
over-parameterization. The research challenge facing macroeconomists is how
to build models that are �exible enough to be empirically relevant, capturing
key data features such as the Great Moderation, but not so �exible as to be
seriously over-parameterized. Many approaches have been suggested, but a
common theme in most of these is shrinkage. Whether for forecasting or es-
timation, it has been found that shrinkage can be of great bene�t in reducing
over-parameterization problems. This shrinkage can take the form of imposing
restrictions on parameters or shrinking them towards zero. This has initiated a
large increase in the use of Bayesian methods since prior1 information provides a
logical and formally consistent way of introducing shrinkage. Furthermore, the
computational tools necessary to carry out Bayesian estimation of high dimen-
sional multivariate time series models have become well-developed and, thus,
models which may have been di¢cult or impossible to estimate ten or twenty
years ago can now be routinely used by macroeconomic practitioners.
A related class of models, and associated worries about over-parameterization,

has arisen due to the increase in data availability. Macroeconomists are able to
work with hundreds of di¤erent time series variables collected by government
statistical agencies and other policy institutes. Building a model with hundreds
of time series variables (with at most a few hundred observations on each) is a
daunting task, raising the issue of a potential proliferation of parameters and
a need for shrinkage or other methods for reducing the dimensionality of the
model. Factor methods, where the information in the hundreds of variables
is distilled into a few factors, are a popular way of dealing with this prob-
lem. Combining factor methods with VARs results in Factor-augmented VARs
or FAVARs. H�wever, j�st as with VARs, there is a need to allow for time-
variation in parameters, which leads to an interest in TVP-FAVARs. Here, too,
Bayesian methods are popular and for the same reason as with TVP-VARs:
Bayesian priors provide a sensible way of avoiding over-parameterization prob-
lems and Bayesian computational tools are well-designed for dealing with such

1Prior information can be purely sub�ective. �owever, as will be discussed below, often
empirical Bayesian or hierarchical priors are used by macroeconomists. For instance, the state
equation in a state space model can be interpreted as a hierarchical prior.
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models.
In this monograph, we survey, discuss and extend the Bayesian literature on

VARs, TVP-VARs and TVP-FAVARs with a focus on the practitioner. That
is, we go beyond simply de�ning each model, but specify how to use them in
practice, discuss the advantages and disadvantages of each and o¤er some tips
on when and why each model can be used. In addition to this, we discuss some
new modelling approaches for TVP-VARs. A website contains Matlab code
which allows for Bayesian estimation of the models discussed in this monograph.
Bayesian inference often involves the use of Markov chain Monte Carlo (MCMC)
posterior simulation methods such as the Gibbs sampler. For many of the
models, we provide complete details in this monograph. ��wever, in some cases
we only provide an outline of the MCMC algorithm. Complete details of all
algorithms are given in a manual on the website.
Empirical macroeconomics is a very wide �eld and VARs, TVP-VARs and

factor models, although important, are only some of the tools used in the �eld.
It is worthwhile b��	
y mentioning what we are not covering in this monograph.
There is virtually nothing in this monograph about macroeconomic theory and
how it might infuse econometric modelling. For instance, Bayesian estima-
tion of dynamic stochastic general equilibrium (DSGE) models is very popular.
There will be no discussion of DSGE models in this monograph (see An and
Schorfheide, 2007 or Del N	��o and Schorfheide, 2009 for excellent treatments
of Bayesian DSGE methods). Also, macroeconomic theory is often used to pro-
vide identifying restrictions to turn reduced form VARs into structural VARs
suitable for policy analysis. �e will not discuss structural VARs, although some
of our empirical examples will provide impulse responses from structural VARs
using standard identifying assumptions.
There is also a large literature on what might, in general, be called regime-

switching models. Examples include Markov switching VARs, threshold VARs,
smooth transition VARs, 
oor and ceiling VARs, etc. These, although impor-
tant, are not discussed here.
The remainder of this monograph is organized as follows. Section 2 provides

discussion of VARs to develop some basic insights into the sorts of shrinkage
priors (e.g. the Minnesota prior) and methods of �nding empirically-sensible
restrictions (e.g. stochastic search variable selection, or SSVS) that are used
in empirical macroeconomics. O� goal is to extend these basic methods and
priors used with VARs, to TVP variants. �owever, before considering these
extensions, Section 3 discusses Bayesian inference in state space models using
MCMC methods. �e do this since TVP-VARs (including variants with mul-
tivariate stochastic volatility) are state space models and it is important that
the practitioner knows the Bayesian tools associated with state space models
before proceeding to TVP-VARs. Section 4 discusses Bayesian inference in TVP-
VARs, including variants which combine the Minnesota prior or SSVS with the
standard TVP-VAR. Section 5 discusses factor methods, beginning with the dy-
namic factor model, before proceeding to the factor augmented VAR (FAVAR)
and TVP-FAVARs. Empirical illustrations are used throughout and Matlab
code for implementing these illustrations (or, more generally, doing Bayesian
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inference in VARs, TVP-VARs and TVP-FAVARs) is available on the website
associated with this monograph.2

2 Bay�sian VARs

�.1 Introduction and �otation

The VAR(p) model can be written as:

yt = a0 +

pX

j=1

Ajyt�j + "t (1)

where yt for t = 1; ::; T is an M � 1 vector containing observations on M time
series variables, "t is anM�1 vector of errors, a0 is anM�1 vector of intercepts
and Aj is an M �M matrix of coe¢cients. �e assume "t to be i.i.d. N (0;�).
Exogenous variables or more deterministic terms (e.g. deterministic trends or
seasonals) can easily be added to the VAR and included in all the derivations
below, but we do not do so to keep the notation as simple as possible.
The VAR can be written in matrix form in di¤erent ways and, depending on

how this is done, some of the literature expresses results in terms of the mul-
tivariate �ormal and others in terms of the matric-variate ���mal distribution
(see, e.g. Canova, 2007, and Kadiyala and Karlsson, 1997). The former arises if
we use anMT�1 vector y which stacks all T observations on the �rst dependent
variable, then all T observations on the second dependent variable, etc.. The
latter arises if we d��ne Y to be a T�M matrix which stacks the T observations
on each dependent variable in columns next to one another. " and E denote
stackings of the errors in a manner conformable to y and Y , respectively. De�ne
xt =

�
1; y0t�1; ::; y

0

t�p

�
and

X =

2
6664

x1
x2
...
xT

3
7775 : (2)

���e that, if we let K = 1+Mp be the number of coe¢cients in each equation
of the VAR, then X is a T �K matrix.
Finally, if A = (a0 A1 :: Ap)

0
we de�ne � = vec (A) which is a KM � 1

vector which stacks all the VAR coe¢cients (and the intercepts) into a vector.
�ith all these d��nitions, we can write the VAR either as:

Y = XA+ E (3)

or

y = (IM �X)�+ "; (4)

2The website address is: http://personal.strath.ac.uk/gary.koop/bayes_matlab_code_by_koop_and_korobilis.html
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where " � N (0;�� IM ).
The likelihood function can be derived and shown to be of a form that breaks

into two parts: one a distribution for � given � and another where ��1 has a
�ishart distribution.3 That is,

���; y � N
�
b�;�� (X 0X)

�1
�

(5)

and
��1�y � W

�
S�1; T �K �M � 1

�
; (6)

where bA = (X 0X)
�1
X 0Y is the ��S estimate of A and b� = vec

�
bA
�
and

S =
�
Y �X bA

�0 �
Y �X bA

�
:

� � Priors

A variety of priors can be used with the VAR, of which we discuss some useful
ones below. They di¤er in relation to three issues.
First, VARs are not parsimonious models. They have a great many coe¢-

cients. For instance, � contains KM parameters which, for a VAR(4) involving
5 dependent variables is 105. �!"# quarterly macroeconomic data, the number
of observations on each variable might be at most a few hundred. �ithout prior
information, it is hard to obtain precise estimates of so many coe¢cients and,
thus, features such as impulse responses and forecasts will tend to be impre-
cisely estimated (i.e. posterior or predictive standard deviations can be large).
For this reason, it can be desirable to �shr!i$% forecasts and prior information
o¤ers a sensible way of doing this shrinkage. The priors discussed below di¤er
in the way they achieve this goal.
Second, the priors used with VARs di¤er in whether they lead to analytical

results for the posterior and predictive densities or whether MCMC methods
are required to carry out Bayesian inference. �!"# the VAR, natural con&'-
gate priors lead to analytical results, which can greatly reduce the computa-
tional burden. Particularly if one is carrying out a recursive forecasting exercise
which requires repeated calculation of posterior and predictive distributions,
non-con&'()"* priors which require MCMC methods can be very computation-
ally demanding.
Third, the priors di¤er in how easily they can handle departures from the

unrestricted VAR given in (1) such as allowing for di¤erent equations to have
di¤erent explanatory variables, allowing for VAR coe¢cients to change over
time, allowing for heteroskedastic structures for the errors of various sorts, etc.
+)"ural con&'gate priors typically do not lend themselves to such extensions.

3 In this monograph, we use standard notational conventions to de,ne all distributions such
as the -ishart. See, among many other places, the appendix to Koop, Poirier and Tobias
(2007). -ikipedia is also a quick and easy source of information about distributions.
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Early work with Bayesian VARs with shrinkage priors was done by researchers
at the University of Minnesota or the Federal Reserve Bank of Minneapolis (see
Doan, L>??@Aman and Sims (1984) and L>?terman (1986)). The priors they used
have come to be known as Minnesota priors. They are based on an approxima-
tion which leads to great simpliCcations in prior elicitation and computation.
This approximation involves replacing � with an estimate, b�. The original Min-
nesota prior simpliCes even further by assuming � to be a diagonal matrix. In
this case, each equation of the VAR can be estimated one at a time and we can
set b�ii = s2i (where s2i is the standard DLE estimate of the error variance in the

ith equation and b�ii is the iith element of b�). FGen � is not assumed to be

diagonal, a simple estimate such as b� = S
T
can be used.

Fhen � is replaced by an estimate, we only have to worry about a prior for
� and the Minnesota prior assumes:

� I N (�Min; VMin) : (7)

The Minnesota prior can be thought of as a way of automatically choosing �Min

and VMin in a manner which is sensible in many empirical contexts. To explain
the Minnesota prior, note Crst that the explanatory variables in the VAR in any
equation can be divided into the own lags of the dependent variable, the lags
of the other dependent variables and exogenous or deterministic variables (in
1 the intercept is the only exogenous or deterministic variable, but in general
there can be more such variables).
For the prior mean, �Min, the Minnesota prior involves setting most or all

of its elements to zero (thus ensuring shrinkage of the VAR coe¢cients towards
zero and lessening the risk of ov@AJCtting). FG@n using growth rates data (e.g.
GDP growth, the growth in the money supply, etc., which are typically found to
be stationary and exhibit little persistence), it is sensible to simply set �Min =
0KM . KQwever, when using levels data (e.g. GDP, the money supply, etc.)
the Minnesota prior uses a prior mean expressing a belief that the individual
variables exhibit random walk behavior. Thus, �Min = 0KM except for the
elements corresponding to the Crst own lag of the dependent variable in each
equation. These elements are set to one. These are the traditional choices for
�Min, but anything is possible. For instance, in our empirical illustration we
set the prior mean for the coe¢cient on the Crst own lag to be 0:9, reSecting a
prior belief that our variables exhibit a fair degree of persistence, but not unit
root behavior.
The Minnesota prior assumes the prior covariance matrix, VMin, to be diag-

onal. If we let V i denote the block of VMin associated with the K coe¢cients in
equation i and V i;jj be its diagonal elements, then a common implementation
of the Minnesota prior would set:

V i;jj =

8
<
:

a
1

p2
for coe¢cients on own lags

a
2
�ii

p2�jj
for coe¢cients on lags of variable j U= i

a3�ii for coe¢cients on exogenous variables

: (8)
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This prior simpliXes the complicated choice of fully specifying all the ele-
ments of VMin to choosing three scalars, a1; a2; a3. This form captures the
sensible properties that, as lag length increases, coe¢cients are increasingly
shrunk towards zero and that (by setting a1 > a2) own lags are more likely to
be important predictors than lags of other variables. The exact choice of values
for a1; a2; a3 depends on the empirical application at hand and the researcher
may wish to experiment with di¤erent values for them. Typically, the researcher
sets �ii = s2i . YZ[terman (1986) provides much additional motivation and dis-
cussion of these choices (e.g. an explanation for how the term �ii

�jj
a\]usts for

di¤erences in the units that the variables are measured in).
Many variants of the Minnesota prior have been used in practice (e.g. Kadiyala

and Karlsson (1997) divide prior variances by p instead of the p2 which is used
in (8)) as researchers make slight a\]ustments to tailor the prior for their partic-
ular application. The Minnesota prior has en]^yed a recent boom in popularity
because of its simplicity and success in many applications, particularly involving
forecasting. For instance, Banbura, Giannone and Reichlin (2008) use a slight
mo\ZXcation of the Minnesota prior in a large VAR with over 100 dependent
variables. Typically, factor methods are used with such large panels of data,
but Banbura et al (2008) Xnd that the Minnesota prior leads to even better
forecasting performance than factor methods.
A big advantage of the Minnesota prior is that it leads to simple poste-

rior inference involving only the `^rmal distribution. It can be show that the
posterior for � has the form:

�cy f N
�
�Min; VMin

�
(9)

where

VMin =
h
V �1Min +

�
b��1 g (X 0X)

�i�1

and

�Min = VMin

�
V �1Min�Min +

�
b��1 gX

�0
y

�
:

But a disadvantage of the Minnesota prior is that it does not provide a full
Bayesian treatment of � as an unknown parameter. Instead it simply plugs
in � = b�, ignoring any uncertainty in this parameter. In the remainder of
this section we will discuss methods which treat � as an unknown parameter.
h^wever, as we shall see, this (apart from one restrictive special case) means
that analytical methods are not available and MCMC methods are required).

klklk mnoprnq conjugate priors

`a[ural r^s]ugate priors are those where the prior, likelihood and posterior
come from the same family of distributions. tur previous discussion of the
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likelihood function (see equations 5 and 6) suggests that, for the VAR, the
natural uvwxugate prior has the form:

�z� { N (�;�| V ) (10)

and
��1 { W

�
S�1; �

�
(11)

where �; V ; � and S are prior hyperparameters chosen by the researcher.
}ith this prior the posterior becomes:

�z�; y { N
�
�;�| V

�
(12)

and
��1zy { W

�
S
�1
; �
�

(13)

where

V =
�
V �1 +X 0X

��1
;

A = V
h
V �1A+X 0X bA

i
;

� = vec
�
A
�
,

S = S + S + bA0X 0X bA+A0V �1A�A0
�
V �1 +X 0X

�
A

and

� = T + �:

In the previous formulae, we use notation where A is a K �M matrix made by
unstacking the KM � 1 vector �.
Posterior inference about the VAR coe¢cients can be carried out using the

fact that the marginal posterior (i.e. after integrating out �) for � is a multivari-
ate t-distribution. The mean of this t-distribution is �, its degrees of freedom
parameter is � and its covariance matrix is:

var (�zy) =
1

� �M � 1
S | V :

