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Abstract

Macroeconomic practitioners frequently work with multivariate time
series models such as VARs, factor augmented VARs as well as time-
varying parameter versions of these models (including variants with mul-
tivariate stochastic volatility). These models have a large number of pa-
rameters and, thus, over-parameterization problems may arise. Bayesian
methods have become increasingly popular as a way of overcoming these
problems. In this monograph, we discuss VARs, factor augmented VARs
and time-varying parameter extensions and show how Bayesian inference
proceeds. Apart from the simplest of VARs, Bayesian inference requires
the use of Markov chain Monte Carlo methods developed for state space
models and we describe these algorithms. The focus is on the empiri-
cal macroeconomist and we offer advice on how to use these models and
methods in practice and include empirical illustrations. A website pro-
vides Matlab code for carrying out Bayesian inference in these models.

Keywords: Empirical macroeconometrics, Bayesian estimation, MCMC,
vector autoregressions, factor models, time-varying parameters

JEL Classification: C11, C13, C15, C51, C52, C53, C87, E52

1 Introduction

Most questions of interest to empirical macroeconomists involve several variables
and, thus, must be addressed using multivariate time series methods. Many
different multivariate time series models have been used in macroeconomics,
but since the pioneering work of Sims (1980), Vector Autoregressive (VAR)
models have been among the most popular. It soon became apparent that, in
many applications, the assumption that the VAR coefficients were constant over
time might be a poor one. For instance, in practice, it is often found that the
macroeconomy of the 1960s and 1970s was different from the 1980s and 1990s.
This led to an increased interest in models which allowed for time variation in
the VAR coefficients and time-varying parameter VARs (TVP-VARs) arose. In

*Both authors are Fellows at the Rimini Centre for Economic Analysis. Address for corre-
spondence: Gary Koop, Department of Economics, University of Strathclyde, 130 Rottenrow,
Glasgow G4 0GE, UK. Email: Gary.Koop@strath.ac.uk



addition, in the 1980s many industrialized economies experienced a reduction
in the volatility of many macroeconomic variables. This Great Moderation of
the business cycle led to an increasing focus on appropriate modelling of the
error covariance matrix in multivariate time series models and this led to the
incorporation of multivariate stochastic volatility in many empirical papers. In
2008 many economies went into recession and many of the associated policy
discussions suggest that the parameters in VARs may be changing again.

Macroeconomic data sets typically involve monthly, quarterly or annual ob-
servations and, thus are only of moderate size. But VARs have a great number
of parameters to estimate. This is particularly true if the number of dependent
variables is more than two or three (as is required for an appropriate mod-
elling of many macroeconomic relationships). Allowing for time-variation in
VAR coefficients causes the number of parameters to proliferate. Allowing for
the error covariance matrix to change over time only increases worries about
over-parameterization. The research challenge facing macroeconomists is how
to build models that are flexible enough to be empirically relevant, capturing
key data features such as the Great Moderation, but not so flexible as to be
seriously over-parameterized. Many approaches have been suggested, but a
common theme in most of these is shrinkage. Whether for forecasting or es-
timation, it has been found that shrinkage can be of great benefit in reducing
over-parameterization problems. This shrinkage can take the form of imposing
restrictions on parameters or shrinking them towards zero. This has initiated a
large increase in the use of Bayesian methods since prior! information provides a
logical and formally consistent way of introducing shrinkage. Furthermore, the
computational tools necessary to carry out Bayesian estimation of high dimen-
sional multivariate time series models have become well-developed and, thus,
models which may have been difficult or impossible to estimate ten or twenty
years ago can now be routinely used by macroeconomic practitioners.

A related class of models, and associated worries about over-parameterization,
has arisen due to the increase in data availability. Macroeconomists are able to
work with hundreds of different time series variables collected by government
statistical agencies and other policy institutes. Building a model with hundreds
of time series variables (with at most a few hundred observations on each) is a
daunting task, raising the issue of a potential proliferation of parameters and
a need for shrinkage or other methods for reducing the dimensionality of the
model. Factor methods, where the information in the hundreds of variables
is distilled into a few factors, are a popular way of dealing with this prob-
lem. Combining factor methods with VARs results in Factor-augmented VARs
or FAVARs. However, just as with VARs, there is a need to allow for time-
variation in parameters, which leads to an interest in TVP-FAVARs. Here, too,
Bayesian methods are popular and for the same reason as with TVP-VARs:
Bayesian priors provide a sensible way of avoiding over-parameterization prob-
lems and Bayesian computational tools are well-designed for dealing with such

IPrior information can be purely subjective. However, as will be discussed below, often
empirical Bayesian or hierarchical priors are used by macroeconomists. For instance, the state
equation in a state space model can be interpreted as a hierarchical prior.



models.

In this monograph, we survey, discuss and extend the Bayesian literature on
VARs, TVP-VARs and TVP-FAVARs with a focus on the practitioner. That
is, we go beyond simply defining each model, but specify how to use them in
practice, discuss the advantages and disadvantages of each and offer some tips
on when and why each model can be used. In addition to this, we discuss some
new modelling approaches for TVP-VARs. A website contains Matlab code
which allows for Bayesian estimation of the models discussed in this monograph.
Bayesian inference often involves the use of Markov chain Monte Carlo (MCMC)
posterior simulation methods such as the Gibbs sampler. For many of the
models, we provide complete details in this monograph. However, in some cases
we only provide an outline of the MCMC algorithm. Complete details of all
algorithms are given in a manual on the website.

Empirical macroeconomics is a very wide field and VARs, TVP-VARs and
factor models, although important, are only some of the tools used in the field.
It is worthwhile briefly mentioning what we are not covering in this monograph.
There is virtually nothing in this monograph about macroeconomic theory and
how it might infuse econometric modelling. For instance, Bayesian estima-
tion of dynamic stochastic general equilibrium (DSGE) models is very popular.
There will be no discussion of DSGE models in this monograph (see An and
Schorfheide, 2007 or Del Negro and Schorfheide, 2009 for excellent treatments
of Bayesian DSGE methods). Also, macroeconomic theory is often used to pro-
vide identifying restrictions to turn reduced form VARs into structural VARs
suitable for policy analysis. We will not discuss structural VARs, although some
of our empirical examples will provide impulse responses from structural VARs
using standard identifying assumptions.

There is also a large literature on what might, in general, be called regime-
switching models. Examples include Markov switching VARs, threshold VARs,
smooth transition VARs, floor and ceiling VARs, etc. These, although impor-
tant, are not discussed here.

The remainder of this monograph is organized as follows. Section 2 provides
discussion of VARs to develop some basic insights into the sorts of shrinkage
priors (e.g. the Minnesota prior) and methods of finding empirically-sensible
restrictions (e.g. stochastic search variable selection, or SSVS) that are used
in empirical macroeconomics. Our goal is to extend these basic methods and
priors used with VARs, to TVP variants. However, before considering these
extensions, Section 3 discusses Bayesian inference in state space models using
MCMC methods. We do this since TVP-VARs (including variants with mul-
tivariate stochastic volatility) are state space models and it is important that
the practitioner knows the Bayesian tools associated with state space models
before proceeding to TVP-VARs. Section 4 discusses Bayesian inference in TVP-
VARs, including variants which combine the Minnesota prior or SSVS with the
standard TVP-VAR. Section 5 discusses factor methods, beginning with the dy-
namic factor model, before proceeding to the factor augmented VAR (FAVAR)
and TVP-FAVARs. Empirical illustrations are used throughout and Matlab
code for implementing these illustrations (or, more generally, doing Bayesian



inference in VARs, TVP-VARs and TVP-FAVARSs) is available on the website
associated with this monograph.?

2 Bayesian VARs

2.1 Introduction and Notation

The VAR(p) model can be written as:

P
Yt :a0+ZAjyt_j + &t (1)
j=1

where y; for t = 1,..,T is an M X 1 vector containing observations on M time
series variables, ¢, is an M x 1 vector of errors, ag is an M x 1 vector of intercepts
and A; is an M x M matrix of coefficients. We assume ¢, to be i.i.d. N (0, ).
Exogenous variables or more deterministic terms (e.g. deterministic trends or
seasonals) can easily be added to the VAR and included in all the derivations

below, but we do not do so to keep the notation as simple as possible.

The VAR can be written in matrix form in different ways and, depending on
how this is done, some of the literature expresses results in terms of the mul-
tivariate Normal and others in terms of the matric-variate Normal distribution
(see, e.g. Canova, 2007, and Kadiyala and Karlsson, 1997). The former arises if
we use an MT'x 1 vector y which stacks all T" observations on the first dependent
variable, then all T' observations on the second dependent variable, etc.. The
latter arises if we define Y to be a T'x M matrix which stacks the T observations
on each dependent variable in columns next to one another. ¢ and E denote
stackings of the errors in a manner conformable to y and Y, respectively. Define

0= (1,441, ¥;_,) and

T
T2

x=|." | (2)
T

Note that, if we let K = 1+ Mp be the number of coefficients in each equation
of the VAR, then X is a T x K matrix.

Finally, if A = (a9 41 .. 4,)" we define o = vec(A) which is a KM x 1
vector which stacks all the VAR coefficients (and the intercepts) into a vector.
With all these definitions, we can write the VAR either as:

Y =XA+E (3)

or

y=Uu®X)a+e, (4)

2The website address is: http://personal.strath.ac.uk/gary.koop/bayes matlab code by koop and korobilis.html



where e ~ N (0,2 ® Ip).

The likelihood function can be derived and shown to be of a form that breaks
into two parts: one a distribution for o given ¥ and another where X! has a
Wishart distribution.? That is,

a|2,y~N(a,z;®(X’X)*1) (5)

and
SHy~W (ST -K-M-1), (6)

where A = (X'X)™" X'Y is the OLS estimate of A and & = vec (//1\) and

N\ /

S = (Y—XA) (Y—Xfx).

2.2 Priors

A variety of priors can be used with the VAR, of which we discuss some useful
ones below. They differ in relation to three issues.

First, VARs are not parsimonious models. They have a great many coeffi-
cients. For instance, « contains K M parameters which, for a VAR(4) involving
5 dependent variables is 105. With quarterly macroeconomic data, the number
of observations on each variable might be at most a few hundred. Without prior
information, it is hard to obtain precise estimates of so many coefficients and,
thus, features such as impulse responses and forecasts will tend to be impre-
cisely estimated (i.e. posterior or predictive standard deviations can be large).
For this reason, it can be desirable to “shrink” forecasts and prior information
offers a sensible way of doing this shrinkage. The priors discussed below differ
in the way they achieve this goal.

Second, the priors used with VARs differ in whether they lead to analytical
results for the posterior and predictive densities or whether MCMC methods
are required to carry out Bayesian inference. With the VAR, natural conju-
gate priors lead to analytical results, which can greatly reduce the computa-
tional burden. Particularly if one is carrying out a recursive forecasting exercise
which requires repeated calculation of posterior and predictive distributions,
non-conjugate priors which require MCMC methods can be very computation-
ally demanding.

Third, the priors differ in how easily they can handle departures from the
unrestricted VAR given in (1) such as allowing for different equations to have
different explanatory variables, allowing for VAR coefficients to change over
time, allowing for heteroskedastic structures for the errors of various sorts, etc.
Natural conjugate priors typically do not lend themselves to such extensions.

3In this monograph, we use standard notational conventions to define all distributions such
as the Wishart. See, among many other places, the appendix to Koop, Poirier and Tobias
(2007). Wikipedia is also a quick and easy source of information about distributions.



2.2.1 The Minnesota Prior

Early work with Bayesian VARs with shrinkage priors was done by researchers
at the University of Minnesota or the Federal Reserve Bank of Minneapolis (see
Doan, Litterman and Sims (1984) and Litterman (1986)). The priors they used
have come to be known as Minnesota priors. They are based on an approxima-
tion which leads to great simplifications in prior elicitation and computation.
This approximation involves replacing 3. with an estimate, 3. The original Min-
nesota prior simplifies even further by assuming ¥ to be a diagonal matrix. In
this case, each equation of the VAR can be estimated one at a time and we can
set 0;; = s (where s? is the standard OLS estimate of the error variance in the

it equation and Gy is the " element of £). When ¥ is not assumed to be
diagonal, a simple estimate such as > = % can be used.

When ¥ is replaced by an estimate, we only have to worry about a prior for
«a and the Minnesota prior assumes:

o~ N (sins Varin) - (7)
The Minnesota prior can be thought of as a way of automatically choosing o,
and V ;,, in a manner which is sensible in many empirical contexts. To explain
the Minnesota prior, note first that the explanatory variables in the VAR in any
equation can be divided into the own lags of the dependent variable, the lags
of the other dependent variables and exogenous or deterministic variables (in
1 the intercept is the only exogenous or deterministic variable, but in general
there can be more such variables).

For the prior mean, «,;;,, the Minnesota prior involves setting most or all
of its elements to zero (thus ensuring shrinkage of the VAR coefficients towards
zero and lessening the risk of over-fitting). When using growth rates data (e.g.
GDP growth, the growth in the money supply, etc., which are typically found to
be stationary and exhibit little persistence), it is sensible to simply set vy, =
Oxas. However, when using levels data (e.g. GDP, the money supply, etc.)
the Minnesota prior uses a prior mean expressing a belief that the individual
variables exhibit random walk behavior. Thus, a,;;, = Oxam except for the
elements corresponding to the first own lag of the dependent variable in each
equation. These elements are set to one. These are the traditional choices for
Qprins DUt anything is possible. For instance, in our empirical illustration we
set the prior mean for the coefficient on the first own lag to be 0.9, reflecting a
prior belief that our variables exhibit a fair degree of persistence, but not unit
root behavior.

The Minnesota prior assumes the prior covariance matrix, V ;,.,,, to be diag-
onal. If we let V; denote the block of V,,,. associated with the K coefficients in
equation ¢ and V, ;. be its diagonal elements, then a common implementation
of the Minnesota prior would set:

a .
oF for coefficients on own lags

V= % for coefficients on lags of variable j # i . (8)

a304; for coefficients on exogenous variables



This prior simplifies the complicated choice of fully specifying all the ele-
ments of V,,,,, to choosing three scalars, a;,a5,as. This form captures the
sensible properties that, as lag length increases, coefficients are increasingly
shrunk towards zero and that (by setting a,; > a,) own lags are more likely to
be important predictors than lags of other variables. The exact choice of values
for a;,ay, a5 depends on the empirical application at hand and the researcher
may wish to experiment with different values for them. Typically, the researcher
sets oj; = s2. Litterman (1986) provides much additional motivation and dis-
cussion of these choices (e.g. an explanation for how the term (‘;7 adjusts for
differences in the units that the variables are measured in).

Many variants of the Minnesota prior have been used in practice (e.g. Kadiyala
and Karlsson (1997) divide prior variances by p instead of the p? which is used
in (8)) as researchers make slight adjustments to tailor the prior for their partic-
ular application. The Minnesota prior has enjoyed a recent boom in popularity
because of its simplicity and success in many applications, particularly involving
forecasting. For instance, Banbura, Giannone and Reichlin (2008) use a slight
modification of the Minnesota prior in a large VAR with over 100 dependent
variables. Typically, factor methods are used with such large panels of data,
but Banbura et al (2008) find that the Minnesota prior leads to even better
forecasting performance than factor methods.

A big advantage of the Minnesota prior is that it leads to simple poste-
rior inference involving only the Normal distribution. It can be show that the
posterior for @ has the form:

O“y ~N (aMinaVMin) (9)
where

Vatin = [V;}m + (i*l ® (X’X))] o

and

J— ~ /
Anrin = Vmin {VMIZ-”CMMM + <271 ® X) y} .

But a disadvantage of the Minnesota prior is that it does not provide a full
Bayesian_treatment of ¥ as an unknown parameter. Instead it simply plugs
in ¥ = ¥, ignoring any uncertainty in this parameter. In the remainder of
this section we will discuss methods which treat ¥ as an unknown parameter.
However, as we shall see, this (apart from one restrictive special case) means
that analytical methods are not available and MCMC methods are required).

2.2.2 Natural conjugate priors

Natural conjugate priors are those where the prior, likelihood and posterior
come from the same family of distributions. Our previous discussion of the



likelihood function (see equations 5 and 6) suggests that, for the VAR, the
natural conjugate prior has the form:
¥~ N(a,XxV) (10)

and
S AW (ST ) (11)

where o, V., v and S are prior hyperparameters chosen by the researcher.
With this prior the posterior becomes:

oSy~ N (@, 2xV) (12)
and )

Sy~ W (?’ ,v) (13)
where

V=[v'l+x'x]",

A=V [1—14 + X’Xﬁ} ,
o = vec (Z),
S=S+S+AX'XA+AVIA-A (V '+ X'X)4

and

v=T+4v.

In the previous formulae, we use notation where A is a K x M matrix made by
unstacking the KM x 1 vector a.

Posterior inference about the VAR coefficients can be carried out using the
fact that the marginal posterior (i.e. after integrating out X) for « is a multivari-
ate t-distribution. The mean of this t-distribution is @, its degrees of freedom
parameter is 7 and its covariance matrix is:

1 .

var (aly) = P—M—15®V'
These facts can be used to carry out carry out posterior inference in this model.
The predictive distribution for yr4; in this model has an analytical form
and, in particular, is multivariate-t with 7 degrees of freedom. The predictive
mean of ypyq is (xTHZ), which can be used to produce point forecasts. The
predictive covariance matrix is =15 [1 + zp1Va/, ;| S. When forecasting more
than one period ahead, an analytical formula for the predictive density does not
exist. This means that either the direct forecasting method must be used (which
turns the problem into one which only involves one step ahead forecasting) or

predictive simulation is required.



Any values for the prior hyperparameters, «,V,v and S, can be chosen.
The noninformative prior is obtained by setting v = S = V' =cI and letting
¢ — 0. It can be seen that this leads to posterior and predictive results which
are based on familiar OLS quantities. The drawback of the noninformative prior
is that it does not do any of the shrinkage which we have argued is so important
for VAR modelling.

Thus, for the natural conjugate prior, analytical results exist which allow for
Bayesian estimation and prediction. There is no need to use posterior simula-
tion algorithms unless interest centers on nonlinear functions of the parameters
(e.g. impulse response analysis such as those which arise in structural VARs,
see Koop, 1992). The posterior distribution of, e.g., impulse responses can be
obtained by Monte Carlo integration. That is, draws of ¥~! can be obtained
from (13) and, conditional on these, draws of o can be taken from (12).* Then
draws of impulse responses can be calculated using these drawn values of X!
and a.

However, there are two properties of this prior that can be undesirable in
some circumstances. The first is that the (Ipr ® X) form of the explanatory
variables in (4) means that every equation must have the same set of explanatory
variables. For an unrestricted VAR this is fine, but is not appropriate if the
researcher wishes to impose restrictions. Suppose, for instance, the researcher is
working with a VAR involving variables such as output growth and the growth in
the money supply and wants to impose a strict form of the neutrality of money.
This would imply that the coefficients on the lagged money growth variables in
the output growth equation are zero (but coefficients of lagged money growth in
other equations would not be zero). Such restrictions cannot be imposed with
the natural conjugate prior described here.

To explain the second possibly undesirable property of this prior, we intro-
duce notation where individual elements of ¥ are denoted by o;;. The fact that
the prior covariance matrix has the form ¥®V (which is necessary to ensure nat-
ural conjugacy of the prior), implies that the prior covariance of the coefficients
in equation ¢ is 0;; V. This means that the prior covariance of the coefficients in
any two equations must be proportional to one another, a possibly restrictive
feature. In our example, the researcher believing in the neutrality of money
may wish to proceed as follows: in the output growth equation, the prior mean
of the coefficients on lagged money growth variables should be zero and the
prior covariance matrix should be very small (i.e. expressing a prior belief that
these coefficients are very close to zero). In other equations, the prior covariance
matrix on the coefficients on lagged money growth should be much larger. The
natural conjugate prior does not allow us to use prior information of this form.
It also does not allow us to use the Minnesota prior. That is, the Minnesota
prior covariance matrix in (8) is written in terms of blocks which were labelled
V, ;; involving ¢ subscripts. That is, these blocks vary across equations which
is not allowed for in the natural conjugate prior.

4 Alternatively, draws of o can be directly taken from its multivariate-t marginal posterior
distribution.



These two properties should be kept in mind when using the natural conju-
gate prior. There are generalizations of this natural conjugate prior, such as the
extended natural conjugate prior of Kadiyala and Karlsson (1997), which sur-
mount these problems. However, these lose the huge advantage of the natural
conjugate prior described in this section: that analytical results are available
and so no posterior simulation is required.

A property of natural conjugate priors is that, since the prior and likelihood
have the same distributional form, the prior can be considered as arising from
a fictitious sample. For instance, a comparison of (5) and (10) shows that &
and (X’X)_1 in the likelihood play the same role as a and V in the prior. The
latter can be interpreted as arising from a fictitious sample (also called “dummy
observations”), Yy and X (e.g. V. = (X{)XO)_1 and o based on an OLS estimate
(X} X0) ™" X}Y,). This interpretation is developed in papers such as Sims (1993)
and Sims and Zha (1998). On one level, this insight can simply serve as another
way of motivating choices for @ and V as arising from particular choices for
Yy and Xy. But papers such as Sims and Zha (1998) show how the dummy
observation approach can be used to elicit priors for structural VARs. In this
monograph, we will focus on the econometric as opposed to the macroeconomic
issues. Accordingly, we will work with reduced form VARs and not say much
about structural VARs. Here we only note that posterior inference in structural
VARs is usually based on a reduced form VAR such as that discussed here, but
then coefficients are transformed so as to give them a structural interpretation
(see, e.g., Koop, 1992, for a simple example). For instance, structural VARs are
often written as:

P

Coyt = co + Z Ciyr—j +w (14)
j=1

where u; is i.i.d. N (0,I). Given appropriate identifying restrictions, there

will be a mapping from the parameters of the reduced form VAR in (1) to

the structural VAR. Thus, Bayesian inference can be done by using posterior

simulation methods in the reduced form VAR and transforming each draw into

a draw from the structural VAR.

While discussing such macroeconomic issues, it is worth noting that there
is a growing literature that uses the insights of economic theory (e.g. from real
business cycle or DSGE models) to elicit priors for VARs. Prominent examples
include Ingram and Whiteman (1994) and Del Negro and Schorfheide (2004).
We will not discuss this work in this monograph.

Finally, it is also worth mentioning the work of Villani (2009) on steady state
priors for VARs. We have motivated prior information as being important as a
way of ensuring shrinkage in an over-parameterized VAR. However, most of the
shrinkage discussed previously relates to the VAR coefficients. Often researchers
have strong prior information about the unconditional means (i.e. the steady
states) of the variables in their VARs. It is desirable to include such information
as an additional source of shrinkage in the VAR. However, it is not easy to do
this in the VAR in (1) since the intercepts cannot be directly interpreted as the

10



unconditional means of the variables in the VAR. Villani (2009) recommends
writing the VAR as: B
A(L) (y: —ao) = e (15)

where A (L) = I — AL —.. —/Tpr, L is the lag operator and ¢; is i.i.d. N (0, ).
In this parameterization, ag can be interpreted as the vector of unconditional
means of the dependent variables and a prior placed on it reflecting the re-
searcher’s beliefs about steady state values for them. For A (L) and ¥ one of
the priors described previously (or below) can be used. A drawback of this
approach is that an analytical form for the posterior no longer exists. However,
Villani (2009) develops a Gibbs sampling algorithm for carrying out Bayesian
inference in this model.

2.2.3 The Independent Normal-Wishart Prior

The natural conjugate prior has the large advantage that analytical results are
available for posterior inference and prediction. However, it does have the draw-
backs noted previously (i.e. it assumes each equation to have the same explana-
tory variables and it restricts the prior covariance of the coefficients in any two
equations to be proportional to one another). Accordingly, in this section, we
introduce a more general framework for VAR modelling. To carry out Bayesian
inference in these models will require posterior simulation algorithms such as
the Gibbs sampler. The natural conjugate prior had | being Normal and X1
being Wishart. Note that the fact that the prior for o depends on ¥ implies
that a and ¥ are not independent of one another. In this section, we work with
a prior which has VAR coefficients and the error covariance being independent
of one another (hence the name “independent Normal-Wishart prior”).

To allow for different equations in the VAR to have different explanatory
variables, we have to modify our previous notation slightly. To avoid any pos-
sibility of confusion, we will use “5” as notation for VAR coefficients in this
restricted VAR model instead of a. We write each equation of the VAR as:

’
Ymt = thﬂm + Emt,

witht = 1, .., T observations for m = 1, .., M variables. y,,; is the t!* observation
on the mt" variable, z,: is a k,,-vector containing the tth observation of the
vector of explanatory variables relevant for the m!" variable and 3,, is the
accompanying k,,-vector of regression coefficients. Note that if we had z,,; =
(1,9)_1, ..,yg_p)/ for m = 1,.., M then we would obtain the unrestricted VAR
of the previous section. However, by allowing for z,,; to vary across equations
we are allowing for the possibility of a restricted VAR (i.e. it allows for some of
the coefficients on the lagged dependent variables to be restricted to zero).

We can stack all equations into vectors/matrices as y: = (Y14, .., yM,g)/7 £ =
(€1t - EMt)la

11



B

ﬂ: : )
B
A0 0
Zt: 0 Zét : )
0
0 0 Z?\/Tt

where § is a k x 1 vector and Z; is M x k where k = Z]M=1 k;. As before, we
assume ¢ to be 1.i.d. N (0,X).
Using this notation, we can write the (possibly restricted) VAR as:

Yt = Zif + €. (16)
Stacking as:
Y1
Yy = : )
yr
€1
€= ,
Er
Z1
Z = :
Zr
we can write
y=2B+¢

and € is N (0,1 ® X).

It can be seen that the restricted VAR can be written as a Normal linear
regression model with an error covariance matrix of a particular form. A very
general prior for this model (which does not involve the restrictions inherent in
the natural conjugate prior) is the independent Normal-Wishart prior:

p(B.E ) =pB)p (="

where

and

12



ST AW (ST ). (18)

Note that this prior allows for the prior covariance matrix, V5, to be anything
the researcher chooses, rather than the restrictive ¥ ® V form of the natural
conjugate prior. For instance, the researcher could set 8 and V; exactly as
in the Minnesota prior. A noninformative prior can be obtained by setting
v=5=V;"=0.

Using this prior, the joint posterior p (5,2_1|y) does not have a conve-
nient form that would allow easy Bayesian analysis (e.g. posterior means and
variances do not have analytical forms). However, the conditional posterior
distributions p (B|y, E’l) and p (Eil\y, B) do have convenient forms:

Bly, St ~ N (B,Vp), (19)
where
T -1
Vs= (Vﬁl +) Z{Elzt>
t=1
and
o T
i=1
Furthermore,
Sy, 8~ W (ST7,) (20)
where
v=T+v
and

T
S=8+>"(w—28) (v~ 2.5) .
t=1

Accordingly, a Gibbs sampler which sequentially draws from the Normal p (8]y, )
and the Wishart p (Z_l ly, 6) can be programmed up in a straightforward fash-
ion. As with any Gibbs sampler, the resulting posterior simulator output can
be used to calculate posterior properties of any function of the parameters,
marginal likelihoods (for model comparison) and/or to do prediction.

Note that, for the VAR, Z, will contain lags of variables and, thus, contain
information dated 7 — 1 or earlier. The one-step ahead predictive density (i.e.
the one for predicting at time 7 given information through 7 — 1), conditional
on the parameters of the model is:

13



y‘f‘|Z7'a/37Z ~ N(Zt672) .