These facts can be used to carry out carry out posterior inference in this model.
The predictive distribution for yT+1 in this model has an analytical form

and, in particular, is multivariate-t with � degrees of freedom. The predictive

mean of yT+1 is
�
xT+1A

�0
which can be used to produce point forecasts. The

predictive covariance matrix is 1
��2

�
1 + xT+1V x

0

T+1

�
S. }~en forecasting more

than one period ahead, an analytical formula for the predictive density does not
exist. This means that either the direct forecasting method must be used (which
turns the problem into one which only involves one step ahead forecasting) or
predictive simulation is required.
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Any values for the prior hyperparameters, �; V ; � and S, can be chosen.
The noninformative prior is obtained by setting � = S = V �1 = cI and letting
c � 0. It can be seen that this leads to posterior and predictive results which
are based on familiar ��� quantities. The drawback of the noninformative prior
is that it does not do any of the shrinkage which we have argued is so important
for VAR modelling.
Thus, for the natural ����ugate prior, analytical results exist which allow for

Bayesian estimation and prediction. There is no need to use posterior simula-
tion algorithms unless interest centers on nonlinear functions of the parameters
(e.g. impulse response analysis such as those which arise in structural VARs,
see Koop, 1992). The posterior distribution of, e.g., impulse responses can be
obtained by Monte Carlo integration. That is, draws of ��1 can be obtained
from (13) and, conditional on these, draws of � can be taken from (12).4 Then
draws of impulse responses can be calculated using these drawn values of ��1

and �.
��wever, there are two properties of this prior that can be undesirable in

some circumstances. The �rst is that the (IM �X) form of the explanatory
variables in (4) means that every equation must have the same set of explanatory
variables. For an unrestricted VAR this is �ne, but is not appropriate if the
researcher wishes to impose restrictions. Suppose, for instance, the researcher is
working with a VAR involving variables such as output growth and the growth in
the money supply and wants to impose a strict form of the neutrality of money.
This would imply that the coe¢cients on the lagged money growth variables in
the output growth equation are zero (but coe¢cients of lagged money growth in
other equations would not be zero). Such restrictions cannot be imposed with
the natural ����ugate prior described here.
To explain the second possibly undesirable property of this prior, we intro-

duce notation where individual elements of � are denoted by �ij . The fact that
the prior covariance matrix has the form ��V (which is necessary to ensure nat-
ural ����ugacy of the prior), implies that the prior covariance of the coe¢cients
in equation i is �iiV . This means that the prior covariance of the coe¢cients in
any two equations must be proportional to one another, a possibly restrictive
feature. In our example, the researcher believing in the neutrality of money
may wish to proceed as follows: in the output growth equation, the prior mean
of the coe¢cients on lagged money growth variables should be zero and the
prior covariance matrix should be very small (i.e. expressing a prior belief that
these coe¢cients are very close to zero). In other equations, the prior covariance
matrix on the coe¢cients on lagged money growth should be much larger. The
natural con������ prior does not allow us to use prior information of this form.
It also does not allow us to use the Minnesota prior. That is, the Minnesota
prior covariance matrix in (8) is written in terms of blocks which were labelled
V i;jj involving i subscripts. That is, these blocks vary across equations which
is not allowed for in the natural con��gate prior.

4Alternatively, draws of � can be directly taken from its multivariate-t marginal posterior
distribution.
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These two properties should be kept in mind when using the natural con��-
gate prior. There are generalizations of this natural ����ugate prior, such as the
extended natural con������ prior of Kadiyala and Karlsson (1997), which sur-
mount these problems. ��wever, these lose the huge advantage of the natural
con������ prior described in this section: that analytical results are available
and so no posterior simulation is required.
A property of natural ����ugate priors is that, since the prior and likelihood

have the same distributional form, the prior can be considered as arising from
a �ctitious sample. For instance, a comparison of (5) and (10) shows that b�
and (X 0X)

�1
in the likelihood play the same role as � and V in the prior. The

latter can be interpreted as arising from a �ctitious sample (also called �dummy

observations�), Y0 and X0 (e.g. V = (X
0

0X0)
�1
and � based on an � ¡ estimate

(X 0

0X0)
�1
X 0

0Y0). This interpretation is developed in papers such as Sims (1993)
and Sims and ¢£� (1998). �� one level, this insight can simply serve as another
way of motivating choices for � and V as arising from particular choices for
Y0 and X0. But papers such as Sims and ¢£a (1998) show how the dummy
observation approach can be used to elicit priors for structural VARs. In this
monograph, we will focus on the econometric as opposed to the macroeconomic
issues. Accordingly, we will work with reduced form VARs and not say much
about structural VARs. ��re we only note that posterior inference in structural
VARs is usually based on a reduced form VAR such as that discussed here, but
then coe¢cients are transformed so as to give them a structural interpretation
(see, e.g., Koop, 1992, for a simple example). For instance, structural VARs are
often written as:

C0yt = c0 +

pX

j=1

Cjyt�j + ut (14)

where ut is i.i.d. N (0; I). Given appropriate identifying restrictions, there
will be a mapping from the parameters of the reduced form VAR in (1) to
the structural VAR. Thus, Bayesian inference can be done by using posterior
simulation methods in the reduced form VAR and transforming each draw into
a draw from the structural VAR.

¤hile discussing such macroeconomic issues, it is worth noting that there
is a growing literature that uses the insights of economic theory (e.g. from real
business cycle or DSGE models) to elicit priors for VARs. Prominent examples
include Ingram and ¤£¥��¦�� (1994) and Del §��¨o and Schorfheide (2004).
¤e will not discuss this work in this monograph.
Finally, it is also worth mentioning the work of Villani (2009) on steady state

priors for VARs. ¤e have motivated prior information as being important as a
way of ensuring shrinkage in an over-parameterized VAR. ��wever, most of the
shrinkage discussed previously relates to the VAR coe¢cients. �ften researchers
have strong prior information about the unconditional means (i.e. the steady
states) of the variables in their VARs. It is desirable to include such information
as an additional source of shrinkage in the VAR. �owever, it is not easy to do
this in the VAR in (1) since the intercepts cannot be directly interpreted as the

10



unconditional means of the variables in the VAR. Villani (2009) recommends
writing the VAR as:

eA (L) (yt � ea0) = "t (15)

where eA (L) = I� eA1L� ::� eApLp, L is the lag operator and "t is i.i.d. N (0;�).
In this parameterization, ea0 can be interpreted as the vector of unconditional
means of the dependent variables and a prior placed on it ©ª«ecting the re-
searc¬ª©s beliefs about steady state values for them. For eA (L) and � one of
the priors described previously (or below) can be used. A drawback of this
approach is that an analytical form for the posterior no longer exists. ®¯wever,
Villani (2009) develops a Gibbs sampling algorithm for carrying out Bayesian
inference in this model.

2.2.3 The Independent Normal-Wishart Prior

The natural c¯°±²gate prior has the large advantage that analytical results are
available for posterior inference and prediction. ®¯wever, it does have the draw-
backs noted previously (i.e. it assumes each equation to have the same explana-
tory variables and it restricts the prior covariance of the coe¢cients in any two
equations to be proportional to one another). Accordingly, in this section, we
introduce a more general framework for VAR modelling. To carry out Bayesian
inference in these models will require posterior simulation algorithms such as
the Gibbs sampler. The natural ³¯°±ugate prior had �´� being µ¯rmal and ��1

being ¶·¸¬art. µote that the fact that the prior for � depends on � implies
that � and � are not independent of one another. In this section, we work with
a prior which has VAR coe¢cients and the error covariance being independent
of one another (hence the name ¹independent µ¯©maº»¶ishart pri¯©¼).
To allow for di¤erent equations in the VAR to have di¤erent explanatory

variables, we have to modify our previous notation slightly. To avoid any pos-
sibility of confusion, we will use ¹�¼ as notation for VAR coe¢cients in this
restricted VAR model instead of �. ¶e write each equation of the VAR as:

ymt = z
0

mt�m + "mt;

with t = 1; ::; T observations form = 1; ::;M variables. ymt is the t
th observation

on the mth variable, zmt is a km-vector containing the t
th observation of the

vector of explanatory variables relevant for the mth variable and �m is the
accompanying km-vector of regression coe¢cients. µ¯½ª that if we had zmt =�
1; y0t�1; ::; y

0

t�p

�0
for m = 1; ::;M then we would obtain the unrestricted VAR

of the previous section. ®¯wever, by allowing for zmt to vary across equations
we are allowing for the possibility of a restricted VAR (i.e. it allows for some of
the coe¢cients on the lagged dependent variables to be restricted to zero).

¶e can stack all equations into vectors¾matrices as yt = (y1t; ::; yMt)
0
, "t =

("1t; ::; "Mt)
0
,

11



� =

0
B@

�1
...
�M

1
CA ;

Zt =

0
BBBB@

z01t 0 ¿ ¿ ¿ 0

0 z02t
. . .

...
...

. . .
. . . 0

0 ¿ ¿ ¿ 0 z0Mt

1
CCCCA
;

where � is a k � 1 vector and Zt is M � k where k =
PM

j=1 kj . As before, we
assume "t to be i.i.d. N (0;�).
Using this notation, we can write the (possibly restricted) VAR as:

yt = Zt� + "t. (16)

Stacking as:

y =

0
B@

y1
...
yT

1
CA ;

" =

0
B@

"1
...
"T

1
CA ;

Z =

0
B@

Z1
...
ZT

1
CA

we can write

y = Z� + "

and " is N (0; I À �).
It can be seen that the restricted VAR can be written as a ÁÂÃÄÅÆ linear

regression model with an error covariance matrix of a particular form. A very
general prior for this model (which does not involve the restrictions inherent in
the natural ÇÂÈÉugate prior) is the independent ÁÂÃmaÆÊËishart prior:

p
�
�;��1

�
= p (�) p

�
��1

�

where

� Ì N
�
�; V �

�
(17)

and

12



��1 ÍW
�
S�1; �

�
: (18)

ÎÏÐe that this prior allows for the prior covariance matrix, V � , to be anything
the researcher chooses, rather than the restrictive � Ñ V form of the natural
conÒÓÔÕÐÖ prior. For instance, the researcher could set � and V � exactly as
in the Minnesota prior. A noninformative prior can be obtained by setting
� = S = V �1� = 0.

Using this prior, the Òoint posterior p
�
�;��1×y

�
does not have a conve-

nient form that would allow easy Bayesian analysis (e.g. posterior means and
variances do not have analytical forms). ØÏwever, the conditional posterior
distributions p

�
�×y;��1

�
and p

�
��1×y; �

�
do have convenient forms:

�×y;��1 Í N
�
�; V �

�
; (19)

where

V � =

 
V �1� +

TX

t=1

Z 0t�
�1Zt

!�1

and

� = V �

 
V �1� � +

TX

i=1

Z 0t�
�1yt

!
:

Furthermore,

��1×y; � ÍW
�
S
�1
; �;
�

(20)

where

� = T + �

and

S = S +
TX

t=1

(yt � Zt�) (yt � Zt�)
0
:

Accordingly, a Gibbs sampler which sequentially draws from theÎÏÙmal p (�×y;�)
and the ÚÛÜÝart p

�
��1×y; �

�
can be programmed up in a straightforward fash-

ion. As with any Gibbs sampler, the resulting posterior simulator output can
be used to calculate posterior properties of any function of the parameters,
marginal likelihoods (for model comparison) ÕÞßàÏÙ to do prediction.

ÎÏÐe that, for the VAR, Z� will contain lags of variables and, thus, contain
information dated � � 1 or earlier. The one-step ahead predictive density (i.e.
the one for predicting at time � given information through � � 1), conditional
on the parameters of the model is:

13



y� áZ� ; �;� â N (Zt�;�) :

This result, along with a Gibbs sampler producing draws �(r);�(r) for r = 1; ::; R
allows for predictive inference.5 For instance, the predictive mean (a popular
point forecast) could be obtained as:

E (y� áZ� ) =

PR

r=1 Zt�
(r)

R

and other predictive moments can be calculated in a similar fashion. Alterna-
tively, predictive simulation can be done at each Gibbs sampler draw, but this
can be computationally demanding. For forecast horizons greater than one, the
direct method can be used. This strategy for doing predictive analysis can be
used with any of the priors or models discussed below.

2.2.4 Stochastic Search Variable Selection (SSVS) in VARs

SSVS as Implemented in George, Sun and Ni (2008) In the previous
sections, we have described various priors for unrestricted and restricted VARs
which allow for shrinkage of VAR coe¢cients. ãäwever, these approaches re-
quired substantial prior input from the researcher (although this prior input can
be of an automatic form such as in the Minnesota prior). There is another prior
that, in a sense, does shrinkage and leads to restricted VARs, but does so in an
automatic fashion that requires only minimal prior input from the researcher.
The methods associated with this prior are called SSVS and are enåäying in-
creasing popularity and, accordingly, we describe them here in detail. SSVS can
be done in several ways. ãæçæ we describe the implementation of George, Sun
and èé (2008).
The basic idea underlying SSVS can be explained quite simply. Suppose �j

is a VAR coe¢cient. Instead of simply using a prior for it as before (e.g. as
in (10), SSVS speêéëes a hierarchical prior (i.e. a prior expressed in terms of
parameters which in turn have a prior of their own) which is a mixture of two
èäçmal distributions:

�j áj â
�
1� j

�
N
�
0; �20j

�
+ jN

�
0; �21j

�
; (21)

where j is a dummy variable. If j equals one then �j is drawn from the second
èäçmal and if it equals zero then �j is drawn from the ërst èäçmal. The prior
is hierarchical since j is treated as an unknown parameter and estimated in a
data-based fashion. The SSVS aspect of this prior arises by choosing the ërst
prior variance, �20j , to be ìsmaííî (so that the coe¢cient is constrained to be

virtually zero) and the second prior variance, �21j , to be ìlargeî(implying a rela-
tively noninformative prior for the corresponding coe¢cient). Below we describe
what George, Sun and èi (2008) call a ìdefault semi-automatic approacïî to

5Typically, some initial draws are discarded as the ðburn inñ. Accordingly, r = 1; ::; R
should be the post-burn in draws.
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choosing �20j and �
2
1j which requires minimal subòective prior information from

the researcher.
The SSVS approach can be thought of as automatically selecting a restricted

VAR since it can, in a data-based fashion, set j = 0 and (to all intents and
purposes) delete the corresponding lagged dependent variable form the model.
Alternatively, SSVS can be thought of as a way of doing shrinkage since VAR
coe¢cients can be shrunk to zero.
SSVS can be used to select a single restricted model (e.g. the researcher can

select a restricted VAR which contains only those lagged dependent variables
whose coe¢cients have Pr

�
j = 1óy

�
> a for some choice of a such as a =

0:5). Alternatively, if the MCMC algorithm described below is simply run and
posterior results for the VAR coe¢cients calculated using the resulting MCMC
output, the result will be Bayesian model averaging (BMA).
SSVS allows us to work with the unrestricted VAR and have the algorithm

pick out an appropriate restricted VAR. Accordingly we will return to our no-
tation for the unrestricted VAR (see Section 2.1). The unrestricted VAR is
written in (3) and � is the KM � 1 vector of VAR coe¢cients. SSVS can be
interpreted as ôõöning a hierarchical prior for all of the elements of � and �.
The prior for � given in (21) can be written more compactly as:

�ó ÷ N (0; DD) ; (22)

where  is a KM � 1 vector of unknown parameters with typical element j ø

ù0; 1ú, and D is a diagonal matrix with (j; j)
th
element given by dj where

dj =

�
�0j if j = 0
�1j if j = 1

: (23)

ûüýe that this prior implies a mixture of two ûüþmals as written in (21).
George, Sun and ûÿ (2008) describe a �default semi-automatic approach�to

selecting the prior hyperparameters �0j and �1j which involves setting �0j =

c0
p
dvar(�j) and �1j = c1

p
dvar(�j) wheredvar(�j) is an estimate of the variance

of the coe¢cient in an unrestricted VAR (e.g. the ordinary least squares quantity
or an estimate based on a preliminary Bayesian estimation the VAR using a
noninformative prior). The pre-selected constants c0 and c1 must have c0 � c1
(e.g. c0 = 0:1 and c1 = 10).
For  = (1; ::; KM )