This result, along with a Gibbs sampler producing draws ,B(T), " forr=1,.,R
allows for predictive inference.” For instance, the predictive mean (a popular
point forecast) could be obtained as:

S ZiB
R

and other predictive moments can be calculated in a similar fashion. Alterna-
tively, predictive simulation can be done at each Gibbs sampler draw, but this
can be computationally demanding. For forecast horizons greater than one, the
direct method can be used. This strategy for doing predictive analysis can be
used with any of the priors or models discussed below.

E(y-1Z7) =

2.2.4 Stochastic Search Variable Selection (SSVS) in VARs

SSVS as Implemented in George, Sun and Ni (2008) In the previous
sections, we have described various priors for unrestricted and restricted VARs
which allow for shrinkage of VAR coefficients. However, these approaches re-
quired substantial prior input from the researcher (although this prior input can
be of an automatic form such as in the Minnesota prior). There is another prior
that, in a sense, does shrinkage and leads to restricted VARs, but does so in an
automatic fashion that requires only minimal prior input from the researcher.
The methods associated with this prior are called SSVS and are enjoying in-
creasing popularity and, accordingly, we describe them here in detail. SSVS can
be done in several ways. Here we describe the implementation of George, Sun
and Ni (2008).

The basic idea underlying SSVS can be explained quite simply. Suppose «;
is a VAR coefficient. Instead of simply using a prior for it as before (e.g. as
n (10), SSVS specifies a hierarchical prior (i.e. a prior expressed in terms of
parameters which in turn have a prior of their own) which is a mixture of two
Normal distributions:

ajly; ~ (1 —"yj) N (0,/1(2)j) +;N (0, mfj) , (21)
where 7, is a dummy variable. If 7; equals one then a; is drawn from the second
Normal and if it equals zero then «; is drawn from the first Normal. The prior
is hierarchical since v, is treated as an unknown parameter and estimated in a
data-based fashion. The SSVS aspect of this prior arises by choosing the first
prior variance, Iigj, to be “small” (so that the coefficient is constrained to be
virtually zero) and the second prior variance, k3 ;» to be “large” (implying a rela-
tively noninformative prior for the corresponding coefficient). Below we describe
what George, Sun and Ni (2008) call a “default semi-automatic approach” to

5Typically, some initial draws are discarded as the “burn in”. Accordingly, r = 1,..,R
should be the post-burn in draws.
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choosing m%j and Kj%j which requires minimal subjective prior information from
the researcher.

The SSVS approach can be thought of as automatically selecting a restricted
VAR since it can, in a data-based fashion, set v; = 0 and (to all intents and
purposes) delete the corresponding lagged dependent variable form the model.
Alternatively, SSVS can be thought of as a way of doing shrinkage since VAR
coefficients can be shrunk to zero.

SSVS can be used to select a single restricted model (e.g. the researcher can
select a restricted VAR which contains only those lagged dependent variables
whose coefficients have Pr (fyj =1ly) > a for some choice of a such as a =
0.5). Alternatively, if the MCMC algorithm described below is simply run and
posterior results for the VAR coefficients calculated using the resulting MCMC
output, the result will be Bayesian model averaging (BMA).

SSVS allows us to work with the unrestricted VAR and have the algorithm
pick out an appropriate restricted VAR. Accordingly we will return to our no-
tation for the unrestricted VAR (see Section 2.1). The unrestricted VAR is
written in (3) and « is the KM x 1 vector of VAR coefficients. SSVS can be
interpreted as defining a hierarchical prior for all of the elements of o and .
The prior for « given in (21) can be written more compactly as:

a"yNN(OaDD)a (22)

where v is a KM X 1 vector of unknown parameters with typical element ~; €

{0,1}, and D is a diagonal matrix with (j7j)th element given by d; where

o K'Oj lf’}/]:O
d]_{ R1j if’)/jZI ’ (23)

Note that this prior implies a mixture of two Normals as written in (21).

George, Sun and Ni (2008) describe a “default semi-automatic approach” to
selecting the prior hyperparameters xo; and x1; which involves setting xo; =
cor/var(c;) and k1 = c14/var(a;) where var(a;) is an estimate of the variance
of the coefficient in an unrestricted VAR (e.g. the ordinary least squares quantity
or an estimate based on a preliminary Bayesian estimation the VAR using a
noninformative prior). The pre-selected constants ¢y and ¢; must have ¢y < ¢;
(e.g. ¢o = 0.1 and ¢; = 10).

For v = (v1,-7xar), the SSVS prior assumes that each element has a
Bernoulli form (independent of the other elements of ) and, hence, for j =
1,.., KM, we have

Pr(vjzl):gj
Pr(’yjz()):l—gj '

A natural default choice is 4= 0.5 for all j, implying each coefficient is a priori

(24)

equally likely to be included as excluded.
So far, we have said nothing about the prior for ¥ and (for the sake of
brevity) we will not provide details relating to it. Suffice it to note here that if a
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Wishart prior for £~! like (18) is used, then a formula very similar to (20) can
be used as a block in a Gibbs sampling algorithm. Alternatively, George, Sun
and Ni (2008) use a prior for ¥ which allows for them to do SSVS on the error
covariance matrix. That is, although they always assume the diagonal elements
of ¥ are positive (so as to ensure a positive definite error covariance matrix),
they allow for parameters which determine the off-diagonal elements to have
an SSVS prior thus allowing for restrictions to be imposed on X. We refer the
interested reader to George, Sun and Ni (2008) or the manual on the website
associated with this monograph for details.

Posterior computation in the VAR with SSVS prior can be carried out using
a Gibbs sampling algorithm. For the VAR coefficients we have

a|ya772 NN(acha)’ (25)
where
Vo= (X'X)+ (DD)" "7,
Qo = Vu[(\l'qﬂ) ® (X’X)éz},
A=(X'X)"'X'Y
and

& = vec(A).

The conditional posterior for v has ~; being independent Bernoulli random
variables:

Pr[y; = 1ly,0] =7;,
Pr[vy; =0Jy,a] =1 -7,

where

Thus, a Gibbs sampler involving the Normal distribution and the Bernoulli
distribution (and the Wishart distribution if a Wishart prior is used for 1)
allows for posterior inference in this model.
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SSVS as Implemented in Korobilis (2009b) The implementation of SSVS
just described is a popular one. However, there are other similar methods for
automatic model selection in VARs. In particular, the approach of George, Sun
and Ni (2008) involves selecting values for the “small” prior variance kg;. The
reader may ask why not set “small” exactly equal to zero? This has been done in
regression models in papers such as Kuo and Mallick (1997) through restricting
coefficients to be precisely zero if 7; = 0. There are some subtle statistical
issues which arise when doing this.5 Korobilis (2009b) has extended the use of
such methods to VARs. Since, unlike the implementation of George, Sun and
Ni (2008), this approach leads to restricted VARs (as opposed to unrestricted
VARs with very tight priors on some of the VAR coefficients), we return to our
notation for restricted VARs and modify it slightly. In particular, replace (16)
by

yr = Zif + &4 (27)

where B =DBand D is a diagonal matrix with the j** diagonal element being
7, (where, as before, v, is a dummy variable). In words, this model allows for
each VAR coefficient to be set to zero (if 7; = 0) or included in an unrestricted
fashion (if v; = 1).

Bayesian inference using the prior can be carried out in a straightforward
fashion. For exact details on the necessary MCMC algorithm, see Korobilis
(2009b) and the manual on the website associated with this book. However, the
idea underlying this algorithm can be explained quite simply. Conditional on
v, this model is a restricted VAR and the MCMC algorithm of Section 2.2.2 for
the independent Normal-Wishart prior can be used. Thus, all that is required is
a method for taking draws from v (conditional on the parameters of the VAR).
Korobilis (2009b) derives the necessary distribution.

2.3 Empirical Illustration of Bayesian VAR Methods

To illustrate Bayesian VAR methods using some of the priors and methods de-
scribed above, we use a quarterly US data set on the inflation rate Am; (the
annual percentage change in a chain-weighted GDP price index), the unemploy-
ment rate u; (seasonally adjusted civilian unemployment rate, all workers over
age 16) and the interest rate r; (yield on the three month Treasury bill rate).
Thus y; = (Am,ut,rt)'. The sample runs from 1953Q1 to 2006Q3. These
three variables are commonly used in New Keynesian VARs.” Examples of pa-
pers which use these, or similar, variables include Cogley and Sargent (2005),
Primiceri (2005) and Koop, Leon-Gonzalaz and Strachan (2009). The data are
plotted in Figure 1.

6For instance, asympotically such priors will always set v; =1 for all j.
"The data are obtained from the Federal Reserve Bank of St. Louis website,
http://research.stlouisfed.org/fred2/.
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Figure 1: Data Used In Empirical Hlustration

To illustrate Bayesian VAR analysis using this data, we work with an unre-
stricted VAR with an intercept and four lags of all variables included in every
equation and consider the following six priors:

Noninformative: Noninformative version of natural conjugate prior (equa-
tions 10 and 11 with o = OK]\,[X]_7 V= 0K><Ka v = 0 and ﬁ = 0]\,[><]\4).

Natural conjugate: Informative natural conjugate prior with subjectively
chosen prior hyperparameters (equations 10 and 11 with @ = Ognrx1,
V=10Ig,v=M+1and S~' = Iy).

Minnesota: Minnesota prior (equations 7 and 8, where a,,;,, is zero, ex-
cept for the first own lag of each variable which is 0.9. ¥ is diagonal
with elements s? obtained from univariate regressions of each dependent
variable on an intercept and four lags of all variables).

Independent Normal-Wishart: Independent Normal-Wishart prior with
subjectively chosen prior hyperparameters (equations 17 and 18 with g =

Ormx1, Vg =10Ignm, v =M +1 and S~ =Tn).

SSVS-VAR: SSVS prior for VAR coefficients (with default semi-automatic
approach prior with ¢y = 0.1 and ¢; = 10) and Wishart prior for 7!
(equation 18 with v = M + 1 and S~ = Iy).
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e SSVS: SSVS on both VAR coefficients and error covariance (default semi-
automatic approach).’

For the first three priors, analytical posterior and predictive results are avail-
able. For the last three, posterior and predictive simulation is required. The
results below are based on 50000 MCMC draws, for which the first 20000 are
discarded as burn-in draws. For impulse responses (which are nonlinear func-
tions of the VAR coefficients and X)), posterior simulation methods are required
for all six priors.

With regards to impulse responses, they are identified by assuming Cj in
(14) is lower triangular and the dependent variables are ordered as: inflation,
unemployment and interest rate. This is a standard identifying assumption used,
among many others, by Bernanke and Mihov (1998), Christiano, Eichanbaum
and Evans (1999) and Primiceri (2005). It allows for the interpretation of the
interest rate shock as a monetary policy shock.

With VARs, the parameters themselves (as opposed to functions of them
such as impulse responses) are rarely of direct interest. In addition, the fact
that there are so many of them makes it hard for the reader to interpret tables
of VAR coefficients. Nevertheless, Table 1 presents posterior means of all the
VAR coeflicients for two priors: the noninformative one and SSVS prior. Note
that they are yielding similar results, although there is some evidence that SSVS
is slightly shrinking the coefficients towards zero.

Table 1. Posterior mean of VAR Coefficients for Two Priors

Noninformative SSVS - VAR

Aﬂ't Ut Tt A’]Tt Ut Tt
Intercept | 0.2920 | 0.3222 | -0.0138 | 0.2053 | 0.3168 | 0.0143
Amy_q 1.5087 | 0.0040 | 0.5493 | 1.5041 | 0.0044 | 0.3950
Up_1 -0.2664 | 1.2727 | -0.7192 | -0.142 1.2564 | -0.5648
T 1 -0.0570 | -0.0211 | 0.7746 | -0.0009 | -0.0092 | 0.7859
Amy_o -0.4678 | 0.1005 | -0.7745 | -0.5051 | 0.0064 | -0.226
Up_o 0.1967 | -0.3102 | 0.7883 | 0.0739 | -0.3251 | 0.5368
Ti_o 0.0626 | -0.0229 | -0.0288 | 0.0017 | -0.0075 | -0.0004
Amy_3 -0.0774 | -0.1879 | 0.8170 | -0.0074 | 0.0047 | 0.0017
Up_3 -0.0142 | -0.1293 | -0.3547 | 0.0229 | -0.0443 | -0.0076
T3 -0.0073 | 0.0967 | 0.0996 | -0.0002 | 0.0562 | 0.1119
ATy 0.0369 | 0.1150 | -0.4851 | -0.0005 | 0.0028 | -0.0575
Up_4 0.0372 | 0.0669 | 0.3108 | 0.0160 | 0.0140 | 0.0563
Ti_4 -0.0013 | -0.0254 | 0.0591 | -0.0011 | -0.0030 | 0.0007

Remember that SSVS allows to the calculation of Pr (vj = 1\y) for each
VAR coefficient and such posterior inclusion probabilities can be used either in
model averaging or in model selection. Table 2 presents such posterior inclusion
probabilities using the SSVS-VAR prior. The empirical researcher may wish to

8SSVS on the non-diagonal elements of ¥ is not fully described in this monograph. See
George, Sun and Ni (2008) for complete details.

19



present such a table for various reasons. For instance, if the researcher wishes to
select a single restricted VAR which only includes coefficients with Pr ('yj = 1|y)
> %, then he would work with a model which restricts 25 of 39 coefficients
to zero. Table 2 shows which coefficients are important. Of the 14 included
coefficients two are intercepts and three are first own lags in each equation.
The researcher using SSVS to select a single model would restrict most of the
remaining VAR coefficients to be zero. The researcher using SSVS to do model
averaging would, in effect, be restricting them to be approximately zero. Note
also that SSVS can be used to do lag length selection in an automatic fashion.
None of the coefficients on the fourth lag variables is found to be important and
only one of nine possible coefficients on third lags is found to be important.

Table 2. Posterior Inclusion Probabilities for
VAR Coefficients: SSVS-VAR Prior
Aﬂ't Ut Tt
Intercept | 0.7262 | 0.9674 | 0.1029
A 1 0.0651 | 0.9532
Up_1 0.7928 | 1 0.8746
Ti_1 0.0612 | 0.2392 | 1
Amy_o 0.9936 | 0.0344 | 0.5129
Up_2 0.4288 | 0.9049 | 0.7808
Ti_o 0.0580 | 0.2061 | 0.1038
Amy_g 0.0806 | 0.0296 | 0.1284
Up_3 0.2230 | 0.2159 | 0.1024
ri_3 0.0416 | 0.8586 | 0.6619
Amy_y 0.0645 | 0.0507 | 0.2783
Up_4 0.2125 | 0.1412 | 0.2370
Ti_4 0.0556 | 0.1724 | 0.1097

With VARs, the researcher is often interested in forecasting. It is worth
mentioning that often recursive forecasting exercises, which involve forecasting
at time 7 = 7, .., T, are often done. These typically involve estimating a model
T — 1o times using appropriate sub-samples of the data. If MCMC methods
are required, this can be computationally demanding. That is, running an
MCMC algorithm T — 7 times can (depending on the model and application)
be very slow. If this is the case, then the researcher may be tempted to work
with methods which do not require MCMC such as the Minnesota or natural
conjugate priors. Alternatively, sequential importance sampling methods such
as the particle filter (see, e.g. Doucet, Godsill and Andrieu, 2000 or Johannes
and Polson, 2009) can be used which do not require the MCMC algorithm to
be run at each point in time.

Table 3 presents predictive results for an out-of-sample forecasting exercise
based on the predictive density p (yri1|yi.., yr) where T = 2006Q3. It can be
seen that for this empirical example, which involves a moderately large data
set, the prior is having relatively little impact. That is, predictive means and
standard deviations are similar for all six priors, although it can be seen that the
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predictive standard deviations with the Minnesota prior do tend to be slightly
smaller than the other priors.

Table 3. Predictive mean of yry1 (st. dev. in parentheses)

PRIOR A7TT+1 Ur+1 TT+1
Nominformative 3.105 4.610 1.382
i v (0.315) | (0.318) | (0.776)
Minmesot 3.124 1628 4.350
esota (0.302) | (0.319) | (0.741)
Natural coniusate 3.106 4611 4.380
Jug (0.313) | (0.314) | (0.748)
. 3.110 1.622 4315
Indep. Normal-Wishart (0.322) (0.324) (0.780)
3.007 4,641 1.281
SSVS - VAR (0.323) | (0.323) | (0.787)
3.108 4,639 4278
SSVS (0.304) | (0.317) | (0.785)
True value, yri1 3.275 4.700 4.600

Figures 2 and 3 present impulse responses of all three of our variables to all
three of the shocks for two of the priors: the noninformative one and the SSVS
prior. In these figures the posterior median is the solid line and the dotted lines
are the 10" and 90" percentiles. These impulse responses all have sensible
shapes, similar to those found by other authors. The two priors are giving
similar results, but a careful examination of them do reveal some differences.
Especially at longer horizons, there is evidence that SSVS leads to slightly more
precise inferences (evidenced by a narrower band between the 10" and 90"
percentiles) due to the shrinkage it provides.
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Figure 2: Posterior of impulse responses - Noninformative prior.
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Figure 3: Posterior of impulse responses - SSVS prior.

3 Bayesian State Space Modeling and Stochas-
tic Volatility

3.1 Introduction and Notation
In the section on Bayesian VAR modeling, we showed that the (possibly re-
stricted) VAR could be written as:

yr=2ZiB+e

for appropriate definitions of Z; and . In many macroeconomic applications,
it is undesirable to assume § to be constant, but it is sensible to assume that £
evolves gradually over time. A standard version of the TVP-VAR which will be
discussed in the next section extends the VAR to:

Yr = ZiB; + 4,

where
Bis1 = By + ur.
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Thus, the VAR coefficients are allowed to vary gradually over time. This is a
state space model.

Furthermore, previously we assumed ¢; to be i.i.d. N (0,X) and, thus, the
model was homoskedastic. In empirical macroeconomics, it is often important
to allow for the error covariance matrix to change over time (e.g. due to the
Great Moderation of the business cycle) and, in such cases, it is desirable to
assume ¢; to be i.i.d. N (0,%;) so as to allow for heteroskedasticity. This raises
the issue of stochastic volatility which, as we shall see, also leads us into the
world of state space models.

These considerations provide a motivation for why we must provide a section
on state space models before proceeding to TVP-VARs and other models of more
direct relevance for empirical macroeconomics. We begin this section by first
discussing Bayesian methods for the Normal linear state space model. These
methods can be used to model evolution of the VAR coefficients in the TVP-
VAR. Unfortunately, stochastic volatility cannot be written in the form of a
Normal linear state space model. Thus, after briefly discussing nonlinear state
space modelling in general, we present Bayesian methods for particular nonlinear
state space models of interest involving stochastic volatility.

We will adopt a notational convention commonly used in the state space
literature where, if a; is a time ¢ quantity (i.e. a vector of states or data)
then a' = (af, ..,ag)/ stacks all the a;s up to time ¢. So, for instance, y7 will
denote the entire sample of data on the dependent variables and BT the vector
containing all the states.

3.2 The Normal Linear State Space Model

A general formulation for the Normal linear state space model (which contains
the TVP-VAR defined above as a special case) is:

Yo = Wid + Z, 8, + €4, (28)

and

Bir1 = TiBy + ug, (29)

where y; is an M x 1 vector containing observations on M time series variables,
g is an M x 1 vector of errors, W; is a known M x py matrix (e.g. this
could contain lagged dependent variables or other explanatory variables with
constant coefficients), ¢ is a pg X 1 vector of parameters. Z; is a known M x k
matrix (e.g. this could contain lagged dependent variables or other explanatory
variables with time varying coefficients), 3, is a kx 1 vector of parameters which
evolve over time (these are known as states). We assume &; to be independent
N (0,%;) and u; to be a kx 1 vector which is independent N (0,Q;). &; and us
are independent of one another for all s and ¢. T; is a k X k matrix which is
typically treated as known, but occasionally T} is treated as a matrix of unknown
parameters.
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Equations (28) and (29) define a state space model. Equation (28) is called
the measurement equation and (29) the state equation. Models such as this
have been used for a wide variety of purposes in econometrics and many other
fields. The interested reader is referred to West and Harrison (1997) and Kim
and Nelson (1999) for a broader Bayesian treatment of state space models than
that provided here. Harvey (1989) and Durbin and Koopman (2001) provide
good non-Bayesian treatments of state space models.

For our purpose, the important thing to note is that, for given values of §, T3,
Y and Q¢ (for t = 1,..,T), various algorithms have been developed which allow
for posterior simulation of 5, for ¢t = 1,..,T. Popular and efficient algorithms are
described in Carter and Kohn (1994), Fruhwirth-Schnatter (1994), DeJong and
Shephard (1995) and Durbin and Koopman (2002). Since these are standard
and well-understood algorithms, we will not present complete details here. In
the Matlab code on the website associated with this monograph, the algorithm
of Carter and Kohn (1994) is used. These algorithms can be used as a block in
an MCMC algorithm to provide draws from the posterior of 5, conditional on d,
T, X and Q; (for t = 1,..,T). The exact treatment of §, T3, 3; and @Q; depends
on the empirical application at hand. The standard TVP-VAR fixes some of
these to known values (e.g. § = 0,7; = I are common choices) and treats others
as unknown parameters (although it usually restricts @; = @ and, in the case
of the homoskedastic TVP-VAR additionally restricts ¥; = ¥ for all ¢). An
MCMC algorithm is completed by taking draws of the unknown parameters
from their posteriors (conditional on the states). The next part of this section
elaborates on how this MCMC algorithm works. To focus on state space model
issues, the algorithm is for the case where ¢ is a vector of unknown parameters,
Q: = Q and X; = ¥ and T; is known.

An examination of (28) reveals that, if 5, for ¢ = 1,..,T were known (as
opposed to being unobserved), then the state space model would reduce to a
multivariate Normal linear regression model:

y: = Wﬂs + Et,

where y; = y: — Z;3,. Thus, standard results for the multivariate Normal linear
regression model could be used, except the dependent variable would be yf
instead of y;. This suggests that an MCMC algorithm can be set up for the state
space model. That is, p (J\yT, 3, ,BT) and p (E_1|yT, d, BT> will typically have
a simple textbook form. Below we will use the independent Normal-Wishart
prior for § and ~!. This was introduced in our earlier discussion of VAR
models.

Note next that a similar reasoning can be used for the covariance matrix for
the error in the state equation. That is, if 5, for t = 1,..,T7 were known, then
the state equation, (29), is a simple variant of multivariate Normal regression

model. This line of reasoning suggests that p (Q_l lyT, 4, BT) will have a simple

and familiar form.?

9The case where T:; contains unknown parameters would involve drawing from
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Combining these results for p (5\yT, 3, ﬂT> , P (2*1 lyT, 4, ﬁT> and p (Qil T, 6, BT)
with one of the standard methods (e.g. that of Carter and Kohn, 1994) for tak-
ing random draws from p (ﬁT\yT,d, E,Q) will completely specify an MCMC

algorithm which allows for Bayesian inference in the state space model. In the
following material we develop such an MCMC algorithm for a particular prior
choice, but we stress that other priors can be used with minor modifications.
Here we will use an independent Normal-Wishart prior for § and ¥~! and
a Wishart prior for Q~'. It is worth noting that the state equation can be
interpreted as already providing us with a prior for 7. That is, (29) implies:

ﬁt+1|ﬁt: Q ~ N (Tfﬂta Q) : (30)

Formally, the state equation implies the prior for the states is:

T
p(6871Q) = TI» (BlB.-1. Q)
t=1

where the terms on the right-hand side are given by (30). This is an example
of a hierarchical prior, since the prior for 7 depends on the @ which, in turn,
requires its own prior.

One minor issue should be mentioned: that of initial conditions. The prior
for 5, depends on f,. There are standard ways of treating this issue. For
instance, if we assume g, = 0, then the prior for 3, becomes:

£1lQ@ ~ N (0,Q).

Similarly, authors such as Carter and Kohn (1994) simply assume (3, has some
unspecified distribution as its prior. Alternatively, in the TVP-VAR (or any
TVP regression model) we can simply set 8; = 0 and W; = Z;.10

Combining these prior assumptions together, we have

p(6.2.Q.8") =pO)p(D)p @ (871Q)

where
§~N(3,V), (31)
St W (ST Y), (32)
and
1 1
p(Q,T1,..,Trly, By, -, Br) which can usually be done fairly easily. In the time-invariant case
where Ty = .. =Tp =71, p(T,Q|y, B1,..,87) has a from of the same structure as a VAR.

10This result follows from the fact that y; = ZiB; + e¢ with B, left unrestricted and y; =
Z6 + Zi By + €¢ with 8, = 0 are equivalent models.
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The reasoning above suggests that our end goal is an MCMC algorithm which
sequentially draws from p ((5|yT, Z,BT) ) (Z_1|yT,6,BT), P (Q_1|yT,(575T>
and p (6T|yT,6,Z,Q). The first three of these posterior conditional distrib-

utions can be dealt with by using results for the multivariate Normal linear
regression model. In particular,

sly", %, 8" ~ N (5,V).

where

T -1
— (vl +) Wg21Wt>
t=1

and

t=1

5= v( 15+ZWZ (t—ZtBt)>.

Next we have

=-1yT, 8,87 ~ W (E’l,v) ,

where
v=T+v

and

T

+ > (ye = Wid — ZuB,) (yr — Wid — Z,3,) .

t=1

Next,
_ ——1 _

Q7" 0.8" ~ W (@ 7q)
where
and

T
Q=Q+ Z Biy1 —TiBy) (5t+1_Ttﬁt)/'

To complete our MCMC algorithm, we need a means of drawing from p (BT|yT, 4,3, Q) .

But, as discussed previously, there are several standard algorithms that can be
used for doing this. Accordingly, Bayesian inference in the Normal linear state
space model can be done in a straightforward fashion. We will draw on these
results when we return to the TVP-VAR in a succeeding section of this mono-
graph.
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3.3 Nonlinear State Space Models

The Normal linear state space model discussed previously is used by empirical
macroeconomists not only when working with TVP-VARs, but also for many
other purposes. For instance, Bayesian analysis of dynamic stochastic gen-
eral equilibrium (DSGE) models has become increasingly popular (see, e.g., An
and Schorfheide, 2007 or Fernandes-Villaverde, 2009). Estimation of linearized
DSGE models involves working with the Normal linear state space model and,
thus, the methods discussed above can be used. However, linearizing of DSGE
models is done through first order approximations and, very recently, macro-
economists have expressed an interest in using second order approximations.
When this is done the state space model becomes nonlinear (in the sense that
the measurement equation has y; being a nonlinear function of the states). This
is just one example of how nonlinear state space models can arise in macro-
economics. There are an increasing number of tools which allow for Bayesian
computation in nonlinear state space models (e.g. the particle filter is enjoying
increasing popularity see, e.g., Johannes and Polson, 2009). Given the focus of
this monograph on TVP-VARs and related models, we will not offer a general
discussion of Bayesian methods for nonlinear state space models (see Del Negro
and Schorfheide, 2009, and Giordani, Kohn and Pitt, 2009 for further discus-
sion). Instead we will focus on an area of particular interest for the TVP-VAR
modeler: stochastic volatility.

Broadly speaking, issues relating to the volatility of errors have obtained an
increasing prominence in macroeconomics. This is due partially to the empirical
regularities that are often referred to as the Great Moderation of the business
cycle (i.e. that the volatilities of many macroeconomic variables dropped in the
early 1980s and remained low until recently). But it is also partly due to the
fact that many issues of macroeconomic policy hinge on error variances. For
instance, the debate on why the Great Moderation occurred is often framed in
terms of “good policy” versus “good luck” stories which involve proper modeling
of error variances. For these reasons, volatility is important so we will spend
some time describing Bayesian methods for handling it.