0
, the SSVS prior assumes that each element has a

Bernoulli form (independent of the other elements of ) and, hence, for j =
1; ::;KM , we have

Pr
�
j = 1

�
= q

j

Pr
�
j = 0

�
= 1� q

j

: (24)

A natural default choice is q
j
= 0:5 for all j, implying each coe¢cient is a priori

equally likely to be included as excluded.
So far, we have said nothing about the prior for � and (for the sake of

brevity) we will not provide details relating to it. Su¢ce it to note here that if a
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Wishart prior for ��1 like (18) is used, then a formula very similar to (20) can
be used as a block in a Gibbs sampling algorithm. Alternatively, George, Sun
and Ni (2008) use a prior for � which allows for them to do SSVS on the error
covariance matrix. That is, although they always assume the diagonal elements
of � are positive (so as to ensure a positive de�nite error covariance matrix),
they allow for parameters which determine the o¤-diagonal elements to have
an SSVS prior thus allowing for restrictions to be imposed on �. We refer the
interested reader to George, Sun and N� (2008) or the manual on the website
associated with this monograph for details.
Posterior computation in the VAR with SSVS prior can be carried out using

a Gibbs sampling algorithm. For the VAR coe¢cients we have

�jy; ;� � N(��; V �); (25)

where

V � = [�
�1


 (X 0X) + (DD)
�1
]�1;

�� = V �[(		
0)
 (X 0X)�̂];

Â = (X 0X)�1X 0Y

and

�̂ = vec(Â):

The conditional posterior for  has j being independent Bernoulli random
variables:

Pr
�
j = 1jy; �

�
= qj ;

Pr
�
j = 0jy; �

�
= 1� qj ;

(26)

where

qj =

1

�1j
exp

 
�

�2j

2�21j

!
q
j

1

�1j
exp

 
�

�2j

2�21j

!
q
j
+

1

�0j
exp

 
�

�2j

2�20j

!�
1� q

j

� :

Thus, a Gibbs sampler involving the Normal distribution and the Bernoulli
distribution (and the W���art distribution if a W��hart prior is used for ��1)
allows for posterior inference in this model.
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SSVS as Implemented in Korobilis (2009b) The implementation of SSVS
�ust described is a popular one. H�wever, there are other similar methods for
automatic model selection in VARs. In particular, the approach of George, Sun
and �� (2008) involves selecting values for the �small	prior variance �0j . The
reader may ask why not set �s��ll	exactly equal to zer�o This has been done in
regression models in papers such as Kuo and Mallick (1997) through restricting
coe¢cients to be precisely zero if j = 0. There are some subtle statistical
issues which arise when doing this.6 Korobilis (2009b) has extended the use of
such methods to VARs. Since, unlike the implementation of George, Sun and
�� (2008), this approach leads to restricted VARs (as opposed to unrestricted
VARs with very tight priors on some of the VAR coe¢cients), we return to our
notation for restricted VARs and modify it slightly. In particular, replace (16)
by

yt = Zte� + "t. (27)

where e� = eD� and eD is a diagonal matrix with the jth diagonal element being
j (where, as before, j is a dummy variable). In words, this model allows for
each VAR coe¢cient to be set to zero (if j = 0) or included in an unrestricted
fashion (if j = 1).
Bayesian inference using the prior can be carried out in a straightforward

fashion. For exact details on the necessary MCMC algorithm, see Korobilis
(2009b) and the manual on the website associated with this book. H�wever, the
idea underlying this algorithm can be explained quite simply. Conditional on
, this model is a restricted VAR and the MCMC algorithm of Section 2.2.2 for
the independent �ormal-�s�art prior can be used. Thus, all that is required is
a method for taking draws from  (conditional on the parameters of the VAR).
Korobilis (2009b) derives the necessary distribution.

2.3 Empirical Illustration of Bayesian VAR Methods

To illustrate Bayesian VAR methods using some of the priors and methods de-
scribed above, we use a quarterly US data set on the �i�ation rate ��t (the
annual percentage change in a chain-weighted GDP price index), the unemploy-
ment rate ut (seasonally �a�usted civilian unemployment rate, all workers over
age 16) and the interest rate rt (yield on the three month Treasury bill rate).
Thus yt = (��t; ut; rt)

0
. The sample runs from 195��� to 2����3. These

three variables are commonly used in �ew Keynesian VARs.7 Examples of pa-
pers which use these, or similar, variables include Cogley and Sargent (2005),
Primiceri (2005) and Koop, L�on-Gonzalaz and Strachan (2009). The data are
plotted in Figure 1.

6For instance, asympotically such priors will always set j = 1 for all j.
7The data are obtained from the Federal Reserve Bank of St. �ouis website,

http://research.stlouisfed.org/fred2/.
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Figure 1: Data Used In Empirical Illustration

To illustrate Bayesian VAR analysis using this data, we work with an unre-
stricted VAR with an intercept and four lags of all variables included in every
equation and consider the following six priors:

� ������ormative: ��ninformative version of natural c��� gate prior (equa-
tions 10 and 11 with � = 0KM�1, V = 0K�K , v = 0 and S = 0M�M ).

� �!"ural con� gate: Informative natural con� gate prior with sub�#ctively
chosen prior hyperparameters (equations 10 and 11 with � = 0KM�1,
V = 10IK , v =M + 1 and S�1 = IM ).

� Minnesota: Minnesota prior (equations 7 and 8, where �Min is zero, ex-
cept for the $rst own lag of each variable which is 0:9. � is diagonal
with elements s2i obtained from univariate regressions of each dependent
variable on an intercept and four lags of all variables).

� Independent ��%m!&'(ishart: Independent ��%m!&'(ishart prior with
sub�#)tively chosen prior hyperparameters (equations 17 and 18 with � =

0KM�1, V � = 10IKM , v =M + 1 and S�1 = IM ).

� SSVS-VAR: SSVS prior for VAR coe¢cients (with default semi-automatic
approach prior with c0 = 0:1 and c1 = 10) and (ishart prior for ��1

(equation 18 with v =M + 1 and S�1 = IM ).
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* SSVS: SSVS on both VAR coe¢cients and error covariance (default semi-
automatic approach).8

For the +rst three priors, analytical posterior and predictive results are avail-
able. For the last three, posterior and predictive simulation is required. The
results below are based on 50000 MCMC draws, for which the +rst 20000 are
discarded as burn-in draws. For impulse responses (which are nonlinear func-
tions of the VAR coe¢cients and �), posterior simulation methods are required
for all six priors.

,ith regards to impulse responses, they are ident-+ed by assuming C0 in
(14) is lower triangular and the dependent variables are ordered as: -.0ation,
unemployment and interest rate. This is a standard identifying assumption used,
among many others, by Bernanke and Mihov (1998), Christiano, Eichanbaum
and Evans (1999) and Primiceri (2005). It allows for the interpretation of the
interest rate shock as a monetary policy shock.

,ith VARs, the parameters themselves (as opposed to functions of them
such as impulse responses) are rarely of direct interest. In addition, the fact
that there are so many of them makes it hard for the reader to interpret tables
of VAR coe¢cients. 134ertheless, Table 1 presents posterior means of all the
VAR coe¢cients for two priors: the noninformative one and SSVS prior. 16te
that they are yielding similar results, although there is some evidence that SSVS
is slightly shrinking the coe¢cients towards zero.

Table 1. Posterior mean of VAR Coe¢cients for Two Priors
16.-.7ormative SSVS - VAR
��t ut rt ��t ut rt

Intercept 0.2920 0.3222 -0.0138 0.2053 0.3168 0.0143
��t�1 1.5087 0.0040 0.5493 1.5041 0.0044 0.3950
ut�1 -0.2664 1.2727 -0.7192 -0.142 1.2564 -0.5648
rt�1 -0.0570 -0.0211 0.7746 -0.0009 -0.0092 0.7859
��t�2 -0.4678 0.1005 -0.7745 -0.5051 0.0064 -0.226
ut�2 0.1967 -0.3102 0.7883 0.0739 -0.3251 0.5368
rt�2 0.0626 -0.0229 -0.0288 0.0017 -0.0075 -0.0004
��t�3 -0.0774 -0.1879 0.8170 -0.0074 0.0047 0.0017
ut�3 -0.0142 -0.1293 -0.3547 0.0229 -0.0443 -0.0076
rt�3 -0.0073 0.0967 0.0996 -0.0002 0.0562 0.1119
��t�4 0.0369 0.1150 -0.4851 -0.0005 0.0028 -0.0575
ut�4 0.0372 0.0669 0.3108 0.0160 0.0140 0.0563
rt�4 -0.0013 -0.0254 0.0591 -0.0011 -0.0030 0.0007

Remember that SSVS allows to the calculation of Pr
�
j = 18y

�
for each

VAR coe¢cient and such posterior inclusion probabilities can be used either in
model averaging or in model selection. Table 2 presents such posterior inclusion
probabilities using the SSVS-VAR prior. The empirical researcher may wish to

8SSVS on the non-diagonal elements of � is not fully described in this monograph. See
George, Sun and 9i (2008) for complete details.
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present such a table for various reasons. For instance, if the researcher wishes to
select a single restricted VAR which only includes coe¢cients with Pr

�
j = 1:y

�

> 1
2 , then he would work with a model which restricts 25 of 39 coe¢cients

to zero. Table 2 shows which coe¢cients are important. Of the 14 included
coe¢cients two are intercepts and three are ;rst own lags in each equation.
The researcher using SSVS to select a single model would restrict most of the
remaining VAR coe¢cients to be zero. The researcher using SSVS to do model
averaging would, in e¤ect, be restricting them to be approximately zero. <=>?
also that SSVS can be used to do lag length selection in an automatic fashion.
<=@? of the coe¢cients on the fourth lag variables is found to be important and
only one of nine possible coe¢cients on third lags is found to be important.

Table 2. Posterior Inclusion Probabilities for
VAR Coe¢cients: SSVS-VAR Prior

��t ut rt
Intercept 0.7262 0.9674 0.1029
��t�1 1 0.0651 0.9532
ut�1 0.7928 1 0.8746
rt�1 0.0612 0.2392 1
��t�2 0.9936 0.0344 0.5129
ut�2 0.4288 0.9049 0.7808
rt�2 0.0580 0.2061 0.1038
��t�3 0.0806 0.0296 0.1284
ut�3 0.2230 0.2159 0.1024
rt�3 0.0416 0.8586 0.6619
��t�4 0.0645 0.0507 0.2783
ut�4 0.2125 0.1412 0.2370
rt�4 0.0556 0.1724 0.1097

AB>C VARs, the researcher is often interested in forecasting. It is worth
mentioning that often recursive forecasting exercises, which involve forecasting
at time � = �0; ::; T , are often done. These typically involve estimating a model
T � �0 times using appropriate sub-samples of the data. If MCMC methods
are required, this can be computationally demanding. That is, running an
MCMC algorithm T � �0 times can (depending on the model and application)
be very slow. If this is the case, then the researcher may be tempted to work
with methods which do not require MCMC such as the Minnesota or natural
conDEFG>? priors. Alternatively, sequential importance sampling methods such
as the particle ;lter (see, e.g. Doucet, Godsill and Andrieu, 2000 or J=CG@nes
and Polson, 2009) can be used which do not require the MCMC algorithm to
be run at each point in time.
Table 3 presents predictive results for an out-of-sample forecasting exercise

based on the predictive density p (yT+1:y1::; yT ) where T = 2006Q3. It can be
seen that for this empirical example, which involves a moderately large data
set, the prior is having relatively little impact. That is, predictive means and
standard deviations are similar for all six priors, although it can be seen that the
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predictive standard deviations with the Minnesota prior do tend to be slightly
smaller than the other priors.

Table 3. Predictive mean of yT+1 (st. dev. in parentheses)
PIKMI ��T+1 uT+1 rT+1

QRSTSUormative
3.105
(0.315)

4.610
(0.318)

4.382
(0.776)

Minnesota
3.124
(0.302)

4.628
(0.319)

4.350
(0.741)

QVXural conYZgate
3.106
(0.313)

4.611
(0.314)

4.380
(0.748)

Indep. Qormal-[T\]art
3.110
(0.322)

4.622
(0.324)

4.315
(0.780)

SSVS - VAR
3.097
(0.323)

4.641
(0.323)

4.281
(0.787)

SSVS
3.108
(0.304)

4.639
(0.317)

4.278
(0.785)

True value, yT+1 3.275 4.700 4.600

Figures 2 and 3 present impulse responses of all three of our variables to all
three of the shocks for two of the priors: the noninformative one and the SSVS
prior. In these ĝures the posterior median is the solid line and the dotted lines
are the 10th and 90th percentiles. These impulse responses all have sensible
shapes, similar to those found by other authors. The two priors are giving
similar results, but a careful examination of them do reveal some di¤erences.
Especially at longer horizons, there is evidence that SSVS leads to slightly more
precise inferences (evidenced by a narrower band between the 10th and 90th

percentiles) due to the shrinkage it provides.
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Figure 2: Posterior of impulse responses - _`bcbformative prior.
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Figure 3: Posterior of impulse responses - SSVS prior.

3 Bayesian State Space Modeling and Stochas-

tic Volatility

3.1 Introduction and Notation

In the section on Bayesian VAR modeling, we showed that the (possibly re-
stricted) VAR could be written as:

yt = Zt� + "

for appropriate dednitions of Zt and �. In many macroeconomic applications,
it is undesirable to assume � to be constant, but it is sensible to assume that �
evolves gradually over time. A standard version of the TVP-VAR which will be
discussed in the next section extends the VAR to:

yt = Zt�t + "t,

where

�t+1 = �t + ut:
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Thus, the VAR coe¢cients are allowed to vary gradually over time. This is a
state space model.
Furthermore, previously we assumed "t to be i.i.d. N (0;�) and, thus, the

model was homoskedastic. In empirical macroeconomics, it is often important
to allow for the error covariance matrix to change over time (e.g. due to the
Great Moderation of the business cycle) and, in such cases, it is desirable to
assume "t to be i.i.d. N (0;�t) so as to allow for heteroskedasticity. This raises
the issue of stochastic volatility which, as we shall see, also leads us into the
world of state space models.
These considerations provide a motivation for why we must provide a section

on state space models before proceeding to TVP-VARs and other models of more
direct relevance for empirical macroeconomics. ee begin this section by frst
discussing Bayesian methods for the gknpqr linear state space model. These
methods can be used to model evolution of the VAR coe¢cients in the TVP-
VAR. Unfortunately, stochastic volatility cannot be written in the form of a
gknmal linear state space model. Thus, after brie�y discussing nonlinear state
space modelling in general, we present Bayesian methods for particular nonlinear
state space models of interest involving stochastic volatility.

ee will adopt a notational convention commonly used in the state space
literature where, if at is a time t quantity (i.e. a vector of states or data)
then at = (a01; ::; a

0

t)
0
stacks all the ats up to time t. So, for instance, y

T will
denote the entire sample of data on the dependent variables and �T the vector
containing all the states.