3.3.1 Univariate Stochastic Volatility

We begin with a discussion of stochastic volatility when y; is a scalar. Al-
though TVP-VARs are multivariate in nature and, thus, Bayesian methods for
multivariate stochastic volatility are required, these use methods for univariate
stochastic volatility as building blocks. Accordingly, a Bayesian treatment of
univariate stochastic volatility is a useful starting point. In order to focus the
discussion, we will assume there are no explanatory variables and, hence, adopt
a simple univariate stochastic volatility model'! which can be written as:

1n this section we describe a method developed in Kim, Shephard and Chib (1998) which
has become more popular than the pioneering approach of Jacquier, Polson and Rossi (1994).
Bayesian methods for extensions of this standard stochastic volatility model (e.g. involving
non-Normal errors or leverage effects) can be found in Chib, Nardari and Shephard (2002)
and Omori, Chib, Shephard and Nakajima (2007).
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h
Yt = exXp <2t> €t (34)

and

hip1r = p+ ¢ (he —p) +my, (35)
where ¢; is 1i.d. N (0,1) and n, is i.id. N (0,0,27). ¢+ and n, are independent
of one another for all s and t.

Note that (34) and (35) is a state space model similar to (28) and (29) where
hy for t = 1,..,t can be interpreted as states. However, in contrast to (28), (34)
is not a linear function of the states and, hence, our results for Normal linear
state space models cannot be directly used.

Note that this parameterization is such that h; is the log of the variance of
Y. Since variances must be positive, in order to sensibly have Normal errors
in the state equation (35), we must define the state equation as holding for
log-volatilities. Note also that p is the unconditional mean of h;.

With regards to initial conditions, it is common to restrict the log-volatility
process to be stationary and impose |¢| < 1. Under this assumption, it is
sensible to have:

&
h() ~ N H, W (36)

and the algorithm of Kim, Shephard and Chib (1998) described below uses this
specification. However, in the TVP-VAR literature it is common to have VAR
coefficients evolving according to random walks and, by analogy, TVP-VAR
papers such as Primiceri (2005) often work with (multivariate extensions of)
random walk specifications for the log-volatilities and set ¢ = 1. This simplifies
the model since, not only do parameters akin to ¢ not have to be estimated,
but also p drops out of the model. However, when ¢ = 1, the treatment of
the initial condition given in (36) cannot be used. In this case, a prior such
as hg ~ N (h,V,,) is typically used. This requires the researcher to choose h
and V. This can be done subjectively or, as in Primiceri (2005), an initial
“training sample” of the data can be set aside to calibrate values for the prior
hyperparameters.

In the development of an MCMC algorithm for the stochastic volatility
model, the key part is working out how to draw the states. That is (in a
similar fashion as for the parameters in the Normal linear state space model),
p (ol 0%, RT), p (kly™, ¢, 0%, hT) and p (a%\yT, 11, ¢, hT) have standard forms
derived using textbook results for the Normal linear regression model and will
not be presented here (see, e.g., Kim, Shephard and Chib, 1998 for exact for-
mulae). To complete an MCMC algorithm, all that we require is a method for
taking draws from p (hT|yT, 1, b, 0727). Kim, Shephard and Chib (1998) provide
an efficient method for doing this. To explain the basic ideas underlying this
algorithm, note that if we square both sides of the measurement equation, (34),
and then take logs we obtain:

29



y;tk = ht + E;fka (37)

where'? y; = In (y?) and €} = In (7). Equations (37) and (35) define a state
space model which is linear in the states. The only thing which prevents us
from immediately using our previous results for the Normal linear state space
model is the fact that £} is not Normal. However, as well shall see, it can be
approximated by a mixture of different Normal distributions and this allows us
to exploit our earlier results.

Mixtures of Normal distributions are very flexible and have been used widely
in many fields to approximate unknown or inconvenient distributions. In the
case of stochastic volatility, Kim, Shephard and Chib (1998) show that the
distribution of €F, p (¢}) can be well-approximated by:

7
p(ef) = Y aifn (eflmi,of), (38)

i=1

where fy (sﬂmi,v?) is the p.d.f. of a N (mi,vf) random variable.!? Crucially,
since g; is N (0, 1) it follows that &} involves no unknown parameters and neither
does this approximation. Thus, g;, m;,v? for i = 1,..,7 are not parameters to
be estimated, but simply numbers given in Table 4 of Kim, Shephard and Chib
(1998).

An equivalent way of writing (38) is to introduce component indicator vari-
ables, s; € {1,2,..,7} for each element in the Normal mixture and writing:

eflsg =i~ N (mhvf)
Pr(s; =1) =g

)

for ¢ = 1,..,7. This formulation provides insight into how the algorithm works.
In particular, the MCMC algorithm does not simply draw the log-volatilities
from p(hT|yT,,u,¢,072]), but rather draws them from p(hT|yT,u,¢,af],sT).
This may seem awkward, but has the huge benefit that standard results from
the Normal linear state space models such as those described previously in this
section can be used. That is, conditional on knowing s, .., s, the algorithm
knows which of the seven Normals €} comes from at each t = 1,..,7 and the
model becomes a Normal linear state space model. To complete the MCMC
algorithm requires a method for drawing from p (sT|yT, ,u,c;S,a%,hT) but this
is simple to do since s; is a discrete distribution with seven points of support.
Precise details are given in Kim, Shephard and Chib (1998).

A Digression: Marginal Likelihood Calculation in State Space Models
Marginal likelihoods are the most popular tool for Bayesian model comparison

121n practice, it is common to set y; =In (yt2 + c) where ¢ is known as an off-set constant
set to a small number (e.g. ¢ = 0.001) to avoid numerical problems associated with times
where yf is zero or nearly so.

130Omori, Chib, Shephard and Nakajima (2007) recommend an even more accurate approx-
imation using a mixture of 10 Normal distributions.
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(e.g. Bayes factors are ratios of marginal likelihoods). In this monograph, we
focus on estimation and prediction as opposed to model comparison or hypoth-
esis testing. This is partly because state space models such as TVP-VARs are
very flexible and can approximate a wide range of data features. Thus, many
researchers prefer to treat them as being similar in spirit to nonparametric
models: capable of letting the data speak and uncovering an appropriate model
(as opposed to working with several parsimonious models and using statistical
methods to select a single one). Furthermore, a Bayesian rule of thumb is that
the choice of prior matters much less for estimation and prediction than it does
for marginal likelihoods. This is particularly true for high-dimensional models
such as TVP-VARs where marginal likelihoods can be sensitive to the choice of
prior. For this reason, many Bayesians avoid the use of marginal likelihoods in
high dimensional models. Even those who wish to do model comparison often
use other metrics (e.g. Geweke and Keane, 2007, uses cross-validation).
However, for the researcher who wishes to use marginal likelihoods, note that
there are many methods for calculating them that involve the evaluation of the
likelihood function at a point. For instance, information criteria are often ap-
proximations to marginal likelihoods and these involve calculating the maximum
likelihood estimator. The popular methods of marginal likelihood calculation
of Chib (1995) and Gelfand and Dey (1994) involve evaluating the likelihood
function. In state space models, a question arises as to what likelihood func-
tion should be used. In terms of our notation for the Normal linear state space

model, p (yT\(X 3,Q, 5T) and p (y7|6,%, Q) can both be used as “likelihoods”
and either could be used in any of the methods of marginal likelihood calculation
just cited.'* However, using p (yT|6, ¥,Q, BT) to define the likelihood function

could potentially lead to very inefficient computation since the parameter space
is of such high dimension.'® Thus, it is desirable to use p (yT\é, 3, Q) to define
the likelihood function. Fortunately, for the Normal linear state space model a
formula for p (yT|5, X, Q) is available which can be found in textbooks such as
Harvey (1989) or Durbin and Koopman (2001).

For the stochastic volatility model, for the same reasons either p (yT\qﬁ, b 037 hT)
orp (yT|r,z5, 1, of]) could be used to define the likelihood function. It is desirable
to to use p (yT|¢, 1, a%) but, unfortunately, an analytical expression for it does
not exist. Several methods have been used to surmount this problem, but some
of them can be quite complicated (e.g. involving using particle filtering meth-
ods to integrate out hT). Berg, Meyer and Yu (2004) discuss these issues in
detail and recommend a simple approximation called the Deviance Information
Criterion.

It is also worth noting that the MCMC algorithm for the stochastic volatility
model is an example of an auxiliary mixture sampler. That is, it introduces an
auxiliary set of states, s, which results in a mixture of Normals representation.

14 Fruhwirth-Schnatter and Wagner (2008) refer to the former of these as the complete data
likelihood and the latter as the integrated likelihood.

15The non-Bayesian seeking to find the maximum of this likelihood function would also
often run into troubles optimizing in such a high dimensional parameter space.
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Conditional on these states, the model is a Normal linear state space model.
Fruhwirth-Schnatter and Wagner (2008) exploit this Normality (conditional on
the auxiliary states) result to develop methods for calculating marginal like-
lihoods using auxiliary mixture samplers and such methods can be used with
stochastic volatility models.

3.3.2 Multivariate Stochastic Volatility

Let us now return to the state space model of (28) and (29) where y; is an
M x 1 vector and ¢y is i.i.d. N (0,%;). As we have stressed previously, in
empirical macroeconomics it is often very important to allow for X; to be time
varying. There are many ways of doing this. Note that 3; is an M x M

(

positive definite matrix with %ﬂ) distinct elements. Thus, the complete set

of ¥y fort = 1,..,T contains% unknown parameters which is a huge
number. In one sense, the literature on multivariate stochastic volatility can
be thought of as mitigating this proliferation of parameters problems through
parametric restrictions and/or priors and working in parameterizations which
ensure that Y; is always positive definite. Discussions of various approaches can
be found in Asai, McAleer and Yu (2006), Chib, Nardari and Shephard (2006)
and Chib, Omori and Asai (2009) and the reader is referred to these papers for
complete treatments. In this section, we will describe two approaches popular
in macroeconomics. The first was popularized by Cogley and Sargent (2005),
the second by Primiceri (2005).

To focus on the issues relating to multivariate stochastic volatility, we will
consider the model:

Yt = €t (39)
and &; is i.i.d. N (0,%;). Before discussing the specifications used by Cogley

and Sargent (2005) and Primiceri (2005) for ¥; we begin with a very simple
specification such that

Y, =D,

where D; is a diagonal matrix with each diagonal element having a univariate
stochastic volatility specification. That is, if d;; is the i*"* diagonal element of
D, for i =1,.., M, then we write d;; = exp (h;) and

hitrr = p; + & (hit — p1;) + My (40)
where 7, = (0}, s Myy,) s ii.d. N (0,D,) where D, is a diagonal matrix (so
the errors in the state equation are independent of one another). This model
is simple to work with in that it simply says that each error follows its own
univariate stochastic volatility model, independent of all the other errors. Thus,
the Kim, Shephard and Chib (1998) MCMC algorithm can be used one equation
at a time.

This model is typically unsuitable for empirical macroeconomic research
since it is not appropriate to assume ¥; to be diagonal. Many interesting
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macroeconomic features (e.g. impulse responses) depend on error covariances so
assuming them to be zero may be misleading. Some researchers such as Cogley
and Sargent (2005) allow for non-zero covariances in a simple way by writing:

¥ =L 'D,L7V (41)

where Dy is a diagonal matrix with diagonal elements being the error variances
and L is a lower triangular matrix with ones on the diagonal. For instance, in
the M = 3 case we have

1 0 0
L= Lo 1 0
L3z Lz 1

This form is particularly attractive for computation since, even through ;;
and €j; (which are the i and j*" elements of &;) are no longer independent of
one another, we can transform (39) as

Lyt = LEt (42)

and ef = Le; will now have a diagonal covariance matrix. In the context of
an MCMC algorithm involving p (h*|y”, L) and p (L|y”, h") (where h”" stacks
all hy = (Rly, .., hhy,)" into a MT x 1 vector) we can exploit this result to run
the Kim, Shephard and Chib (1998) algorithm one equation at a time. The is,
conditional on an MCMC draw of L, we can transform the model as in (42)
and use results for the univariate stochastic volatility model one transformed
equation at a time.

Finally, to complete the MCMC algorithm for the Cogley-Sargent model we
need to take draws from p (L|yT, hT). But this is straightforward since (42)
shows that this model can be written as a series of M regression equations with
Normal errors which are independent of one another. Hence, standard results for
the Normal linear regression model can be used to draw from p (L\yT, hT). The
appendix to Cogley and Sargent (2005) provides precise formulae for the MCMC
algorithm (although their paper uses a less efficient algorithm for drawing from
P (hT|yT, L) than the algorithm in Kim, Shephard and Chib, 1998, discussed in
this section).

It is worth stressing that the Cogley-Sargent model allows the covariance
between the errors to change over time, but in a tightly restricted fashion related
to the way the error variances are changing. This can be seen most clearly in the
M = 2 case where €1; and e9; are the errors in the two equations. In this, case
(41) implies cov (g1¢,€2¢) = di1tL2; which varies proportionally with the error
variance of the first equation. In impulse response analysis, it can be shown
that this restriction implies that a shock to the i** variable has an effect on the
jt* variable which is constant over time. In some macroeconomic applications,
such a specification might be too restrictive.

Another popular approach (see, e.g., Primiceri, 2005) extends (41) to:

Y =L;'D,L;Y (43)
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where L; is defined in the same way as L (i.e. as being a lower-triangular matrix
with ones on the diagonal), but is now time varying. This specification does not
restrict the covariances and variances in ¥; in any way. The MCMC algorithm
for posterior simulation from the Primiceri model is the largely same as for the
model with constant L (with the trivial change that the transformation in (42)
becomes L;y; = Lie;). The main change in the algorithm arises in the way L;
is drawn.

To describe the manner in which L; evolves, we first stack the unrestricted
elements by rows into a MM=1) Gector as Iy = (LQLt, L3¢, L3og, .., Lp(pfl),t)/'
These can be allowed to evolve according to the state equation:

Zt+1 == lt + Ct? (44)
where ¢, is i.i.d. N (0,D¢) and independent of the other errors in the model
and D¢ is a diagonal matrix.

We have seen how the measurement equation in this model can be written
as:

Liys = €,
and it can be shown that ef ~ N (0,D;). We can use the structure of L; to
isolate y; on the left hand side and write:

yr = Cily + €5 (45)
Primiceri (2005), page 845 gives a general definition of C;. For M = 3,

0 0 0
Ct = —Y1t 0 0 y

0 —Yit  —Y2
where y;; is the i'" element of y,. But (44) and (45) is now in form of a Normal
linear state space model of the sort we began this section with. Accordingly,
in the context of an MCMC algorithm, we can draw L; (conditional on hT and
all the other model parameters) using an algorithm such as that of Carter and
Kohn (1994) or Durbin and Koopman (2002).

Note that we have assumed D¢ to be a diagonal matrix. Even with this
restriction, the resulting multivariate stochastic volatility model is very flexible.
However, should the researcher wish to have D¢ being non-diagonal, it is worth
noting that if it is simply assumed to be a positive definite matrix then the
simplicity of the MCMC algorithm (i.e. allowing for the use of methods for
Normal linear state space models), breaks down. Primiceri (2005) assumes D
to have a certain block diagonal structure such that it is still possible to use
algorithms for Normal linear state space models to draw L;. It is also possible
to extend this model to allow for D, (the error covariance matrix in the state
equation for h; defined after equation 40) to be any positive definite matrix
(rather than the diagonal one assumed previously). Exact formulae are provided
in Primiceri (2005) for both these extensions. The empirical illustration below
uses these generalizations of Primiceri (2005).

34



4 'TVP-VARs

VARs are excellent tools for modeling the inter-relationships between macro-
economic variables. However, they maintain the rather strong assumption that
parameters are constant over time. There are many reasons for thinking such an
assumption may be too restrictive in many macroeconomic applications. Con-
sider, for instance, U.S. monetary policy and the question of whether the high
inflation and slow growth of the 1970s were due to bad policy or bad luck. Some
authors (e.g. Boivin and Giannoni, 2006, Cogley and Sargent, 2001 and Lubik
and Schorfheide, 2004) have argued that the way the Fed reacted to inflation
has changed over time (e.g. under the Volcker and Greenspan chairmanship,
the Fed was more aggressive in fighting inflation pressures than under Burns).
This is the “bad policy” story and is an example of a change in the monetary
policy transmission mechanism. This story depends on having VAR coefficients
different in the 1970s than subsequently. Others (e.g. Sims and Zha, 2006) have
emphasized that the variance of the exogenous shocks has changed over time
and that this alone may explain many apparent changes in monetary policy.
This is the “bad luck” story (i.e. in the 1970s volatility was high, whereas later
policymakers had the good fortune of the Great Moderation of the business cy-
cle) which motivates the addition of multivariate stochastic volatility to VAR
models . Yet others (e.g. Primiceri, 2005, Koop, Leon-Gonzalez and Strachan,
2009) have found that both the transmission mechanism and the variance of the
exogenous shocks have changed over time.

This example is intended to motivate the basic point that an understand-
ing of macroeconomic policy issues should be based on multivariate models
where both the VAR coefficients and the error covariance matrix can potentially
change over time. More broadly, there is a large literature in macroeconomics
which documents structural breaks and other sorts of parameter change in many
time series variables (see, among many others, Stock and Watson, 1996). A
wide range of alternative specifications have been suggested, including Markov
switching VARs (e.g. Paap and van Dijk, 2003, or Sims and Zha, 2006) and
other regime-switching VARs (e.g. Koop and Potter, 2006). However, perhaps
the most popular have been TVP-VARs. A very incomplete list of references
which use TVP-VARs includes Canova (1993), Cogley and Sargent (2001, 2005),
Primiceri (2005), Canova and Gambetti (2009), Canova and Ciccarelli (2009)
and Koop, Leon-Gonzalez and Strachan (2009). In this monograph, we will not
discuss regime-switching models, but rather focus on TVP-VARs.

4.1 Homoskedastic TVP-VARs

To discuss some basic issues with TVP-VAR modelling, we will begin with
a homoskedastic version of the model (i.e. ¥; = X). We will use the same
definition of the dependent variables and explanatory variables as in (16) from
Section 2. Remember that y; is an M x 1 vector containing data on M dependent
variables and Z; is an M x k matrix. In Section 2, we saw how Z; could be
set up to either define an unrestricted or a restricted VAR. Z; can also contain
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exogenous explanatory variables.'® The basic TVP-VAR can be written as:

Yr = ZiB; + €4,

and

Bir1 = By + ue, (46)

where ; is i.i.d. N (0,X) and wu; is i.i.d. N (0,Q). & and ug are independent of
one another for all s and t.

This model is similar to that used in Cogley and Sargent (2001). Bayesian
inference in this model can be dealt with quite simply since it is a Normal linear
state space model of the sort discussed in Section 3 of this monograph. Thus,
the MCMC methods described in Section 3 can be used for Bayesian inference
in the homoskedastic TVP-VAR. In many cases, this is all the researcher needs
to know about TVP-VARs and Bayesian TVP-VARs work very well in practice.
However, in some cases, this basic TVP-VAR can lead to poor results in practice.
In the remainder of this section, we discuss how these poor results can arise and
various extensions of the basic TVP-VAR which can help avoid them.

The poor results just referred to typically arise because the TVP-VAR has
so many parameters to estimate. In Section 1 we saw how, even with the VAR,
worries about the proliferation of parameters led to the use of priors such as the
Minnesota prior or the SSVS prior. With so many parameters and relatively
short macroeconomic time series, it can be hard to obtain precise estimates of
coefficients. Thus, features of interest such as impulse responses can have very
dispersed posterior distributions leading to wide credible intervals. Furthermore,
the risk of over-fitting can be serious in some applications. In practice, it has
been found that priors which exhibit shrinkage of various sorts can help mitigate
these problems.

With the TVP-VAR, the proliferation of parameters problems is even more
severe since it has T' times as many parameters to estimate. In Section 3, we saw
how the state equation in a state space model can be interpreted as a hierarchical
prior (see equation 30). And, in many applications, this prior provides enough
shrinkage to yield reasonable results. Although it is worth noting that it is
often a good idea to use a fairly tight prior for ). For instance, if (33) is used
as a prior, then a careful choice of v, and Q_l can be important in producing
sensible results.!” However, in some applications, it is desirable to introduce
more prior information and we will describe several ways of doing so.

16The TVP-VAR where some of the coefficients are constant over time can be dealt with

by adding W; as in (28) and (29).

17 Attempts to use flat “noninformative” priors on @Q can go wrong since such flat priors
actually can be quite informative, attaching large amounts of prior probability to large values
of Q. Large values of @ are associated with a high degree of variation on the VAR coefficients
(i.e. much prior weight is attached to regions of the parameter space where the opposite of
shrinkage occurs).
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4.1.1 Empirical Illustration of Bayesian Homoskedastic TVP-VAR
Methods

To illustrate Bayesian inference in the homoskedastic TVP-VAR, we use the
same U.S. data set as before (see Section 2.3), which contains three variables:
inflation, unemployment and interest rate and runs from 1953Q1 to 2006Q3.
We set lag length to 2.

We use a training sample prior of the type used by Primiceri (2005) where
prior hyperparameters are set to OLS quantities calculating using a training
sample of size 7 (we use 7 = 40). Thus, data through 1962Q4 is used to choose
prior hyperparameter values and then estimation uses data beginning in 1963Q1.
To be precise, the training sample prior uses 5,r¢ which is the OLS estimate
of the VAR coefficients in a constant-coefficient VAR and V (85},¢) which is its
covariance matrix.

In this model, we need a prior for the initial state, 3,, the measurement
equation error covariance matrix 3 and the state equation error covariance
matrix, Q. The first of these is:

Bo~ N (Bors:4-V (Bors))

whereas the latter two are based on (32) with v = M + 1,5 = I and (33) with
vo=1,Q=0.0001-7-V (BoLs)-

Since the VAR regression coefficients are time-varying, there will be a dif-
ferent set of them in every time period. This typically will lead to far too
many parameters to present in a table or graph. Here we will focus on impulse
responses (defined as in Section 2.3). But even for these we have a different
impulse response function at each point in time.'® Accordingly, Figure 4 plots
impulse responses for three representative times: 1975Q1, 1981Q3 and 1996Q1.
For the sake of brevity, we only present the impulse responses of each variable
to a monetary policy shock (i.e. a shock in the interest rate equation).

Using the prior specified above, we see that there are very small differences
in these responses in three different representative periods (1975Q1, 1981Q3
and 1996Q1). In this figure the posterior median is the solid line and the
dotted lines are the 10** and 90" percentiles. These impulse responses are,
in some cases, somewhat different from the ones found in Section 2.3 for the
VARs without parameter variation, which indicates the potential importance of
allowing for time variation in parameters. Note also that the impulse responses
in the three years differ only slightly from one another. This is consistent with
a common finding by researchers using similar data sets: that much of the time
variation in parameters occurs in the error covariance matrix rather than the
VAR coefficients. In this model we are assuming homoskedasticity, but we will
relax this assumption shortly.

181t is common practice to calculate the impulse responses at time time using 3, and simply
ignoring the fact that it will change over time and we do so below. For more general treatments
of Bayesian impulse response analysis see Koop (1996).
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Figure 4: Posterior of impulse responses to monetary policy shock at
different times

4.1.2 Combining other Priors with the TVP Prior

The Minnesota and SSVS Priors In Section 1, we described several priors
that are commonly used with VARs and, when moving to TVP-VARs, an obvi-
ous thing to do is to try and combine them with the hierarchical prior defined
by the state equation. This can be done in several ways. One approach, used in
papers such as Ballabriga, Sebastian and Valles (1999), Canova and Ciccarelli
(2004), and Canova (2007), involves combining the prior of the TVP-VAR with
the Minnesota prior. This can be done by replacing (46) by

6t+1 = AofB; + (I — Ao) Bo + Ut (47)

where Ay is a k x k matrix and 3, a k x 1 vector. The matrices Ay, 8, and Q
can either be treated as unknown parameters or specific values of them can be
chosen to reflect the Minnesota prior. For instance, Canova (2007, page 399)
sets B, and @ to have forms based on the Minnesota prior and sets Ay = ¢l
where ¢ is a scalar. The reader is referred to Canova (2007) for precise details,
but to provide a flavor of his recommendations, note that if ¢ = 1, then the
traditional TVP-VAR prior implication that E (8,,,) = E(8,) is obtained,
but if ¢ = 0 then we have E (8,,,) = B,. Canova (2007) recommends setting
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the elements of 3, corresponding to own lags to one and all other elements to
zero, thus leading to the same prior mean as in the Minnesota prior. Canova
(2007) sets @ to values inspired by the prior covariance matrix of the Minnesota
prior (similar to equation 8). The scalar ¢ can either be treated as an unknown
parameter or a value can be selected for it (e.g. based on a training sample).
It is also possible to treat Ay as a matrix of unknown parameters. To carry
out Bayesian inference in such a model is usually straightforward since it re-
quires only the addition of another block in an MCMC algorithm. In Section

3.2 we saw how an MCMC algorithm involving p (2_1 lyT, ﬂT) ) (Q‘l lyT, BT>

and p (5T|yT,Z,Q) could be used to carry out posterior simulation in the
Normal linear state space model. If Ay involves unknown parameters, then
an MCMC algorithm involving p (Z’1|yT,,BT,A0), p(Q’1|yT,ﬁT,A0) and

P (BT\yT, ¥, Q, A()) proceeds in exactly the same manner. Using the notation

of Section 3.2, we can simply set T; = Ay and the methods of that section
can be directly used. To complete an MCMC algorithm requires draws from

P (Ao\yT, ¥, Q, BT). This will depend on the specification used for Ag, but typ-
ically this posterior conditional distribution is easy to derive using results for
the VAR. That is, p (Ao|yT7 3, Q, BT) is a distribution which conditions on 87,
and (47) can be written in “VAR” form

Biy1r — Bo = Ao (B — Bo) + ue,

with “dependent variables” 3, — B, and “lagged dependent variables” 3, — 3.
In the context of the MCMC algorithm, these “dependent variables” and “lagged
dependent variables” would be replaced with the drawn values.

Any prior can be used for ap = vec(Ap) including any of the VAR, priors
described in Section 2. We will not provide exact formulae here, but note that
they will be exactly as in Section 2 but with y; replaced by 3,,; — Bo and
(or Z;) replaced by 3, — By-

One prior for ag of empirical interest is the SSVS prior of Section 2.2.3. It is
interesting to consider what happens if we use the prior given in (22) and (23)
for ag and set B, = 0.1 This implies that ag; (the j" element of ag) has a
prior of the form:

agjlv; ~ (1 =;) N (0,55;) +v;N (0,41;) ,
where 7; is a dummy variable and mgj is very small (so that ag; is constrained
to be virtually zero), but s7; is large (so that ag; is relatively unconstrained).

The implication of combining the SSVS prior with the TVP prior is that we
have a model which (with probability %‘) says that ap; is evolving according

131f the variables in the VAR are in levels, then the researcher may wish to set the elements
of By corresponding to own first lags to one, to reflect the common Minnesota prior belief in
random walk behavior.
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to a random walk in the usual TVP fashion, but with probability (1 — Vj) is
set to zero. Such a model is a useful one since it allows for change in VAR
coefficients over time (which is potentially of great empirical importance), but
also helps avoid over-parameterization problems by allowing for some lagged
dependent variables to be deleted from the VAR. Another interesting approach
with a similar methodology is given in Groen, Paap and Ravazzolo (2008).

Adding Another Layer to the Prior Hierarchy Another way to combine
the TVP model with prior information from another source is by adding another
state equation to the TVP-VAR (i.e. another layer in the prior hierarchy). The
framework that follows is taken from Chib and Greenberg (1995) and has been
used in macroeconomics by, among others, Ciccarelli and Rebucci (2002).

This involves writing the TVP-VAR as:

Yy = Zifite (48)
ﬂt+1 = Aolir1 + uy,
01 = 0+ n,.

where all assumptions are as for the standard TVP-VAR, but we add the as-
sumption that », is i.i.d. N (0, R) and 7, is independent of the other errors in
the model.