3.2 The Normal Linear State Space Model

A general formulation for the gormal linear state space model (which contains
the TVP-VAR defned above as a special case) is:

yt =Wt� + Zt�t + "t; (28)

and

�t+1 = Tt�t + ut, (29)

where yt is an M � 1 vector containing observations on M time series variables,
"t is an M � 1 vector of errors, Wt is a known M � p0 matrix (e.g. this
could contain lagged dependent variables or other explanatory variables with
constant coe¢cients), � is a p0 � 1 vector of parameters. Zt is a known M � k

matrix (e.g. this could contain lagged dependent variables or other explanatory
variables with time varying coe¢cients), �t is a k�1 vector of parameters which
evolve over time (these are known as states). ee assume "t to be independent
N (0;�t) and ut to be a k� 1 vector which is independent N (0; Qt). "t and us
are independent of one another for all s and t. Tt is a k � k matrix which is
typically treated as known, but occasionally Tt is treated as a matrix of unknown
parameters.
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Equations (28) and (29) uvwne a state space model. Equation (28) is called
the measurement equation and (29) the state equation. Models such as this
have been used for a wide variety of purposes in econometrics and many other
welds. The interested reader is referred to xest and yzrrison (1997) and Kim
and {vlson (1999) for a broader Bayesian treatment of state space models than
that provided here. yarvey (1989) and Durbin and Koopman (2001) provide
good non-Bayesian treatments of state space models.
For our purpose, the important thing to note is that, for given values of �, Tt,

�t and Qt (for t = 1; ::; T ), various algorithms have been developed which allow
for posterior simulation of �t for t = 1; ::; T . Popular and e¢cient algorithms are
described in Carter and Kohn (1994), Fruhwirth-Schnatter (1994), |v}~�� and
Shephard (1995) and Durbin and Koopman (2002). Since these are standard
and well-understood algorithms, we will not present complete details here. In
the Matlab code on the website associated with this monograph, the algorithm
of Carter and Kohn (1994) is used. These algorithms can be used as a block in
an MCMC algorithm to provide draws from the posterior of �t conditional on �,
Tt, �t and Qt (for t = 1; ::; T ). The exact treatment of �, Tt, �t and Qt depends
on the empirical application at hand. The standard TVP-VAR wxes some of
these to known values (e.g. � = 0; Tt = I are common choices) and treats others
as unknown parameters (although it usually restricts Qt = Q and, in the case
of the homoskedastic TVP-VAR additionally restricts �t = � for all t). An
MCMC algorithm is completed by taking draws of the unknown parameters
from their posteriors (conditional on the states). The next part of this section
elaborates on how this MCMC algorithm works. To focus on state space model
issues, the algorithm is for the case where � is a vector of unknown parameters,
Qt = Q and �t = � and Tt is known.
An examination of (28) reveals that, if �t for t = 1; ::; T were known (as

opposed to being unobserved), then the state space model would reduce to a
multivariate {~��z� linear regression model:

y�t =Wt� + "t;

where y�t = yt�Zt�t. Thus, standard results for the multivariate {~rmal linear
regression model could be used, except the dependent variable would be y�t
instead of yt. This suggests that an MCMC algorithm can be set up for the state

space model. That is, p
�
��yT ;�; �T

�
and p

�
��1�yT ; �; �T

�
will typically have

a simple textbook form. Below we will use the independent {ormal-x���art
prior for � and ��1. This was introduced in our earlier discussion of VAR
models.

{~�e next that a similar reasoning can be used for the covariance matrix for
the error in the state equation. That is, if �t for t = 1; ::; T were known, then
the state equation, (29), is a simple variant of multivariate {~rmal regression

model. This line of reasoning suggests that p
�
Q�1�yT ; �; �T

�
will have a simple

and familiar form.9

9The case where Tt contains unknown parameters would involve drawing from
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Combining these results for p
�
��yT ;�; �T

�
, p
�
��1�yT ; �; �T

�
and p

�
Q�1�yT ; �; �T

�

with one of the standard methods (e.g. that of Carter and Kohn, 1994) for tak-

ing random draws from p
�
�T �yT ; �;�; Q

�
will completely specify an MCMC

algorithm which allows for Bayesian inference in the state space model. In the
following material we develop such an MCMC algorithm for a particular prior
choice, but we stress that other priors can be used with minor mo���cations.

���� we will use an independent �ormal-����art prior for � and ��1 and
a �ishart prior for Q�1. It is worth noting that the state equation can be
interpreted as already providing us with a prior for �T . That is, (29) implies:

�t+1��t; Q � N (Tt�t; Q) : (30)

Formally, the state equation implies the prior for the states is:

p
�
�T �Q

�
=

TY

t=1

p
�
�t��t�1; Q

�

where the terms on the right-hand side are given by (30). This is an example
of a hierarchical prior, since the prior for �T depends on the Q which, in turn,
requires its own prior.

��� minor issue should be mentioned: that of initial conditions. The prior
for �1 depends on �0. There are standard ways of treating this issue. For
instance, if we assume �0 = 0, then the prior for �1 becomes:

�1�Q � N (0; Q) .

Similarly, authors such as Carter and Kohn (1994) simply assume �0 has some
unspe���ed distribution as its prior. Alternatively, in the TVP-VAR (or any
TVP regression model) we can simply set �1 = 0 and Wt = Zt.

10

Combining these prior assumptions together, we have

p
�
�;�; Q; �T

�
= p (�) p (�) p (Q) p

�
�T �Q

�

where

� � N (�; V ) ; (31)

��1 � W
�
S�1; �

�
; (32)

and

Q�1 � W
�
Q�1; �Q

�
: (33)

p (Q;T1; ::; TT jy; �1; ::; �T ) which can usually be done fairly easily. In the time-invariant case
where T1 = :: = TT � �, p (�; Qjy; �1; ::; �T ) has a from of the same structure as a VAR.
10This result follows from the fact that yt = Zt�t + "t with �1 left unrestricted and yt =

Zt� + Zt�t + "t with �1 = 0 are equivalent models.

26



The reasoning above suggests that our end goal is an MCMC algorithm which

sequentially draws from p
�
��yT ;�; �T

�
; p
�
��1�yT ; �; �T

�
, p
�
Q�1�yT ; �; �T

�

and p
�
�T �yT ; �;�; Q

�
. The �rst three of these posterior conditional distrib-

utions can be dealt with by using results for the multivariate ��rmal linear
regression model. In particular,

��yT ;�; �T � N
�
�; V

�
:

where

V =

 
V �1 +

TX

t=1

W 0

t�
�1Wt

!�1

and

� = V

 
V �1� +

TX

t=1

W 0

t�
�1 (yt � Zt�t)

!
:

� ¡¢ we have

��1�yT ; �; �T � W
�
S
�1
; �
�
;

where

� = T + �

and

S = S +
TX

t=1

(yt �Wt� � Zt�t) (yt �Wt� � Zt�t)
0
:

� ¡¢£

Q�1�yT ; �; �T � W
�
Q
�1
; �Q

�

where

�Q = T + �Q

and

Q = Q+
TX

t=1

�
�t+1 � Tt�t

� �
�t+1 � Tt�t

�0
:

To complete our MCMC algorithm, we need a means of drawing from p
�
�T �yT ; �;�; Q

�
.

But, as discussed previously, there are several standard algorithms that can be
used for doing this. Accordingly, Bayesian inference in the ��¤mal linear state
space model can be done in a straightforward fashion. ¥e will draw on these
results when we return to the TVP-VAR in a succeeding section of this mono-
graph.
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3.3 Nonlinear State Space Models

The ¦§¨mal linear state space model discussed previously is used by empirical
macroeconomists not only when working with TVP-VARs, but also for many
other purposes. For instance, Bayesian analysis of dynamic stochastic gen-
eral equilibrium (DSGE) models has become increasingly popular (see, e.g., An
and Schorfheide, 2007 or Fernandes-Villaverde, 2009). Estimation of linearized
DSGE models involves working with the ¦§¨mal linear state space model and,
thus, the methods discussed above can be used. ©owever, linearizing of DSGE
models is done through ªrst order approximations and, very recently, macro-
economists have expressed an interest in using second order approximations.
«hen this is done the state space model becomes nonlinear (in the sense that
the measurement equation has yt being a nonlinear function of the states). This
is ¬ust one example of how nonlinear state space models can arise in macro-
economics. There are an increasing number of tools which allow for Bayesian
computation in nonlinear state space models (e.g. the particle ªlter is en¬§ying
increasing popularity see, e.g., ohannes and Polson, 2009). Given the focus of
this monograph on TVP-VARs and related models, we will not o¤er a general
discussion of Bayesian methods for nonlinear state space models (see Del ¦®gro
and Schorfheide, 2009, and Giordani, Kohn and Pitt, 2009 for further discus-
sion). Instead we will focus on an area of particular interest for the TVP-VAR
modeler: stochastic volatility.
Broadly speaking, issues relating to the volatility of errors have obtained an

increasing prominence in macroeconomics. This is due partially to the empirical
regularities that are often referred to as the Great Moderation of the business
cycle (i.e. that the volatilities of many macroeconomic variables dropped in the
early 1980s and remained low until recently). But it is also partly due to the
fact that many issues of macroeconomic policy hinge on error variances. For
instance, the debate on why the Great Moderation occurred is often framed in
terms of ¯good pol°±²³versus ¯good luck³stories which involve proper modeling
of error variances. For these reasons, volatility is important so we will spend
some time describing Bayesian methods for handling it.

3.3.1 Univariate Stochastic Volatility

«e begin with a discussion of stochastic volatility when yt is a scalar. Al-
though TVP-VARs are multivariate in nature and, thus, Bayesian methods for
multivariate stochastic volatility are required, these use methods for univariate
stochastic volatility as building blocks. Accordingly, a Bayesian treatment of
univariate stochastic volatility is a useful starting point. In order to focus the
discussion, we will assume there are no explanatory variables and, hence, adopt
a simple univariate stochastic volatility model11 which can be written as:

11 In this section we describe a method developed in Kim, Shephard and Chib (1998) which
has become more popular than the pioneering approach of ´acquier, Polson and Rossi (1994).
Bayesian methods for extensions of this standard stochastic volatility model (e.g. involving
non-µormal errors or leverage e¤ects) can be found in Chib, µardari and Shephard (2002)
and ¶mori, Chib, Shephard and µaka·ima (2007).
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yt = exp

�
ht

2

�
"t (34)

and

ht+1 = �+ � (ht � �) + �t; (35)

where "t is i.i.d. N (0; 1) and �t is i.i.d. N
�
0; �2�

�
. "t and �s are independent

of one another for all s and t.
¸¹ºe that (34) and (35) is a state space model similar to (28) and (29) where

ht for t = 1; ::; t can be interpreted as states. »¹wever, in contrast to (28), (34)
is not a linear function of the states and, hence, our results for ¸¹¼mal linear
state space models cannot be directly used.

¸¹ºe that this parameterization is such that ht is the log of the variance of
yt. Since variances must be positive, in order to sensibly have ¸¹¼mal errors
in the state equation (35), we must d½¾ne the state equation as holding for
log-volatilities. ¸¹ºe also that � is the unconditional mean of ht.

¿ith regards to initial conditions, it is common to restrict the log-volatility
process to be stationary and impose À�À < 1. Under this assumption, it is
sensible to have:

h0 Á N

 
�;

�2�

1� �2

!
(36)

and the algorithm of Kim, Shephard and Chib (1998) described below uses this
sp½ÂÃ¾cation. »¹wever, in the TVP-VAR literature it is common to have VAR
coe¢cients evolving according to random walks and, by analogy, TVP-VAR
papers such as Primiceri (2005) often work with (multivariate extensions of)
random walk speÂÃ¾cations for the log-volatilities and set � = 1. This ÄÃÅÆÇÃ¾es
the model since, not only do parameters akin to � not have to be estimated,
but also � drops out of the model. »owever, when � = 1, the treatment of
the initial condition given in (36) cannot be used. In this case, a prior such
as h0 Á N (h; V h) is typically used. This requires the researcher to choose h
and V h. This can be done subÈectively or, as in Primiceri (2005), an initial
Étraining samÆÇ½Êof the data can be set aside to calibrate values for the prior
hyperparameters.
In the development of an MCMC algorithm for the stochastic volatility

model, the key part is working out how to draw the states. That is (in a
similar fashion as for the parameters in the ¸¹rmal linear state space model),
p
�
�ÀyT ; �; �2�; h

T
�
, p
�
�ÀyT ; �; �2�; h

T
�
and p

�
�2�Ày

T ; �; �; hT
�
have standard forms

derived using textbook results for the ¸¹rmal linear regression model and will
not be presented here (see, e.g., Kim, Shephard and Chib, 1998 for exact for-
mulae). To complete an MCMC algorithm, all that we require is a method for
taking draws from p

�
hT ÀyT ; �; �; �2�

�
. Kim, Shephard and Chib (1998) provide

an e¢cient method for doing this. To explain the basic ideas underlying this
algorithm, note that if we square both sides of the measurement equation, (34),
and then take logs we obtain:
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y�t = ht + "
�

t ; (37)

where12 y�t = ln
�
y2t
�
and "�t = ln

�
"2t
�
. Equations (37) and (35) dËÌne a state

space model which is linear in the states. The only thing which prevents us
from immediately using our previous results for the Íormal linear state space
model is the fact that "�t is not ÍÎÏmal. ÐÎwever, as well shall see, it can be
approximated by a mixture of di¤erent Íormal distributions and this allows us
to exploit our earlier results.
Mixtures of Íormal distributions are very Ñexible and have been used widely

in many Ìelds to approximate unknown or inconvenient distributions. In the
case of stochastic volatility, Kim, Shephard and Chib (1998) show that the
distribution of "�t , p ("

�

t ) can be well-approximated by:

p ("�t ) Ò

7X

i=1

qifN
�
"�t Ómi; v

2
i

�
; (38)

where fN
�
"�t Ómi; v

2
i

�
is the p.d.f. of a N

�
mi; v

2
i

�
random variable.13 Crucially,

since "t is N (0; 1) it follows that "
�

t involves no unknown parameters and neither
does this approximation. Thus, qi;mi; v

2
i for i = 1; ::; 7 are not parameters to

be estimated, but simply numbers given in Table 4 of Kim, Shephard and Chib
(1998).
An equivalent way of writing (38) is to introduce component indicator vari-

ables, st Ô Õ1; 2; ::; 7Ö for each element in the ÍÎÏmal mixture and writing:

"�t Óst = i × N
�
mi; v

2
i

�

Pr (st = i) = qi
;

for i = 1; ::; 7. This formulation provides insight into how the algorithm works.
In particular, the MCMC algorithm does not simply draw the log-volatilities
from p

�
hT ÓyT ; �; �; �2�

�
, but rather draws them from p

�
hT ÓyT ; �; �; �2�; s

T
�
.

This may seem awkward, but has the huge benËÌt that standard results from
the ÍÎÏmal linear state space models such as those described previously in this
section can be used. That is, conditional on knowing s1; ::; sT , the algorithm
knows which of the seven ÍÎÏmals "�t comes from at each t = 1; ::; T and the
model becomes a Íormal linear state space model. To complete the MCMC
algorithm requires a method for drawing from p

�
sT ÓyT ; �; �; �2�; h

T
�
but this

is simple to do since st is a discrete distribution with seven points of support.
Precise details are given in Kim, Shephard and Chib (1998).