Note first that there is a sense in which this specification retains random
walk evolution of the VAR coefficients since it can be written as:

Yr = ZifBy + ey
/Bt+1 = B+,

where vy = Aon, + us — ug—1. In this sense, it is a TVP-VAR with random
walk state equation but, unlike (46), the state equation errors have a particular
MA(1) structure.

Another way of interpreting this model is by noting that it expresses the
conditional prior belief that

E (5t+1|5t) = AOBt

and, thus, is a combination of the random walk prior belief of the conventional
TVP model with the prior beliefs contained in Agy. Ag is typically treated as
known.

Note that it is possible for 6; to be of lower dimension than 3, and this
can be a useful way of making the model more parsimonious. For instance, Cic-
carelli and Rebucci (2002) is a panel VAR application involving G countries and,
for each country, kg explanatory variables exist with time-varying coefficients.
They specify

AO =lq ®Ik'c
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which implies that there is a time-varying component in each coefficient which
is common to all countries (rather than having G different time-varying compo-
nents in each country). Thus, 0; is kg x 1 whereas 3, kG x 1.

Posterior computation in this model is described in Chib and Greenberg
(1995). Alternatively, the posterior simulation methods for state space models
described in Section 3 can be used, but with a more general specification for
the state equation than that given there. Just as in the preceding section, if
Ap is to be treated as a matrix of unknown parameters any prior can be used
and another block added to the MCMC algorithm. The form of this block will
typically be simple since, conditional on the states, we have 3,,, = Aol +u¢
which has the same structure as a multivariate regression model.

As one empirically-useful example, suppose we use the SSVS prior of Sec-
tion 2.2.3 for Ag. Then we obtain a model where some VAR coefficients evolve
according to random walks in the standard TVP fashion while others are (ap-
proximately) omitted from the model.

4.1.3 Imposing Inequality Restrictions on the VAR Coefficients

Empirical macroeconomists typically work with multivariate time series models
that they believe to be non-explosive. Thus, in TVP-VAR models it can be
desirable to impose stability on the TVP-VAR at each point in time. This has
lead papers such as Cogley and Sargent (2001, 2005) to restrict 3, to satisfy the
usual stability conditions for VARs for ¢ = 1,..,7. This involves imposing the
inequality restriction that the roots of the VAR polynomial defined by 3, lie
outside the unit circle. Indeed, in the absence of such a stability restriction (or
a very tight prior), Bayesian TVP-VARs will place a large amount of a priori
weight on explosive values for 3, (e.g. the Minnesota prior is centered over a
random walk which means it allocates prior weight to the explosive region of the
parameter space). This can cause problems for empirical work. For instance,
even a small amount of posterior probability in explosive regions for 3, can lead
to impulse responses or forecasts which have counter-intuitively large posterior
means or standard deviations. Given that TVP-VARs have many parameters
to estimate and the researcher often has relatively small data sets, the posterior
standard deviation of /3, can often be large. Thus, even if 3, truly is stable
and its posterior mean indicates stability, it is not unusual for large posterior
variances to imply that appreciable posterior probability is allocated to the
explosive region.

The preceding paragraph motivates one case where the researcher might
wish to impose inequality restrictions on 3, in order to surmount potential over-
parameterization problems which might arise in the TVP-VAR. Other inequality
restrictions are also possible. In theory, imposing inequality restrictions is a
good way of reducing over-parameterization problems. In practice, there is one
problem with this strategy. This problem is that standard state space methods
for the Normal linear state space models (see Section 3) cannot be used without
some modification. Remember that MCMC methods for this model involved
taking draws from p ﬂT|yT, 3, Q) and that there are many efficient algorithms
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for doing so (e.g. Carter and Kohn, 1994, Fruhwirth-Schnatter, 1994, DeJong
and Shephard, 1995 and Durbin and Koopman, 2002). However, all of these
algorithms are derived using properties of the multivariate Normal distribution
which do not carry over to the multivariate Normal distribution subject to
inequality constraints.

Two methods have been proposed to impose stability restrictions (or other
inequality restrictions) on TVP-VARs. These are discussed and compared in
Koop and Potter (2009). The first of these involves using a standard algorithm
such as that of Carter and Kohn (1994) for drawing 87 in the unrestricted
VAR. If any drawn (, violates the inequality restriction then the entire vector
BT is rejected.2’ If every element of 87 satisfies the inequality restriction then
BT is accepted with a certain probability (the formula for this probability is
given in Koop and Potter, 2009). A potential problem with this algorithm is
that it is possible for it to get stuck, rejecting virtually every 47. In theory,
if enough draws are taken this MCMC algorithm can be highly accurate, in
practice “enough draws” can be so many that the algorithm simply cannot
produce accurate results in a feasible amount of computer time.

In the case where no inequality restrictions are imposed, the advantage of
algorithms such as that of Carter and Kohn (1994) is that they are multi-move
algorithms. This means that they provide a draw for the entire vector A7 from

D (BT\yT,Z,Q) directly. The logic of MCMC suggests that it would also be
valid to draw 3, for t = 1,..,T one at a time from p (ﬁt\yT,Z,Q,B_t) where

B_; = (ﬁ’l, s Be_1,Bigts o B/T)I. It is indeed the case that this is also valid thing
to do. However, it is rarely done in practice since such single-move algorithms
will be slow to mix. That is, they will tend to produce a highly correlated series
of draws which means that, relative to multi-move algorithms, more draws must
be taken to achieve a desired level of accuracy. The second algorithm proposed
for the TVP-VAR subject to inequality restrictions is a single-move algorithm.
This algorithm does have the disadvantage just noted — that it is slow mixing.
But it is possible that this disadvantage is outweighed by the advantage that
the single-move algorithm does not run into the problem noted above for the
multi-move algorithm (i.e. that the multi-move algorithm can get stuck and
reject every draw).

Koop and Potter (2009) provide full details of both these algorithms and
weigh their advantages and disadvantages in a macroeconomic application.

4.1.4 Dynamic Mixture Models

Another way of tightening the parameterization of the TVP-VAR is through the
dynamic mixture model approach of Gerlach, Carter and Kohn (2000). This
has recently been used in models of relevance for empirical macroeconomics in
Giordani, Kohn and van Dijk (2007) and Giordani and Kohn (2008) and applied
to TVP-VARs in Koop, Leon-Gonzalez and Strachan (2009).

207t can be shown that the strategy of rejecting only individual 8, which violate the in-
equality restriction is not a valid one.
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To explain the usefulness of dynamic mixture modelling for TVP-VAR analy-
sis, return to the general form for the Normal linear state space model given
in (28) and (29) and remember that this model depended on so-called system
matrices, Z;, Q, T, Wi and X;. Dynamic mixture models allow for any or
all of these system matrices to depend on an s x 1 vector K;. Gerlach, Carter
and Kohn (2000) discuss how this specification results in a mixtures of Normals
representation for y; and, hence, the terminology dynamic mixture (or mix-
ture innovation) model arises. The contribution of Gerlach, Carter and Kohn
(2000) is to develop an efficient algorithm for posterior simulation for this class
of models. The efficiency gains occur since the states are integrated out and

~ ~ !
K= (Kl, . KT) is drawn unconditionally (i.e. not conditional on the states).

A simple alternative algorithm would involve drawing from the posterior for K
conditional on 87 (and the posterior for BT conditional on K ). Such a strat-
egy can be shown to produce a chain of draws which is very slow to mix. The
Gerlach, Carter and Kohn (2000) algorithm requires only that K; be Markov
(ie. p (IN(t|I~(t_1, ..,INQ) =p (f(t|[~(t_1>) and is particularly simple if K, is a
discrete random variable. We will not provide details of their algorithm here,
but refer the reader to Gerlach, Carter and Kohn (2000) or Giordani and Kohn
(2008). This algorithm is available on the Matlab website associated with this
monograph.

The dynamic mixture framework can be used in many ways in empirical

macroeconomics, here we illustrate one useful way. Consider the following TVP-
VAR:

Yt = Ztﬁt + Et,

and

Bii1 = By +ug,

where &, is i.id. N (0,%) and uy is i.id. N (o, f(tQ). This model is exactly the

same as the TVP-VAR of Section 4.1, except for the error covariance matrix in
the state equation. Let K; € {0,1} and assume a hierarchical prior for it of the
following form:

p IN(tzl =q.
p(K;=0)=1-¢

where ¢ is an unknown parameter.?!
This is a simple example of a dynamic mixture model. It has the property
that:

21 This specification for K is Markov in the degenerate sense that an independent process
is a special case of Markov process.
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Bror =B tuw it Ky =1
Bror =By if Ky =0

In words, the VAR coefficients can change at time ¢ (if K; = 1), but can also
remain constant (if K, = 0) and g is the probability that the coefficients change.
IN(t and ¢ are estimated in a data-based fashion. Thus, this model can have the
full flexibility of the TVP-VAR if the data warrant it (in the sense that it can
select I?t =1for¢t=1,..,T). But it can also select a much more parsimonious
representation. In the extreme, if K, =0fort= 1,..,T then we have the VAR
without time-varying parameters.

This simple example allows either for all the VAR coefficients to change at
time ¢ (if K¢ = 1) or none (if K; = 0). More sophisticated models can allow for
some parameters to change but not others. For instance, K, could be a vector
of M elements, each being applied to one of the equations in the VAR. Such a
model would allow the VAR coefficients in some equations to change, but remain
constant in other equations. In models with multivariate stochastic volatility,
K could contain elements which control the variation in the measurement error
covariance matrix, ;. This avenue is pursued in Koop, Leon-Gonzalez and
Strachan (2009). Many other possibilities exist and the advantage of the dy-
namic mixture framework is that there exists a well-developed, well-understood
set of MCMC algorithms that make Bayesian inference straightforward.

4.2 TVP-VARs with Stochastic Volatility

Thus far, we have focussed on the homoskedastic TVP-VAR, assuming the er-
ror covariance matrix, ¥ to be constant. However, we have argued above (see
Section 3.3) that volatility issues are often very important in empirical macro-
economics. Thus, in most cases, it is important to allow for multivariate stochas-
tic volatility in the TVP-VAR. Section 3.3.2 discusses multivariate stochastic
volatility, noting that there are many possible specifications for ¥;. Particu-
lar approaches used in Cogley and Sargent (2005) and Primiceri (2005) are de-
scribed in detail. All that we have to note here is that either of these approaches
(or any other alternative) can be added to the homoskedastic TVP-VAR.
With regards to Bayesian inference using MCMC methods, we need only
add another block to our algorithm to draw X; for ¢t = 1,..,7. That is,
with the homoskedastic TVP-VAR we saw how an MCMC algorithm involv-

ing p (Q‘1|yT, BT), D (ﬂT|yT, X, Q) and p (E_l\yT7 BT) could be used. When
adding multivariate stochastic volatility, the first of these densities is unchanged.
The second, p (BT|yT,E,Q), becomes p (BT|yT,21,..,ZT,Q) which can be
drawn from using any of the algorithms (e.g. Carter and Kohn, 1994) for the

Normal linear state space model mentioned previously. Finally, p (E’l lyT, BT)

is replaced by p (El_l, ..,E;l\yT,ﬂT). Draws from this posterior conditional

can be taken as described in Section 3.3.2.
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4.3 Empirical Illustration of Bayesian Inference in TVP-
VARs with Stochastic Volatility

We continue our empirical illustration of Section 4.1.1 which involved a ho-
moskedastic TVP-VAR. All details of the empirical are as in Section 4.1.1 ex-
cept we additionally allow for multivariate stochastic volatility as in Primiceri
(2005). The prior for the parameters relating to the multivariate stochastic
volatility are specified as in Primiceri (2005).

For the sake of brevity, we do not present impulse responses (these are similar
to those presented in Primiceri, 2005). Instead we present information relating
to the multivariate stochastic volatility. Figure 6 presents the time-varying
standard deviations of the errors in the three equations of our TVP-VAR (i.e.
the posterior means of the square roots of the diagonal element of ¥;). Figure
5 shows that there is substantial time variation in the error variances in all
equations. In particular, it can be seen that 1970s was a very volatile period
for the US economy, while the monetarist experiment of the early 1980s is also
with instability. However, after the early 1980s volatility is greatly reduced in
all equations. This latter period has come to be known as the Great Moderation
of the business cycle.
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Figure 5: Time-varying volatilities of errors in the three equations of
the TVP-VAR
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5 Factor Methods

The VAR and TVP-VAR methods we have discussed so far are typically used
when the number of variables in the model is relatively small (e.g. three or four
and rarely more than ten).?? However, in most modern economies, the macro-
economist will potentially have dozens or hundreds of time series variables to
work with. Especially when forecasting, the researcher wants to include as much
information as possible, and it can be desirable to work with as many variables
as possible. This can lead to models with a large number of variables and a pro-
liferation of parameters. Accordingly, researchers have sought ways of extract-
ing the information in data sets with many variables while, at the same time,
keeping the model parsimonious. Beginning with Geweke (1977) factor models
have been the most common way of achieving this goal (see Stock and Wat-
son 2006 for a recent survey). Applications such as Forni and Reichlin (1998),
Stock and Watson (1999, 2002), Bernanke and Boivin (2003), have popularized
factor methods among macroeconomists and Geweke and Zhou (1996), Otrok
and Whiteman (1998) and Kose, Otrok and Whiteman (2003), among many
others, stimulated the interest of Bayesians. Papers such as Bernanke, Boivin
and Eliasz (2005) and Stock and Watson (2005) have combined factor methods
with VAR methods. More recently, papers such as Del Negro and Otrok (2008)
and Korobilis (2009a) provide further TVP extensions to these models. In this
section, we will describe dynamic factor models and their extensions to factor
augmented VARs (FAVARs) and TVP-FAVARs. As we shall see, these models
can be interpreted as state space models and Bayesian MCMC algorithms that
use our previously-discussed algorithms for state space models can be used.