A Digression: Marginal Likelihood Calculation in State Space Models
Marginal likelihoods are the most popular tool for Bayesian model comparison

12 In practice, it is common to set y�t = ln
�
y2t + c

�
where c is known as an o¤-set constant

set to a small number (e.g. c = 0:001) to avoid numerical problems associated with times
where y2t is zero or nearly so.
13Ømori, Chib, Shephard and ÙakaÚima (2007) recommend an even more accurate approx-

imation using a mixture of 10 Ùormal distributions.
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(e.g. Bayes factors are ratios of marginal likelihoods). In this monograph, we
focus on estimation and prediction as opposed to model comparison or hypoth-
esis testing. This is partly because state space models such as TVP-VARs are
very Ûexible and can approximate a wide range of data features. Thus, many
researchers prefer to treat them as being similar in spirit to nonparametric
models: capable of letting the data speak and uncovering an appropriate model
(as opposed to working with several parsimonious models and using statistical
methods to select a single one). Furthermore, a Bayesian rule of thumb is that
the choice of prior matters much less for estimation and prediction than it does
for marginal likelihoods. This is particularly true for high-dimensional models
such as TVP-VARs where marginal likelihoods can be sensitive to the choice of
prior. For this reason, many Bayesians avoid the use of marginal likelihoods in
high dimensional models. Even those who wish to do model comparison often
use other metrics (e.g. Geweke and Keane, 2007, uses cross-validation).

ÜÝwever, for the researcher who wishes to use marginal likelihoods, note that
there are many methods for calculating them that involve the evaluation of the
likelihood function at a point. For instance, information criteria are often ap-
proximations to marginal likelihoods and these involve calculating the maximum
likelihood estimator. The popular methods of marginal likelihood calculation
of Chib (1995) and Gelfand and Dey (1994) involve evaluating the likelihood
function. In state space models, a question arises as to what likelihood func-
tion should be used. In terms of our notation for the Þormal linear state space

model, p
�
yT ß�;�; Q; �T

�
and p

�
yT ß�;�; Q

�
can both be used as àlikelihooáâã

and either could be used in any of the methods of marginal likelihood calculation

äust cited.14 ÜÝwever, using p
�
yT ß�;�; Q; �T

�
to dåæne the likelihood function

could potentially lead to very ine¢cient computation since the parameter space
is of such high dimension.15 Thus, it is desirable to use p

�
yT ß�;�; Q

�
to deæne

the likelihood function. Fortunately, for the ÞÝçèéê linear state space model a
formula for p

�
yT ß�;�; Q

�
is available which can be found in textbooks such as

Üéçvey (1989) or Durbin and Koopman (2001).
For the stochastic volatility model, for the same reasons either p

�
yT ß�; �; �2�; h

T
�

or p
�
yT ß�; �; �2�

�
could be used to dåæne the likelihood function. It is desirable

to to use p
�
yT ß�; �; �2�

�
but, unfortunately, an analytical expression for it does

not exist. Several methods have been used to surmount this problem, but some
of them can be quite complicated (e.g. involving using particle æltering meth-
ods to integrate out hT ). Berg, Meyer and ëu (2004) discuss these issues in
detail and recommend a simple approximation called the Deviance Information
Criterion.
It is also worth noting that the MCMC algorithm for the stochastic volatility

model is an example of an auxiliary mixture sampler. That is, it introduces an
auxiliary set of states, sT , which results in a mixture of Þormals representation.

14Fruhwirth-Schnatter and ìagner (2008) refer to the former of these as the complete data
likelihood and the latter as the integrated likelihood.
15The non-Bayesian seeking to índ the maximum of this likelihood function would also

often run into troubles optimizing in such a high dimensional parameter space.

31



Conditional on these states, the model is a îormal linear state space model.
Fruhwirth-Schnatter and ïagner (2008) exploit this îðñmality (conditional on
the auxiliary states) result to develop methods for calculating marginal like-
lihoods using auxiliary mixture samplers and such methods can be used with
stochastic volatility models.

3.3.2 Multivariate Stochastic Volatility

òóô us now return to the state space model of (28) and (29) where yt is an
M � 1 vector and "t is i.i.d. N (0;�t). As we have stressed previously, in
empirical macroeconomics it is often very important to allow for �t to be time
varying. There are many ways of doing this. îðôó that �t is an M � M

positive dóõnite matrix with M(M+1)
2 distinct elements. Thus, the complete set

of �t for t = 1; ::; T containsTM(M+1)
2 unknown parameters which is a huge

number. In one sense, the literature on multivariate stochastic volatility can
be thought of as mitigating this proliferation of parameters problems through
parametric restrictions andöðr priors and working in parameterizations which
ensure that �t is always positive ÷óõnite. Discussions of various approaches can
be found in Asai, McAleer and øu (2006), Chib, îardari and Shephard (2006)
and Chib, ùúðri and Asai (2009) and the reader is referred to these papers for
complete treatments. In this section, we will describe two approaches popular
in macroeconomics. The õrst was popularized by Cogley and Sargent (2005),
the second by Primiceri (2005).
To focus on the issues relating to multivariate stochastic volatility, we will

consider the model:

yt = "t (39)

and "t is i.i.d. N (0;�t). Before discussing the spóûüõcations used by Cogley
and Sargent (2005) and Primiceri (2005) for �t we begin with a very simple
spóûüõcation such that

�t = Dt

where Dt is a diagonal matrix with each diagonal element having a univariate
stochastic volatility speciõcation. That is, if dit is the i

th diagonal element of
Dt for i = 1; ::;M , then we write dit = exp (hit) and

hi;t+1 = �i + �i (hit � �i) + �it; (40)

where �t = (�01t; ::; �
0

Mt)
0
is i.i.d. N (0; D�) where D� is a diagonal matrix (so

the errors in the state equation are independent of one another). This model
is simple to work with in that it simply says that each error follows its own
univariate stochastic volatility model, independent of all the other errors. Thus,
the Kim, Shephard and Chib (1998) MCMC algorithm can be used one equation
at a time.
This model is typically unsuitable for empirical macroeconomic research

since it is not appropriate to assume �t to be diagonal. Many interesting
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macroeconomic features (e.g. impulse responses) depend on error covariances so
assuming them to be zero may be misleading. Some researchers such as Cogley
and Sargent (2005) allow for non-zero covariances in a simple way by writing:

�t = L
�1DtL

�10 (41)

where Dt is a diagonal matrix with diagonal elements being the error variances
and L is a lower triangular matrix with ones on the diagonal. For instance, in
the M = 3 case we have

L =

2
4
1 0 0
L21 1 0
L31 L32 1

3
5 :

This form is particularly attractive for computation since, even through "it
and "jt (which are the i

th and jth elements of "t) are no longer independent of
one another, we can transform (39) as

Lyt = L"t (42)

and "�t = L"t will now have a diagonal covariance matrix. In the context of
an MCMC algorithm involving p

�
hT ýyT ; L

�
and p

�
LýyT ; hT

�
(where hT stacks

all ht = (h01t; ::; h
0

Mt)
0
into a MT � 1 vector) we can exploit this result to run

the Kim, Shephard and Chib (1998) algorithm one equation at a time. The is,
conditional on an MCMC draw of L, we can transform the model as in (42)
and use results for the univariate stochastic volatility model one transformed
equation at a time.
Finally, to complete the MCMC algorithm for the Cogley-Sargent model we

need to take draws from p
�
LýyT ; hT

�
. But this is straightforward since (42)

shows that this model can be written as a series of M regression equations with
þÿNmal errors which are independent of one another. H��ce, standard results for
the þÿNmal linear regression model can be used to draw from p

�
LýyT ; hT

�
. The

appendix to Cogley and Sargent (2005) provides precise formulae for the MCMC
algorithm (although their paper uses a less e¢cient algorithm for drawing from
p
�
hT ýyT ; L

�
than the algorithm in Kim, Shephard and Chib, 1998, discussed in

this section).
It is worth stressing that the Cogley-Sargent model allows the covariance

between the errors to change over time, but in a tightly restricted fashion related
to the way the error variances are changing. This can be seen most clearly in the
M = 2 case where "1t and "2t are the errors in the two equations. In this, case
(41) implies cov ("1t; "2t) = d1tL21 which varies proportionally with the error
variance of the �rst equation. In impulse response analysis, it can be shown
that this restriction implies that a shock to the ith variable has an e¤ect on the
jth variable which is constant over time. In some macroeconomic applications,
such a sp�e��cation might be too restrictive.
Another popular approach (see, e.g., Primiceri, 2005) extends (41) to:

�t = L
�1
t DtL

�10
t (43)

33



where Lt is de�ned in the same way as L (i.e. as being a lower-triangular matrix
with ones on the diagonal), but is now time varying. This sp����cation does not
restrict the covariances and variances in �t in any way. The MCMC algorithm
for posterior simulation from the Primiceri model is the largely same as for the
model with constant L (with the trivial change that the transformation in (42)
becomes Ltyt = Lt"t). The main change in the algorithm arises in the way Lt
is drawn.
To describe the manner in which Lt evolves, we �rst stack the unrestricted

elements by rows into a M(M�1)
2 vector as lt =

�
L21;t; L31;t; L32;t; ::; Lp(p�1);t

�0
.

These can be allowed to evolve according to the state equation:

lt+1 = lt + �t, (44)

where �t is i.i.d. N (0; D�) and independent of the other errors in the model
and D� is a diagonal matrix.

We have seen how the measurement equation in this model can be written
as:

Ltyt = "
�

t ;

and it can be shown that "�t � N (0; Dt). We can use the structure of Lt to
isolate yt on the left hand side and write:

yt = Ctlt + "
�

t : (45)

Primiceri (2005), page 845 gives a general d��nition of Ct. For M = 3,

Ct =

2
4
0 0 0
�y1t 0 0
0 �y1t �y2t

3
5 ;

where yit is the i
th element of yt. But (44) and (45) is now in form of a ��	
��

linear state space model of the sort we began this section with. Accordingly,
in the context of an MCMC algorithm, we can draw Lt (conditional on h

T and
all the other model parameters) using an algorithm such as that of Carter and
Kohn (1994) or Durbin and Koopman (2002).

��e that we have assumed D� to be a diagonal matrix. Even with this
restriction, the resulting multivariate stochastic volatility model is very �exible.
��wever, should the researcher wish to have D� being non-diagonal, it is worth
noting that if it is simply assumed to be a positive d��nite matrix then the
simplicity of the MCMC algorithm (i.e. allowing for the use of methods for
��	mal linear state space models), breaks down. Primiceri (2005) assumes D�
to have a certain block diagonal structure such that it is still possible to use
algorithms for �ormal linear state space models to draw Lt. It is also possible
to extend this model to allow for D� (the error covariance matrix in the state
equation for ht de�ned after equation 40) to be any positive d��nite matrix
(rather than the diagonal one assumed previously). Exact formulae are provided
in Primiceri (2005) for both these extensions. The empirical illustration below
uses these generalizations of Primiceri (2005).

34



4 TVP-VARs

VARs are excellent tools for modeling the inter-relationships between macro-
economic variables. ��wever, they maintain the rather strong assumption that
parameters are constant over time. There are many reasons for thinking such an
assumption may be too restrictive in many macroeconomic applications. Con-
sider, for instance, U.S. monetary policy and the question of whether the high
i��ation and slow growth of the 1970s were due to bad policy or bad luck. Some
authors (e.g. Boivin and Giannoni, 2006, Cogley and Sargent, 2001 and L��ik
and Schorfheide, 2004) have argued that the way the Fed reacted to in�ation
has changed over time (e.g. under the Volcker and Greenspan chairmanship,
the Fed was more aggressive in �ghting i��ation pressures than under Burns).
This is the �bad policy� story and is an example of a change in the monetary
policy transmission mechanism. This story depends on having VAR coe¢cients
di¤erent in the 1970s than subsequently. O�hers (e.g. Sims and Z��� 2006) have
emphasized that the variance of the exogenous shocks has changed over time
and that this alone may explain many apparent changes in monetary policy.
This is the �bad luck�story (i.e. in the 1970s volatility was high, whereas later
policymakers had the good fortune of the Great Moderation of the business cy-
cle) which motivates the addition of multivariate stochastic volatility to VAR
models . Yet others (e.g. Primiceri, 2005, Koop, L����Gonzalez and Strachan,
2009) have found that both the transmission mechanism and the variance of the
exogenous shocks have changed over time.
This example is intended to motivate the basic point that an understand-

ing of macroeconomic policy issues should be based on multivariate models
where both the VAR coe¢cients and the error covariance matrix can potentially
change over time. More broadly, there is a large literature in macroeconomics
which documents structural breaks and other sorts of parameter change in many
time series variables (see, among many others, Stock and �atson, 1996). A
wide range of alternative speci�cations have been suggested, including Markov
switching VARs (e.g. Paap and van Di�k� 2003, or Sims and Z��� 2006) and
other regime-switching VARs (e.g. Koop and Potter, 2006). ��wever, perhaps
the most popular have been TVP-VARs. A very incomplete list of references
which use TVP-VARs includes Canova (1993), Cogley and Sargent (2001, 2005),
Primiceri (2005), Canova and Gambetti (2009), Canova and Ciccarelli (2009)
and Koop, L������� �!� and Strachan (2009). In this monograph, we will not
discuss regime-switching models, but rather focus on TVP-VARs.

4.1 Homoskedastic TVP-VARs

To discuss some basic issues with TVP-VAR modelling, we will begin with
a homoskedastic version of the model (i.e. �t = �). �e will use the same
de�nition of the dependent variables and explanatory variables as in (16) from
Section 2. Remember that yt is anM�1 vector containing data onM dependent
variables and Zt is an M � k matrix. In Section 2, we saw how Zt could be
set up to either d��ne an unrestricted or a restricted VAR. Zt can also contain
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exogenous explanatory variables.16 The basic TVP-VAR can be written as:

yt = Zt�t + "t,

and

�t+1 = �t + ut; (46)

where "t is i.i.d. N (0;�) and ut is i.i.d. N (0; Q). "t and us are independent of
one another for all s and t.
This model is similar to that used in Cogley and Sargent (2001). Bayesian

inference in this model can be dealt with quite simply since it is a "#$%&' linear
state space model of the sort discussed in Section 3 of this monograph. Thus,
the MCMC methods described in Section 3 can be used for Bayesian inference
in the homoskedastic TVP-VAR. In many cases, this is all the researcher needs
to know about TVP-VARs and Bayesian TVP-VARs work very well in practice.
(#wever, in some cases, this basic TVP-VAR can lead to poor results in practice.
In the remainder of this section, we discuss how these poor results can arise and
various extensions of the basic TVP-VAR which can help avoid them.
The poor results j)*t referred to typically arise because the TVP-VAR has

so many parameters to estimate. In Section 1 we saw how, even with the VAR,
worries about the proliferation of parameters led to the use of priors such as the
Minnesota prior or the SSVS prior. +,-. so many parameters and relatively
short macroeconomic time series, it can be hard to obtain precise estimates of
coe¢cients. Thus, features of interest such as impulse responses can have very
dispersed posterior distributions leading to wide credible intervals. Furthermore,
the risk of ov/$01tting can be serious in some applications. In practice, it has
been found that priors which exhibit shrinkage of various sorts can help mitigate
these problems.

+ith the TVP-VAR, the proliferation of parameters problems is even more
severe since it has T times as many parameters to estimate. In Section 3, we saw
how the state equation in a state space model can be interpreted as a hierarchical
prior (see equation 30). And, in many applications, this prior provides enough
shrinkage to yield reasonable results. Although it is worth noting that it is
often a good idea to use a fairly tight prior for Q. For instance, if (33) is used
as a prior, then a careful choice of �Q and Q

�1 can be important in producing

sensible results.17 (#wever, in some applications, it is desirable to introduce
more prior information and we will describe several ways of doing so.

16The TVP-VAR where some of the coe¢cients are constant over time can be dealt with
by adding Wt as in (28) and (29).
17Attempts to use 2at 3noninformative4 priors on Q can go wrong since such 2at priors

actually can be quite informative, attaching large amounts of prior probability to large values
of Q. 5arge values of Q are associated with a high degree of variation on the VAR coe¢cients
(i.e. much prior weight is attached to regions of the parameter space where the opposite of
shrinkage occurs).
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4.1.1 Empirical Illustration of Bayesian Homoskedastic TVP-VAR
Methods

To illustrate Bayesian inference in the homoskedastic TVP-VAR, we use the
same U.S. data set as before (see Section 2.3), which contains three variables:
678ation, unemployment and interest rate and runs from 9:;<=1 to >??@=3.
Ae set lag length to 2.

Ae use a training sample prior of the type used by Primiceri (2005) where
prior hyperparameters are set to BCE quantities calculating using a training
sample of size � (we use � = 40). Thus, data through 1962=Q is used to choose
prior hyperparameter values and then estimation uses data beginning in 9:@<=1.
To be precise, the training sample prior uses �OLS which is the BCE estimate
of the VAR coe¢cients in a constant-coe¢cient VAR and V (�OLS) which is its
covariance matrix.
In this model, we need a prior for the initial state, �0, the measurement

equation error covariance matrix � and the state equation error covariance
matrix, Q. The Frst of these is:

�0 G N (�OLS ; 4 I V (�OLS)) ;

whereas the latter two are based on (32) with � =M + 1; S = I and (33) with
�Q = � ;Q = 0:0001 I � I V (�OLS).
Since the VAR regression coe¢cients are time-varying, there will be a dif-

ferent set of them in every time period. This typically will lead to far too
many parameters to present in a table or graph. JKre we will focus on impulse
responses (dKFned as in Section 2.3). But even for these we have a di¤erent
impulse response function at each point in time.18 Accordingly, Figure 4 plots
impulse responses for three representative times: 1:M;=9, 9:P9=3 and 9::@=1.
For the sake of brevity, we only present the impulse responses of each variable
to a monetary policy shock (i.e. a shock in the interest rate equation).
Using the prior spec6Fed above, we see that there are very small di¤erences

in these responses in three di¤erent representative periods (19M;=9R 1981=<

and 9::@=1). In this Fgure the posterior median is the solid line and the
dotted lines are the 10th and 90th percentiles. These impulse responses are,
in some cases, somewhat di¤erent from the ones found in Section 2.3 for the
VARs without parameter variation, which indicates the potential importance of
allowing for time variation in parameters. STUe also that the impulse responses
in the three years di¤er only slightly from one another. This is consistent with
a common Fnding by researchers using similar data sets: that much of the time
variation in parameters occurs in the error covariance matrix rather than the
VAR coe¢cients. In this model we are assuming homoskedasticity, but we will
relax this assumption shortly.

18 It is common practice to calculate the impulse responses at time time using �t and simply
ignoring the fact that it will change over time and we do so below. For more general treatments
of Bayesian impulse response analysis see Koop (1996).
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Figure 4: Posterior of impulse responses to monetary policy shock at
di¤erent times

4.1.2 Combining other Priors with the TVP Prior

The Minnesota and SSVS Priors In Section 1, we described several priors
that are commonly used with VARs and, when moving to TVP-VARs, an obvi-
ous thing to do is to try and combine them with the hierarchical prior VX[ned
by the state equation. This can be done in several ways. \]X approach, used in
papers such as Ballabriga, Sebastian and Valles (1999), Canova and Ciccarelli
(2004), and Canova (2007), involves combining the prior of the TVP-VAR with
the Minnesota prior. This can be done by replacing (46) by

�t+1 = A0�t + (I �A0)�0 + ut; (47)

where A0 is a k � k matrix and �0 a k � 1 vector. The matrices A0, �0 and Q
can either be treated as unknown parameters or speci[c values of them can be
chosen to rX êct the Minnesota prior. For instance, Canova (2007, page 399)
sets �0 and Q to have forms based on the Minnesota prior and sets A0 = cI

where c is a scalar. The reader is referred to Canova (2007) for precise details,
but to provide a âvor of his recommendations, note that if c = 1, then the
traditional TVP-VAR prior implication that E

�
�t+1

�
= E (�t) is obtained,

but if c = 0 then we have E
�
�t+1

�
= �0. Canova (2007) recommends setting
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the elements of �0 corresponding to own lags to one and all other elements to
zero, thus leading to the same prior mean as in the Minnesota prior. Canova
(2007) sets Q to values inspired by the prior covariance matrix of the Minnesota
prior (similar to equation 8). The scalar c can either be treated as an unknown
parameter or a value can be selected for it (e.g. based on a training sample).
It is also possible to treat A0 as a matrix of unknown parameters. To carry

out Bayesian inference in such a model is usually straightforward since it re-
quires only the addition of another block in an MCMC algorithm. In Section

3.2 we saw how an MCMC algorithm involving p
�
��1_yT ; �T

�
, p
�
Q�1_yT ; �T

�

and p
�
�T _yT ;�; Q

�
could be used to carry out posterior simulation in the

`abmal linear state space model. If A0 involves unknown parameters, then

an MCMC algorithm involving p
�
��1_yT ; �T ; A0

�
, p
�
Q�1_yT ; �T ; A0

�
and

p
�
�T _yT ;�; Q;A0

�
proceeds in exactly the same manner. Using the notation

of Section 3.2, we can simply set Tt = A0 and the methods of that section
can be directly used. To complete an MCMC algorithm requires draws from

p
�
A0_y

T ;�; Q; �T
�
. This will depend on the spefghcation used for A0, but typ-

ically this posterior conditional distribution is easy to derive using results for

the VAR. That is, p
�
A0_y

T ;�; Q; �T
�
is a distribution which conditions on �T ,

and (47) can be written in lVARm form

�t+1 � �0 = A0
�
�t � �0

�
+ ut;

with ldependent variablesm�t+1��0 and llagged dependent vabgnopqsm�t��0.
In the context of the MCMC algorithm, these ldependent variablesmand llagged
dependent variablesmwould be replaced with the drawn values.
Any prior can be used for a0 = vec (A0) including any of the VAR priors

described in Section 2. te will not provide exact formulae here, but note that
they will be exactly as in Section 2 but with yt replaced by �t+1 � �0 and xt
(or Zt) replaced by �t � �0.

uvq prior for a0 of empirical interest is the SSVS prior of Section 2.2.3. It is
interesting to consider what happens if we use the prior given in (22) and (23)
for a0 and set �0 = 0.19 This implies that a0j (the j

th element of a0) has a
prior of the form:

a0j _j w
�
1� j

�
N
�
0; �20j

�
+ jN

�
0; �21j

�
;

where j is a dummy variable and �
2
0j is very small (so that a0j is constrained

to be virtually zero), but �21j is large (so that a0j is relatively unconstrained).
The implication of combining the SSVS prior with the TVP prior is that we
have a model which (with probability j) says that a0j is evolving according

19 If the variables in the VAR are in levels, then the researcher may wish to set the elements
of �0 corresponding to own xrst lags to one, to reyect the common Minnesota prior belief in
random walk behavior.

39



to a random walk in the usual TVP fashion, but with probability
�
1� j

�
is

set to zero. Such a model is a useful one since it allows for change in VAR
coe¢cients over time (which is potentially of great empirical importance), but
also helps avoid over-parameterization problems by allowing for some lagged
dependent variables to be deleted from the VAR. Another interesting approach
with a similar methodology is given in Groen, Paap and Ravazzolo (2008).

Adding Another Layer to the Prior Hierarchy Another way to combine
the TVP model with prior information from another source is by adding another
state equation to the TVP-VAR (i.e. another layer in the prior hierarchy). The
framework that follows is taken from Chib and Greenberg (1995) and has been
used in macroeconomics by, among others, Ciccarelli and Rebucci (2002).
This involves writing the TVP-VAR as:

yt = Zt�t + "t (48)

�t+1 = A0�t+1 + ut;

�t+1 = �t + �t:

where all assumptions are as for the standard TVP-VAR, but we add the as-
sumption that �t is i.i.d. N (0; R) and �t is independent of the other errors in
the model.

z{|e }rst that there is a sense in which this sp~��}cation retains random
walk evolution of the VAR coe¢cients since it can be written as:

yt = Zt�t + "t

�t+1 = �t + vt;

where vt = A0�t + ut � ut�1. In this sense, it is a TVP-VAR with random
walk state equation but, unlike (46), the state equation errors have a particular
MA(1) structure.
Another way of interpreting this model is by noting that it expresses the

conditional prior belief that

E
�
�t+1��t

�
= A0�t

and, thus, is a combination of the random walk prior belief of the conventional
TVP model with the prior beliefs contained in A0. A0 is typically treated as
known.

z{|e that it is possible for �t to be of lower dimension than �t and this
can be a useful way of making the model more parsimonious. For instance, Cic-
carelli and Rebucci (2002) is a panel VAR application involving G countries and,
for each country, kG explanatory variables exist with time-varying coe¢cients.
They specify

A0 = �G � IkG
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which implies that there is a time-varying component in each coe¢cient which
is common to all countries (rather than having G di¤erent time-varying compo-
nents in each country). Thus, �t is kG � 1 whereas �t kGG� 1.
Posterior computation in this model is described in Chib and Greenberg

(1995). Alternatively, the posterior simulation methods for state space models
described in Section 3 can be used, but with a more general sp����cation for
the state equation than that given there. ���t as in the preceding section, if
A0 is to be treated as a matrix of unknown parameters any prior can be used
and another block added to the MCMC algorithm. The form of this block will
typically be simple since, conditional on the states, we have �t+1 = A0�t+1+ut
which has the same structure as a multivariate regression model.
As one empirically-useful example, suppose we use the SSVS prior of Sec-

tion 2.2.3 for A0. Then we obtain a model where some VAR coe¢cients evolve
according to random walks in the standard TVP fashion while others are (ap-
proximately) omitted from the model.

4.1.3 Imposing Inequality Restrictions on the VAR Coe¢cients

Empirical macroeconomists typically work with multivariate time series models
that they believe to be non-explosive. Thus, in TVP-VAR models it can be
desirable to impose stability on the TVP-VAR at each point in time. This has
lead papers such as Cogley and Sargent (2001, 2005) to restrict �t to satisfy the
usual stability conditions for VARs for t = 1; ::; T . This involves imposing the
inequality restriction that the roots of the VAR polynomial d��ned by �t lie
outside the unit circle. Indeed, in the absence of such a stability restriction (or
a very tight prior), Bayesian TVP-VARs will place a large amount of a priori
weight on explosive values for �t (e.g. the Minnesota prior is centered over a
random walk which means it allocates prior weight to the explosive region of the
parameter space). This can cause problems for empirical work. For instance,
even a small amount of posterior probability in explosive regions for �t can lead
to impulse responses or forecasts which have counter-intuitively large posterior
means or standard deviations. Given that TVP-VARs have many parameters
to estimate and the researcher often has relatively small data sets, the posterior
standard deviation of �t can often be large. Thus, even if �t truly is stable
and its posterior mean indicates stability, it is not unusual for large posterior
variances to imply that appreciable posterior probability is allocated to the
explosive region.
The preceding paragraph motivates one case where the researcher might

wish to impose inequality restrictions on �t in order to surmount potential over-
parameterization problems which might arise in the TVP-VAR.��her inequality
restrictions are also possible. In theory, imposing inequality restrictions is a
good way of reducing over-parameterization problems. In practice, there is one
problem with this strategy. This problem is that standard state space methods
for the �ormal linear state space models (see Section 3) cannot be used without
some mo���cation. Remember that MCMC methods for this model involved
taking draws from p

�
�T �yT ;�; Q

�
and that there are many e¢cient algorithms
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for doing so (e.g. Carter and Kohn, 1994, Fruhwirth-Schnatter, 1994, ������

and Shephard, 1995 and Durbin and Koopman, 2002). ��wever, all of these
algorithms are derived using properties of the multivariate ���mal distribution
which do not carry over to the multivariate ���mal distribution sub��ct to
inequality constraints.
Two methods have been proposed to impose stability restrictions (or other

inequality restrictions) on TVP-VARs. These are discussed and compared in
Koop and Potter (2009). The �rst of these involves using a standard algorithm
such as that of Carter and Kohn (1994) for drawing �T in the unrestricted
VAR. If any drawn �t violates the inequality restriction then the entire vector
�T is ���ected.20 If every element of �T �� ¡��es the inequality restriction then
�T is accepted with a certain probability (the formula for this probability is
given in Koop and Potter, 2009). A potential problem with this algorithm is
that it is possible for it to get stuck, re��cting virtually every �T . In theory,
if enough draws are taken this MCMC algorithm can be highly accurate, in
practice ¢enough dra£�¤ can be so many that the algorithm simply cannot
produce accurate results in a feasible amount of computer time.
In the case where no inequality restrictions are imposed, the advantage of

algorithms such as that of Carter and Kohn (1994) is that they are multi-move
algorithms. This means that they provide a draw for the entire vector �T from

p
�
�T ¥yT ;�; Q

�
directly. The logic of MCMC suggests that it would also be

valid to draw �t for t = 1; ::; T one at a time from p
�
�t¥y

T ;�; Q; �
�t

�
where

�
�t =

�
�01; ::; �t�1; �t+1; ::; �

0

T

�0
. It is indeed the case that this is also valid thing

to do. ��wever, it is rarely done in practice since such single-move algorithms
will be slow to mix. That is, they will tend to produce a highly correlated series
of draws which means that, relative to multi-move algorithms, more draws must
be taken to achieve a desired level of accuracy. The second algorithm proposed
for the TVP-VAR sub��ct to inequality restrictions is a single-move algorithm.
This algorithm does have the disadvantage �ust noted ¦that it is slow mixing.
But it is possible that this disadvantage is outweighed by the advantage that
the single-move algorithm does not run into the problem noted above for the
multi-move algorithm (i.e. that the multi-move algorithm can get stuck and
����ct every draw).

Koop and Potter (2009) provide full details of both these algorithms and
weigh their advantages and disadvantages in a macroeconomic application.

4.1.4 Dynamic Mixture Models

Another way of tightening the parameterization of the TVP-VAR is through the
dynamic mixture model approach of Gerlach, Carter and Kohn (2000). This
has recently been used in models of relevance for empirical macroeconomics in
Giordani, Kohn and van �¡�§ (2007) and Giordani and Kohn (2008) and applied
to TVP-VARs in Koop, ¨���©Gonzalez and Strachan (2009).

20 It can be shown that the strategy of reªecting only individual �t which violate the in-
equality restriction is not a valid one.
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To explain the usefulness of dynamic mixture modelling for TVP-VAR analy-
sis, return to the general form for the «¬mal linear state space model given
in (28) and (29) and remember that this model depended on so-called system
matrices, Zt, Qt, Tt, Wt and �t. Dynamic mixture models allow for any or
all of these system matrices to depend on an s � 1 vector eKt. Gerlach, Carter
and Kohn (2000) discuss how this spe®¯°cation results in a mixtures of «ormals
representation for yt and, hence, the terminology dynamic mixture (or mix-
ture innovation) model arises. The contribution of Gerlach, Carter and Kohn
(2000) is to develop an e¢cient algorithm for posterior simulation for this class
of models. The e¢ciency gains occur since the states are integrated out and

eK =
�
eK1; ::; eKT

�0
is drawn unconditionally (i.e. not conditional on the states).

A simple alternative algorithm would involve drawing from the posterior for eK
conditional on �T (and the posterior for �T conditional on eK). Such a strat-
egy can be shown to produce a chain of draws which is very slow to mix. The
Gerlach, Carter and Kohn (2000) algorithm requires only that eKt be Markov

(i.e. p
�
eKt±
eKt�1; ::; eK1

�
= p

�
eKt±
eKt�1

�
) and is particularly simple if eKt is a

discrete random variable. ²e will not provide details of their algorithm here,
but refer the reader to Gerlach, Carter and Kohn (2000) or Giordani and Kohn
(2008). This algorithm is available on the Matlab website associated with this
monograph.
The dynamic mixture framework can be used in many ways in empirical

macroeconomics, here we illustrate one useful way. Consider the following TVP-
VAR:

yt = Zt�t + "t,

and

�t+1 = �t + ut;

where "t is i.i.d. N (0;�) and ut is i.i.d. N
�
0; eKtQ

�
. This model is exactly the

same as the TVP-VAR of Section 4.1, except for the error covariance matrix in
the state equation. ³´µ eKt ¶ ·0; 1¸ and assume a hierarchical prior for it of the
following form:

p
�
eKt = 1

�
= q:

p
�
eKt = 0

�
= 1� q

where q is an unknown parameter.21

This is a simple example of a dynamic mixture model. It has the property
that:

21This speci¹cation for eKt is Markov in the degenerate sense that an independent process
is a special case of Markov process.
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�t+1 = �t + ut if eKt = 1

�t+1 = �t if eKt = 0
:

In words, the VAR coe¢cients can change at time t (if eKt = 1), but can also

remain constant (if eKt = 0) and q is the probability that the coe¢cients change.
eKt and q are estimated in a data-based fashion. Thus, this model can have the
full ºexibility of the TVP-VAR if the data warrant it (in the sense that it can

select eKt = 1 for t = 1; ::; T ). But it can also select a much more parsimonious

representation. In the extreme, if eKt = 0 for t = 1; ::; T then we have the VAR
without time-varying parameters.
This simple example allows either for all the VAR coe¢cients to change at

time t (if eKt = 1) or none (if eKt = 0). More sophisticated models can allow for

some parameters to change but not others. For instance, eKt could be a vector
of M elements, each being applied to one of the equations in the VAR. Such a
model would allow the VAR coe¢cients in some equations to change, but remain
constant in other equations. In models with multivariate stochastic volatility,
eKt could contain elements which control the variation in the measurement error
covariance matrix, �t. This avenue is pursued in Koop, »¼½¾¿À½¾ÁÂÃ¼Á and
Strachan (2009). Many other possibilities exist and the advantage of the dy-
namic mixture framework is that there exists a well-developed, well-understood
set of MCMC algorithms that make Bayesian inference straightforward.

4.2 TVP-VARs with Stochastic Volatility

Thus far, we have focussed on the homoskedastic TVP-VAR, assuming the er-
ror covariance matrix, � to be constant. Äowever, we have argued above (see
Section 3.3) that volatility issues are often very important in empirical macro-
economics. Thus, in most cases, it is important to allow for multivariate stochas-
tic volatility in the TVP-VAR. Section 3.3.2 discusses multivariate stochastic
volatility, noting that there are many possible sp¼ÅÆÇcations for �t. Particu-
lar approaches used in Cogley and Sargent (2005) and Primiceri (2005) are de-
scribed in detail. All that we have to note here is that either of these approaches
(or any other alternative) can be added to the homoskedastic TVP-VAR.

ÈÆÉÊ regards to Bayesian inference using MCMC methods, we need only
add another block to our algorithm to draw �t for t = 1; ::; T . That is,
with the homoskedastic TVP-VAR we saw how an MCMC algorithm involv-

ing p
�
Q�1ËyT ; �T

�
, p
�
�T ËyT ;�; Q

�
and p

�
��1ËyT ; �T

�
could be used. Èhen

adding multivariate stochastic volatility, the Çrst of these densities is unchanged.

The second, p
�
�T ËyT ;�; Q

�
, becomes p

�
�T ËyT ;�1; ::;�T ; Q

�
which can be

drawn from using any of the algorithms (e.g. Carter and Kohn, 1994) for the

Ì½Ímal linear state space model mentioned previously. Finally, p
�
��1ËyT ; �T

�

is replaced by p
�
��11 ; ::;��1T ËyT ; �T

�
. Draws from this posterior conditional

can be taken as described in Section 3.3.2.
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4.3 Empirical Illustration of Bayesian Inference in TVP-
VARs with Stochastic Volatility

Îe continue our empirical illustration of Section 4.1.1 which involved a ho-
moskedastic TVP-VAR. All details of the empirical are as in Section 4.1.1 ex-
cept we additionally allow for multivariate stochastic volatility as in Primiceri
(2005). The prior for the parameters relating to the multivariate stochastic
volatility are spÏÐÑÒed as in Primiceri (2005).
For the sake of brevity, we do not present impulse responses (these are similar

to those presented in Primiceri, 2005). Instead we present information relating
to the multivariate stochastic volatility. Figure 6 presents the time-varying
standard deviations of the errors in the three equations of our TVP-VAR (i.e.
the posterior means of the square roots of the diagonal element of �t). Figure
5 shows that there is substantial time variation in the error variances in all
equations. In particular, it can be seen that 1970s was a very volatile period
for the US economy, while the monetarist experiment of the early 1980s is also
with instability. ÓÔwever, after the early 1980s volatility is greatly reduced in
all equations. This latter period has come to be known as the Great Moderation
of the business cycle.

Figure 5: Time-varying volatilities of errors in the three equations of
the TVP-VAR
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5 Factor Methods

The VAR and TVP-VAR methods we have discussed so far are typically used
when the number of variables in the model is relatively small (e.g. three or four
and rarely more than ten).22 ÕÖwever, in most modern economies, the macro-
economist will potentially have dozens or hundreds of time series variables to
work with. Especially when forecasting, the researcher wants to include as much
information as possible, and it can be desirable to work with as many variables
as possible. This can lead to models with a large number of variables and a pro-
liferation of parameters. Accordingly, researchers have sought ways of extract-
ing the information in data sets with many variables while, at the same time,
keeping the model parsimonious. Beginning with Geweke (1977) factor models
have been the most common way of achieving this goal (see Stock and ×at-
son 2006 for a recent survey). Applications such as Forni and Reichlin (1998),
Stock and ×atson (1999, 2002), Bernanke and Boivin (2003), have popularized
factor methods among macroeconomists and Geweke and Øhou (1996), ÙÚÛok
and ×hiteman (1998) and Kose, ÙÚrok and ×Üiteman (2003), among many
others, stimulated the interest of Bayesians. Papers such as Bernanke, Boivin
and Eliasz (2005) and Stock and ×atson (2005) have combined factor methods
with VAR methods. More recently, papers such as Del ÝÞgro and ÙÚrok (2008)
and Korobilis (2009a) provide further TVP extensions to these models. In this
section, we will describe dynamic factor models and their extensions to factor
augmented VARs (FAVARs) and TVP-FAVARs. As we shall see, these models
can be interpreted as state space models and Bayesian MCMC algorithms that
use our previously-discussed algorithms for state space models can be used.

5.1 Introduction

×e will retain our notation where yt is an M � 1 vector of time series variables,
but now M will be very large and let yit denote a particular variable. A simple
static factor model is (see ßÖpes and ×est, 2004):

yt = �0 + �ft + "t; (49)

The key aspect of the factor model is the introduction of ft which is a q � 1
vector of unobserved latent factors (where q << M) which contains information
extracted from all theM variables. The factors are common to every dependent
variable (i.e. the same ft occurs in every equation for yit for i = 1; :::;M), but
they may have di¤erent coe¢cients (� which is aM�q matrix of so-called factor
loadings). Also, the equation for every dependent variable has its own intercept
(i.e. �0 is M � 1 vector of parameters). "t is i.i.d. N (0;�). Di¤erent factor
models arise from the assumptions about the factors. For example, the simplest
case would be to assume that the factors come from a standard ÝÖrmal density,
ft à N (0; I). This implies that the covariance matrix of the observed data can

22An important exception is Banbura, Giannone and Reichlin (2008) which uses Bayesian
VARs (with time-invariant coe¢cients) with up to 130 variables

46



be written as:
var(y) = ��0 +�:

Alternatively, if we assume that the factors have a (not necessarily diagonal)
covariance matrix �f , the decomposition becomes

var(y) = ��f�0 +�:

Even in this simple static framework, many extensions are possible. For
example, Pitt and Shephard (1999) assume a factor stochastic volatility spáâãä-

cation (i.e. a diagonal factor covariance matrix �ft which varies over time, with
diagonal elements following a geometric random walk). åest (2003) uses SSVS
on the parameters (�0; �).

åe write out these covariance matrices to illustrate the idenæãäcation issues
which arise in factor models. In general, var(y) will have M(M+1)

2 elements
which can be estimated. çèwever, without further restrictions, � and � (or
�;�f and �) will have many more elements than this. It is common to restrict
� to be a diagonal matrix. This restriction implies that all the commonalities
across variables occur through the factors and that the individual elements of "t
are purely shocks which are idiosyncratic to each variable. But additional iden-
tifying restrictions are typically required. éèpes and åest (2004) and Geweke
and êëèì (1996) give a clear explanation of why identãäcation is not achieved
in the simple factor model. Below we will discuss more íexible factor models,
but we stress that this added íexibility requires the imposition of more identi-
äcation restrictions. There is not a single, universally agreed-upon method for
achieving identiäcation in these models. Below, we make particular choices that
have been used in the literature, but note that others are possible.

5.2 The Dynamic Factor Model

In macroeconomics, it is common to extend the static factor model to allow for
the dynamic properties which characterize macroeconomic variables. This leads
us to dynamic factor models (DFMs). A popular DFM is:

yit = �0i + �ift + "it
ft = �1ft�1 + ::+�pft�p + "

f
t

"it = �i1"it�1 + ::+ �ipi"it�pi + uit

; (50)

where ft is deäned as in (49), �i which is a 1� q vector of factor loadings. Also,
the equation for every dependent variable has its own intercept, �0i. The error
in each equation, "it, may be autocorrelated, as spáâãäed in the third equation in
(50) which assumes uit to be i.i.d. N

�
0; �2i

�
. The vector of factors is assumed

to follow a VAR process with "ft being i.i.d. N
�
0;�f

�
. The errors, uit are

independent over i; t and of "ft .
Many slight moîãäcations of the DFM given in (50) have been used in the

literature. But this speâãäcation is a popular one so we will discuss factor models
using this framework. ïèæá that it incorporates many identifying assumptions
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and other assumptions to ensure parsimony. In particular, the assumption that
�f = I is a common identifying assumption.23 If �f is left unrestricted, then
it is impossible to separately identify �i and �

f . Similarly, the identifying
assumption that uit is uncorrelated with ujt (for i ð= j) and "ft is a standard
one which assures that the co-movements in the di¤erent variables in yt arises
from the factors. Even with these assumptions, there is a lack of idenñòócation
since the órst equation of (50) can be replaced by:

yit = �0i + �iC
0Cft + "it;

where C is any orthonormal matrix.24 Thus, (50) is observationally equivalent
to a model with factors Cft and factor loadings �iC

0. ôõö way of surmounting
this issue is to impose restrictions on �i (as is done below in our empirical
example). A further discussion of various DFMs and idenñòócation is provided,
e.g., in Stock and ÷atson (2005). See also Sentana and Fiorentini (2001) for a
deeper discussion of identiócation issues.

To simplify the following discussion, we will assume the errors in the mea-
surement equation are not autocorrelated (i.e. "it are i.i.d. N

�
0; �2i

�
and,

thus,�i1 = :: = �ipi = 0). ÷e do this not because the extension to autocorre-
lated errors is empirically unimportant (it may be important), but because it
involves a straightforward addition of other blocks to the MCMC algorithm of
a standard form. That is, adding AR (or ARMA) errors to a regression model
such as the órst equation of (50) involves standard methods (see, e.g., Chib
and Greenberg, 1994). To be precise, the Chib and Greenberg (1994) algorithm
will produce draws of �i1; ::; �ip and these can be plugged into the usual quasi-
di¤erencing operator for AR models and this operator can be applied to the
órst equation in (50). The methods described below can then be used to draw
all the other parameters of this model, except that yit and ft will be replaced
by quasi-di¤erenced versions.

5.2.1 Replacing Factors by Estimates: Principal Components

Before discussing a full Bayesian analysis of the DFM which (correctly) treats
ft as a vector of unobserved latent variables, it is worth noting a simple approx-
imation that may be convenient in practice. This approximation is used, e.g.,
in Koop and Potter (2004). It involves noting that the DFM has approximately
the same structure as the regression model:

yit = �0i + e�0ift + ::+ e�pift�p + e"it: (51)

Thus, if ft were known we could use Bayesian methods for the multivariate
øùúmal regression model to estimate or forecast with the DFM.

23ûowever, if (as below and in Pitt and Shephard, 1999) the researcher wishes to allow for
factor stochastic volatility then this identifying assumption cannot be made and an alternative
one is necessary.
24An orthonormal matrix has the property that CüC = I.
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ýþwever, it is common to use principal components methods to approximate
ft.

25 ýÿHce, approximate methods for Bayesian analysis of the DFM can be
carried out by simply replacing ft (51) by a principal components estimate and
using regression methods.

5.2.2 Treating Factors as Unobserved Latent Variables

It is also not di¢cult to treat the factors as unobserved latent variables using
Bayesian methods for state space models that were discussed in Section 3. This
is particularly easy to see if we ignore the AR structure of the errors in the
measurement equation and write the DFM as

yit = �0i + �ift + "it
ft = �1ft�1 + ::+�pft�p + "

f
t

(52)

for i = 1; ::;M where "it is i.i.d. N
�
0; �2i

�
and "ft is i.i.d. N

�
0;�f

�
: In this

form it can be seen clearly that the DFM is a Nþ�mal linear state space model of
the form given in (28) and (29). Thus all the methods for posterior simulation
introduced in Section 3 can be used to carry out Bayesian inference. In the
following we provide some additional detail about the steps involved.

Nþ�e �rst that, conditional on the model�s parameters, �f ;�1; ::;�p; �0i; �i; �
2
i

for i = 1; ::;M , any of the standard algorithms for state space models such as
that of Carter and Kohn (1994) can be used to draw the factors. But conditional
on the factors, the measurement equations are just M Nþ�mal linear regression
models. Note that the assumption that "it is independent of "jt for i 6= j means
that the posteriors for �0i; �i; �

2
i in theM equations are independent over i and,

hence, the parameters for each equation can be drawn one at a time. Finally,
conditional on the factors, the state equation becomes a VAR and the methods
for Bayesian analysis in VARs of Section 2 can be used. Details on the deriva-
tions for this or related models can be found in many places, including Geweke
and Z�þ� (1996), Kim and Nÿ��þH (1999), Lþpes andWest (2004) or Del Nÿgro
and Schorfheide (2009). Lþpes and West (2004) discusses the choice of q, the
number of factors.

5.2.3 Impulse Response Analysis in the DFM

In our discussion of impulse response analysis in VAR models, we emphasized
how it is typically done based on a structural VAR:

C0yt = c0 +

pX

j=1

Cjyt�j + ut

25 If Y is the T �M matrix containing all the variables and W is a M � q matrix containing
the eigenvectors corresponding to the q largest eigenvalues of Y 0Y , then F = YW produces
an estimate of the matrix of the factors.
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or C (L) yt = c0 + ut where ut is i.i.d. N (0; I), C (L) = C0 �
Pp

j=1 CjL
p and

L is the lag operator. In fact, impulse responses are coe¢cients in the vector
moving averaging (VMA) representation:

yt = ec0 + C (L)�1 ut;
where ec0 is an intercept (ec0 = C (L)

�1
c0). To be precise, the response of the

ith variable to the jth structural error h periods in the future, will be the (ij)
th

element of the VMA coe¢cient matrix on ut�h. This makes clear that what is
required for impulse response analysis is a VMA representation and a method
for structurally identifying shocks through a choice of C0.

���	 the DFM, we can obtain the VMA representation for yt. By substi-
tuting the state equation in (52) into the measurement equation we can obtain:

yt = "t + �� (L)
�1
"
f
t

= B (L) �t

where � (L) = I � �1L � :: � �pL
p and, for notational simplicity, we have

suppressed the intercept and are still assuming "t to be serially uncorrelated.
Adding such extensions is conceptually straightforward (e.g. implying "t�1; ::; "t�p
would be included in the VMA representation).
In the VMA form it can be seen that standard approaches to impulse re-

sponse analysis run into trouble when the DFM is used since the errors in the
VMA are a combination of the measurement equation errors, "t, and the state
equation errors, "ft . For instance, in the VAR it is common to identify the struc-
tural shocks by assuming C0 to be a lower-triangular matrix. If the interest rate
were the last element of yt this would ensure that the error in the interest rate
equation had no immediate e¤ect on the other variables thus identifying it as a
monetary policy shock under control of the central bank (i.e. the shock will be
proportional to the change in interest rates). ���	 the DFM, a monetary policy
shock d
�ned by assuming C0 to be lower triangular will not purely r
�ect the
interest rate change, but will re�ect the change in the interest rate and relevant
element of "ft . Thus, impulse response analysis in DFMs is problematic: it is dif-
�cult to identify an economically-sensible structural shock to measure impulse
responses to. This motivates the use of FAVARs. In one sense, these are simply
a di¤erent form for writing the DFM but implicitly involve a restriction which
allows for economically-sensible impulse response analysis.26

5.3 The Factor Augmented VAR (FAVAR)

DFMs are commonly used for forecasting. �wever, interest in combining the
theoretical insights provided by VARs with factor methods�ability to extract
information in large data sets motivates the development of factor augmented

26This is the interpretation of the FAVAR given by Stock and �atson (2005) who begin by
writing the FAVAR as simply being a DFM written in VAR form.
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VARs or FAVARs. For instance, a VAR with an identifying assumption which
isolates a monetary policy shock can be used to calculate impulse responses
which measure the e¤ect of monetary policy. As we have seen, such theoretical
insights are hard to obtain in the DFM. ��wever, VARs typically involve only a
few variables and it is possible that this means important economic information
is excluded.27 This suggests that combining factor methods, which extract the
information in hundreds of variables, with VAR methods might be productive.
This is done in papers such as Bernanke, Boivin and Eliasz (2005) and Belviso
and Milani (2006).
The FAVAR mo���es a DFM such as (52) by adding other explanatory vari-

ables to the M measurement equations:

yit = �0i + �ift + irt + "it; (53)

where rt is a kr�1 vector of observed variables. For instance, Bernanke, Boivin
and Eliasz (2005) set rt to be the Fed Funds rate (a monetary policy instrument)
and, thus, kr = 1. All other assumptions about the measurement equation are
the same as for the DFM.
The FAVAR extends the state equation for the factors to also allow for rt to

have a VAR form. In particular, the state equation becomes:

�
ft
rt

�
= e�1

�
ft�1
rt�1

�
+ ::+ e�p

�
ft�p
rt�p

�
+ e"ft (54)

where all state equation assumptions are the same as for the DFM with the

extension that e"ft is i.i.d. N
�
0; e�f

�
:

�e will not describe the MCMC algorithm for carrying out Bayesian infer-
ence in the FAVAR since it is very similar to that for the DFM.28 That is, (53)
and (54) is a �����l linear state space model and, thus, standard methods (e.g.
from Carter and Kohn, 1994) described in Section 3 can be used to draw the
latent factors (conditional on all other model parameters). Conditional on the
factors, the measurement equations are simply univariate ������ linear regres-
sion models for which Bayesian inference is standard. Finally, conditional on
the factors, (54) is a VAR for which Bayesian methods have been discussed in
this monograph.

5.3.1 Impulse Response Analysis in the FAVAR

�ith the FAVAR, impulse responses of all the variables in yt to the shocks
associated with rt can be calculated using standard methods. For instance, if
rt is the interest rate and, thus, the error in its equation is the monetary policy

27As an example, VARs with a small number of variables sometimes lead to counter-intuitive
impulse responses such as the commonly noted price puzzle (e.g. where increases in interest
rates seem to increase in�ation). Such puzzles often vanish when more variables are included
in the VAR suggesting that VARs with small numbers of variables may be mis-speci�ed.
28The working paper version of Bernanke, Boivin and Eliasz (2005) has an appendix which

provides complete details. See also the Matlab manual on the website associated with this
monograph.
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shock, then the response of any of the variables in yt to the monetary policy
shock can be calculated using similar methods as for the VAR. To see this note
that the FAVAR model can be written as:

�
yt
rt

�
=

�
� 

0 1

��
ft
rt

�
+ e"t;

�
ft
rt

�
= e�1

�
ft�1
rt�1

�
+ ::+ e�p

�
ft�p
rt�p

�
+ e"ft

where e"t = ("0t; 0)0 and  is anM�kr matrix containing the is. As for the DFM
model, for notational simplicity, we have suppressed the intercept and assumed
"t to be serially uncorrelated. Adding such extensions is straightforward.

If we write the second equation in VMA form as

�
ft
rt

�
= e� (L)�1 e"ft

(where e� (L) = I � e�1L � :: � e�Lp) and substitute into the �rst equation, we
obtain:

�
yt
rt

�
=

�
� 

0 1

�
e� (L)�1 e"ft + e"t

= eB (L) �t:

Thus, we have a VMA form which can be used for impulse response analysis. But
consider the last kr elements of �t which will be associated with the equations
for rt. Unlike with the DFM, these VMA errors are purely the errors associated
with the VAR for rt. This can be seen by noting that the last kr elements of e"t
are zero and thus the corresponding elements of �t will only re�ect corresponding

elements of e"ft which are errors in equations having rt as dependent variables.
Unlike in the DFM, they do not combine state equation errors with measurement
equation errors. For instance, if rt is an interest rate and structural identi�cation
is achieved by assuming C0 (see equation 14) to be lower-triangular, then the
structural shock to the interest rate equation is truly proportional to a change
in the interest rate and the response to such a monetary policy shock has an
economically-sensible interpretation.
Remember that, as with any factor model, we require identi�cation restric-

tions (e.g. principal components methods implicitly involve an identi�cation
restriction that the factors are orthogonal, but other restrictions are possible).
In order to do structural impulse response analysis, additional identi�cation re-
strictions are required (e.g. that C0 is lower-triangular). �ote also that the
restrictions such as C0 being lower triangular are timing restrictions and must
be thought about carefully. For instance, Bernanke, Boivin and Eliasz (2005)
divide the elements of yt into blocks of �slow vari !"#$% (i.e. those which are
slow to respond to a monetary policy shock) and �fast variable$%as part of their
identi�cation scheme.
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5.4 The TVP-FAVAR

In this monograph, we began by discussing Bayesian VAR modelling, before
arguing that it might be desirable to allow the VAR coe¢cients to vary over
time. This led us to the homoskedastic TVP-VAR. &'(), we argued that it is
usually empirically important to allow for multivariate stochastic volatility. *e
can go through exactly the same steps with the FAVAR resulting in a TVP-
FAVAR. Several speci+cations have been proposed, including Del &',-o and
O)rok (2008) and Korobilis (2009a). ./wever, 123t as with TVP-VARs, it is
worth stressing that TVP-FAVARs can be over-parameterized and that care-
ful incorporation of prior information or the imposing of restrictions (e.g. only
allowing some parameters to vary over time) can be important in obtaining
sensible results. Completely unrestricted versions of them can be di¢cult to
estimate using MCMC methods since they involve so many di¤erent state equa-
tions (i.e. one set for the factors and others to model the evolution of the
parameters).
A very general speci+cation for the TVP-FAVAR is given in Korobilis (2009a)29

who replaces (53) and (54) by

yit = �0it + �itft + itrt + "it; (55)

and

�
ft
rt

�
= e�1t

�
ft�1
rt�1

�
+ ::+ e�pt

�
ft�p
rt�p

�
+ e"ft (56)

and assumes each "it follows a univariate stochastic volatility process and var
�
e"ft
�
=

e�ft has a multivariate stochastic volatility process of the form used in Primiceri

(2005). Finally, the coe¢cients (for i = 1; ::;M) �0it; �it; it; e�1t; ::; e�pt are al-
lowed to evolve according to random walks (i.e. state equations of the same
form as 46 complete the model). All other assumptions are the same as for the
FAVAR.

*e will not describe the MCMC algorithm for this model other than to note
that it simply adds more blocks to the MCMC algorithm for the FAVAR. These
blocks are all of forms previously discussed in this monograph. For instance,
the error variances in the measurement equations are drawn using the univariate
stochastic volatility algorithm of Section 3.3.1. The algorithm of Section 3.3.2
can be used to draw e�ft . The coe¢cients �0it; �it; it; e�1t; ::; e�pt are all drawn
using the algorithm of Section 3.2, implemented in a very similar fashion as in
the TVP-VAR. In short, as with so many models in empirical macroeconomics,
Bayesian inference in the TVP-FAVAR proceeds by putting together an MCMC
algorithm involving blocks from several simple and familiar algorithms.

29The model of Korobilis (2009a) is actually a slight extension of this since it includes a
dynamic mixture aspect similar to that presented in Section 4.1.3.
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5.5 Empirical Illustration of Factor Methods

To illustrate Bayesian inference in FAVARs and TVP-FAVAR models, we use a
data set of 115 quarterly US macroeconomic variables spanning 457581 though
20068Q9 Following common practice in this literature, we transform all variables
to be stationary. For brevity, we do not list these variables here nor describe the
required stationarity transformations. These details are provided in the manual
on the website associated with this monograph.
The FAVAR is given in (53) and (54). It requires the choice of variables

to isolate in rt and we use the same variables as in our previous VAR and
TVP-VAR empirical illustrations: in:ation, unemployment and the interest rate.
Consequently, our FAVAR is the same tri-variate VAR used in previous empirical
illustrations, augmented with factors, ft, which are extracted from a large set
of macroeconomic and ;nancial variables.

<e use principal components methods to extract the ;rst two factors which
are used in the FAVAR (q = 2) and two lags in the factor equation (p = 2).30 The
use of principal components methods ensures identi;cation of the model since it
normalizes all factors to have mean zero and variance one. For the FAVAR we
require a prior for the parameters �f ;�1; ::;�p; �0i; �i; �

2
i for i = 1; ::;M . Full

details of this (relatively noninformative) prior are provided in the manual on
the website associated with this monograph.
To carry out impulse response analysis we require additional identifying

assumptions. <=>? regards to the equations for rt, we adopt the same identifying
assumptions as in our previous empirical illustrations. These allow us to identify
a monetary policy shock. <ith regards to the variables in yt, su¢ce it to note
here is that we adopt the same assumptions as Bernanke, Boivin and Eliasz
(2005). The basic idea of their identifying scheme is described in Section 5.2.3
above.
Figures 6 and 7 plot impulse responses to the monetary policy shock for

the FAVAR. Figure 6 plots impulse responses for the main variables which are
included in rt. The patterns in Figure 6 are broadly similar as those obtained in
our empirical illustration using VARs (compare Figure 6 to Figure 4). @Awever,
the magnitudes of the impulse responses are somewhat di¤erent. @Bre we are
;nding more evidence that a monetary policy shock will decrease in:ation. Fig-
ure 7 plots the response of a few randomly selected variables to the monetary
policy shock.31

30These choices are only illustrative. In a substantive empirical exercise, the researcher
would select these more carefully (e.g. using model selection methods such discussed previously
in this monograph).
31See the manual on the website associated with this monograph for a deCnition of the

abbreviations used in Figures 7 and 10. BrieDy GDPC96 is GDP, GSAVE is savings, PRFI is
private residential Cxed investment, MAEEMP is employment in manufacturing, AFEMAE is
earnings in manufacturing, FGUST is housing starts, GS10 is a 10 year interest rate, EXJPUS
is the Japanese-US exchange rate, PPIACG is a producer price index, GIIPRICE is the oil
price, FFSETE is an index of consumer expectations and PMEG is the EAPM orders index.
All impulse responses are to the original untransformed versions of these variables.

54



Figure 6: Posterior of impulse responses of main variables to monetary
policy shock
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Figure 7: Posterior of impulse responses of selected variables to monetary
policy shock

Ke now present results for a TVP-FAVAR deMned in (55) and (56), but with
the restriction that the parameters in the measurement equation are constant
over time.32 The (relatively noninformative) prior we use is described in the
manual on the website associated with this monograph.
Figure 8 plots the posterior means of the standard deviations of the errors

in the two equations where the factors are the dependent variable and the three
equations where rt are the dependent variables. It can be seen that there is
substantive evidence of variation in volatilities (in particular, for equation for
the Mrst factor). The bottom three panels of Figure 8 look similar to Figure 5
and indicate the substantial increase in volatility associated with the 1970s and
early 1980s preceding the Great Moderation of the business cycle. PRwever,
this pattern is somewhat muted relative to Figure 5 since the inclusion of the
factors means that the standard deviation of the errors becomes smaller.

32Se do this since it is di¢cult to estimate time variation in coe¢cients in both the mea-
surement and state equation without additional restrictions or very strong prior information.
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Figure 8: Time-varying volatilities of errors in Tve key equations of the
TVP-FAVAR

Figures 9 and 10 plot impulse responses in the same format as Figures 6
and 7. Uith the TVP-FAVAR these will be time varying so we plot them
for three di¤erent time periods. A comparison of Figure 9 to Figure 4 (which
presents the same impulse responses using a TVP-VAR) indicate that broad
patterns are roughly similar, but there are some important di¤erences between
the two Tgures. Similarly, a comparison of Figure 10 to Figure 8 indicates broad
similarities, but in some specVTc cases important di¤erences can be found.
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Figure 9: Posterior of impulse responses of main variables to monetary policy
shock at di¤erent times
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Figure 10: Posterior means impulse responses of selected variables to
monetary policy shock at di¤erent times

6 Conclusion

In this monograph, we have discussed VARs, TVP-VAR, FAVARs and TVP-
FAVARs, including versions of these models with multivariate stochastic volatil-
ity. These classes of models have become very popular with empirical macro-
economists since they allow for insight into the relationships between macroeco-
nomic variables in a manner which lets the data speak in a relatively uncon-
strained manner. Y[wever, the cost of working with such unconstrained models
is that they risk being over-parameterized. Accordingly, researchers have found
it desirable to impose soft or hard restrictions on these models. Soft restrictions
typically involve shrinking coe¢cients towards a particular value (usually zero)
whereas hard ones involve the imposition of exact restrictions. Bayesian meth-
ods have been found to be an attractive and logically consistent way of handling
such restrictions.

\e have shown have Bayesian inference can be implemented in a variety of
ways in these models, with emphasis on sp]^_ c̀ations that are of interest to the
practitioner. Apart from the simplest of VARs, MCMC algorithms are required.
This monograph describes these algorithms in a varying degree of detail. \e
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draw the reabfghs attention to the website associated with this monograph which
contains Matlab code for most of the models described above. A manual on
this website provides a complete listing of all formulae used in each MCMC
algorithm. Thus, our aim has been to provide a complete set of Bayesian tools
for the practitioner interested in a wide variety of models commonly used in
empirical macroeconomics.
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