5.1 Introduction

We will retain our notation where y; is an M x 1 vector of time series variables,
but now M will be very large and let y;; denote a particular variable. A simple
static factor model is (see Lopes and West, 2004):

Y = Xo+ Aft +et, (49)

The key aspect of the factor model is the introduction of f; which is a ¢ x 1
vector of unobserved latent factors (where ¢ << M) which contains information
extracted from all the M variables. The factors are common to every dependent
variable (i.e. the same f; occurs in every equation for y;; for i = 1,..., M), but
they may have different coefficients (A which is a M x ¢ matrix of so-called factor
loadings). Also, the equation for every dependent variable has its own intercept
(i.e. Ap is M x 1 vector of parameters). e; is i.i.d. N (0,%). Different factor
models arise from the assumptions about the factors. For example, the simplest
case would be to assume that the factors come from a standard Normal density,
ft ~ N (0,I). This implies that the covariance matrix of the observed data can

22 An important exception is Banbura, Giannone and Reichlin (2008) which uses Bayesian
VARs (with time-invariant coefficients) with up to 130 variables
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be written as:
var(y) = M\ + X.

Alternatively, if we assume that the factors have a (not necessarily diagonal)
covariance matrix 27, the decomposition becomes

var(y) = AXIN 4+ 3.

Even in this simple static framework, many extensions are possible. For
example, Pitt and Shephard (1999) assume a factor stochastic volatility specifi-
cation (i.e. a diagonal factor covariance matrix Z{ which varies over time, with
diagonal elements following a geometric random walk). West (2003) uses SSVS
on the parameters (Ao, \).

We write out these covariance matrices to illustrate the identification issues
which arise in factor models. In general, var(y) will have MM+Y) olements
which can be estimated. However, without further restrictions, ¥ and A (or
Y, ¥; and A\) will have many more elements than this. It is common to restrict
Y to be a diagonal matrix. This restriction implies that all the commonalities
across variables occur through the factors and that the individual elements of &;
are purely shocks which are idiosyncratic to each variable. But additional iden-
tifying restrictions are typically required. Lopes and West (2004) and Geweke
and Zhou (1996) give a clear explanation of why identification is not achieved
in the simple factor model. Below we will discuss more flexible factor models,
but we stress that this added flexibility requires the imposition of more identi-
fication restrictions. There is not a single, universally agreed-upon method for
achieving identification in these models. Below, we make particular choices that
have been used in the literature, but note that others are possible.

5.2 The Dynamic Factor Model

In macroeconomics, it is common to extend the static factor model to allow for
the dynamic properties which characterize macroeconomic variables. This leads
us to dynamic factor models (DFMs). A popular DFM is:

Yit = Aoi + Nift +€it
It :(blftfl_"--—i'q)pftfp—"g{ ) (50)
Eit = Pi1€it—1 + - + Py, Eit—p, T Uit

where f; is defined as in (49), A; which is a 1 x ¢ vector of factor loadings. Also,
the equation for every dependent variable has its own intercept, Ag;. The error
in each equation, ¢;;, may be autocorrelated, as specified in the third equation in
(50) which assumes u;; to be i.id. N (0703). The vector of factors is assumed
to follow a VAR process with 5{ being i.i.d. N (O,Zf). The errors, u;; are
independent over i,t and of z’:‘{ .

Many slight modifications of the DFM given in (50) have been used in the
literature. But this specification is a popular one so we will discuss factor models
using this framework. Note that it incorporates many identifying assumptions
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and other assumptions to ensure parsimony. In particular, the assumption that
¥/ =1 is a common identifying assumption.?? If 3/ is left unrestricted, then
it is impossible to separately identify \; and $/. Similarly, the identifying
assumption that w; is uncorrelated with w;, (for ¢ # j) and el is a standard
one which assures that the co-movements in the different variables in y; arises
from the factors. Even with these assumptions, there is a lack of identification
since the first equation of (50) can be replaced by:

Vit = Noi + MC'C fy + €44,

where C' is any orthonormal matrix.?* Thus, (50) is observationally equivalent
to a model with factors C'f; and factor loadings A\;C’. One way of surmounting
this issue is to impose restrictions on A; (as is done below in our empirical
example). A further discussion of various DFMs and identification is provided,
e.g., in Stock and Watson (2005). See also Sentana and Fiorentini (2001) for a
deeper discussion of identification issues.

To simplify the following discussion, we will assume the errors in the mea-
surement equation are not autocorrelated (i.e. &; are i.id. N (0,0‘%) and,
thus,¢,; = .. = ¢;,, = 0). We do this not because the extension to autocorre-
lated errors is empirically unimportant (it may be important), but because it
involves a straightforward addition of other blocks to the MCMC algorithm of
a standard form. That is, adding AR (or ARMA) errors to a regression model
such as the first equation of (50) involves standard methods (see, e.g., Chib
and Greenberg, 1994). To be precise, the Chib and Greenberg (1994) algorithm
will produce draws of ¢, .., ¢;;, and these can be plugged into the usual quasi-
differencing operator for AR models and this operator can be applied to the
first equation in (50). The methods described below can then be used to draw
all the other parameters of this model, except that y;; and f; will be replaced
by quasi-differenced versions.

5.2.1 Replacing Factors by Estimates: Principal Components

Before discussing a full Bayesian analysis of the DFM which (correctly) treats
f+ as a vector of unobserved latent variables, it is worth noting a simple approx-
imation that may be convenient in practice. This approximation is used, e.g.,
in Koop and Potter (2004). It involves noting that the DFM has approximately
the same structure as the regression model:

Yir = Xoi + Noifi + - + F)\vpiftfp + it (51)

Thus, if f; were known we could use Bayesian methods for the multivariate
Normal regression model to estimate or forecast with the DFM.

Z3However, if (as below and in Pitt and Shephard, 1999) the researcher wishes to allow for
factor stochastic volatility then this identifying assumption cannot be made and an alternative
one is necessary.

24 An orthonormal matrix has the property that C'C = I.
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However, it is common to use principal components methods to approximate
f:.25 Hence, approximate methods for Bayesian analysis of the DFM can be
carried out by simply replacing f; (51) by a principal components estimate and
using regression methods.

5.2.2 Treating Factors as Unobserved Latent Variables

It is also not difficult to treat the factors as unobserved latent variables using
Bayesian methods for state space models that were discussed in Section 3. This
is particularly easy to see if we ignore the AR structure of the errors in the
measurement equation and write the DFM as

Yit = Xoi + Nift + i

52
ft:q)lft—1+~~+q)pft—p+5{ (52)

for ¢ = 1,.., M where ¢;; is i.i.d. N (O,a?) and 5{ isiid. N (O,Ef). In this
form it can be seen clearly that the DFM is a Normal linear state space model of
the form given in (28) and (29). Thus all the methods for posterior simulation
introduced in Section 3 can be used to carry out Bayesian inference. In the
following we provide some additional detail about the steps involved.

Note first that, conditional on the model’s parameters, 2/, &, .., Dy, Noiy Niy 02
for : = 1,.., M, any of the standard algorithms for state space models such as
that of Carter and Kohn (1994) can be used to draw the factors. But conditional
on the factors, the measurement equations are just M Normal linear regression
models. Note that the assumption that €;; is independent of ¢;; for ¢ # j means
that the posteriors for \g;, \;, 07 in the M equations are independent over i and,
hence, the parameters for each equation can be drawn one at a time. Finally,
conditional on the factors, the state equation becomes a VAR and the methods
for Bayesian analysis in VARs of Section 2 can be used. Details on the deriva-
tions for this or related models can be found in many places, including Geweke
and Zhou (1996), Kim and Nelson (1999), Lopes and West (2004) or Del Negro
and Schorfheide (2009). Lopes and West (2004) discusses the choice of ¢, the
number of factors.

5.2.3 Impulse Response Analysis in the DFM

In our discussion of impulse response analysis in VAR models, we emphasized
how it is typically done based on a structural VAR:

p
Coys = co + chytfj + Ut

Jj=1

25If Y is the T x M matrix containing all the variables and W is a M x ¢ matrix containing
the eigenvectors corresponding to the g largest eigenvalues of Y'Y, then FF = YW produces
an estimate of the matrix of the factors.
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or C(L)y, = co +u; where u, is iid. N (0,1), C(L) = Co — > j_, C;LP and
L is the lag operator. In fact, impulse responses are coefficients in the vector
moving averaging (VMA) representation:

yr = ¢+ C (L) "y,

where ¢ is an intercept (¢p = C (L) " ¢o). To be precise, the response of the
it" variable to the j*" structural error h periods in the future, will be the (ij)th
element of the VMA coefficient matrix on u;_j. This makes clear that what is
required for impulse response analysis is a VMA representation and a method
for structurally identifying shocks through a choice of Cj.

With the DFM, we can obtain the VMA representation for y;. By substi-

tuting the state equation in (52) into the measurement equation we can obtain:

Yy = e+ AB(L) el
= B(L)n,

where ® (L) = I — &L — .. — ®,LP and, for notational simplicity, we have
suppressed the intercept and are still assuming ¢; to be serially uncorrelated.
Adding such extensions is conceptually straightforward (e.g. implying e;_1, .., €4—p
would be included in the VMA representation).

In the VMA form it can be seen that standard approaches to impulse re-
sponse analysis run into trouble when the DFM is used since the errors in the
VMA are a combination of the measurement equation errors, ¢;, and the state
equation errors, s{ . For instance, in the VAR it is common to identify the struc-
tural shocks by assuming Cj to be a lower-triangular matrix. If the interest rate
were the last element of y; this would ensure that the error in the interest rate
equation had no immediate effect on the other variables thus identifying it as a
monetary policy shock under control of the central bank (i.e. the shock will be
proportional to the change in interest rates). With the DFM, a monetary policy
shock defined by assuming C to be lower triangular will not purely reflect the
interest rate change, but will reflect the change in the interest rate and relevant
element of 5{ . Thus, impulse response analysis in DFMs is problematic: it is dif-
ficult to identify an economically-sensible structural shock to measure impulse
responses to. This motivates the use of FAVARs. In one sense, these are simply
a different form for writing the DFM but implicitly involve a restriction which
allows for economically-sensible impulse response analysis.?

5.3 The Factor Augmented VAR (FAVAR)

DFMs are commonly used for forecasting. However, interest in combining the
theoretical insights provided by VARs with factor methods’ ability to extract
information in large data sets motivates the development of factor augmented

26 This is the interpretation of the FAVAR given by Stock and Watson (2005) who begin by
writing the FAVAR as simply being a DFM written in VAR form.
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VARs or FAVARs. For instance, a VAR with an identifying assumption which
isolates a monetary policy shock can be used to calculate impulse responses
which measure the effect of monetary policy. As we have seen, such theoretical
insights are hard to obtain in the DFM. However, VARs typically involve only a
few variables and it is possible that this means important economic information
is excluded.?” This suggests that combining factor methods, which extract the
information in hundreds of variables, with VAR methods might be productive.
This is done in papers such as Bernanke, Boivin and Eliasz (2005) and Belviso
and Milani (2006).

The FAVAR modifies a DFM such as (52) by adding other explanatory vari-
ables to the M measurement equations:

Yit = Aoi + Nift +vire + €t (53)

where r; is a k, x 1 vector of observed variables. For instance, Bernanke, Boivin
and Eliasz (2005) set r; to be the Fed Funds rate (a monetary policy instrument)
and, thus, k, = 1. All other assumptions about the measurement equation are
the same as for the DFM.

The FAVAR extends the state equation for the factors to also allow for r; to
have a VAR form. In particular, the state equation becomes:

< ;’f: )51< f: )+..+<T>,,< 7{2:;’ >+’§{ (54)

where all state equation assumptions are the same as for the DFM with the
extension that '5{ isiid. N (0,%7).

We will not describe the MCMC algorithm for carrying out Bayesian infer-
ence in the FAVAR since it is very similar to that for the DFM.?® That is, (53)
and (54) is a Normal linear state space model and, thus, standard methods (e.g.
from Carter and Kohn, 1994) described in Section 3 can be used to draw the
latent factors (conditional on all other model parameters). Conditional on the
factors, the measurement equations are simply univariate Normal linear regres-
sion models for which Bayesian inference is standard. Finally, conditional on
the factors, (54) is a VAR for which Bayesian methods have been discussed in
this monograph.

5.3.1 Impulse Response Analysis in the FAVAR

With the FAVAR, impulse responses of all the variables in y; to the shocks
associated with r; can be calculated using standard methods. For instance, if
r¢ is the interest rate and, thus, the error in its equation is the monetary policy

27 As an example, VARs with a small number of variables sometimes lead to counter-intuitive
impulse responses such as the commonly noted price puzzle (e.g. where increases in interest
rates seem to increase inflation). Such puzzles often vanish when more variables are included
in the VAR suggesting that VARs with small numbers of variables may be mis-specified.

28The working paper version of Bernanke, Boivin and Eliasz (2005) has an appendix which
provides complete details. See also the Matlab manual on the website associated with this
monograph.
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shock, then the response of any of the variables in y; to the monetary policy
shock can be calculated using similar methods as for the VAR. To see this note
that the FAVAR model can be written as:

Yt _ Ay e ~
(%) = Lo i)
Je SN =N N S O R
Tt Tt—1 v P Tt—p t
where & = (£},0)" and v is an M x k, matrix containing the ;s. As for the DFM

model, for notational simplicity, we have suppressed the intercept and assumed
€+ to be serially uncorrelated. Adding such extensions is straightforward.

If we write the second equation in VMA form as ( {f’ > = o) '
t

(where ® (L) = I —®,L —.. — ®LP) and substitute into the first equation, we
obtain:
Yt N B e A - P
(n) = [0 1}(13(L) gy +&¢
= B L)n,.

Thus, we have a VMA form which can be used for impulse response analysis. But
consider the last k, elements of , which will be associated with the equations
for r;. Unlike with the DFM, these VMA errors are purely the errors associated
with the VAR for r;. This can be seen by noting that the last k,. elements of &,
are zero and thus the corresponding elements of 7, will only reflect corresponding
elements of Ef which are errors in equations having r; as dependent variables.
Unlike in the DFM, they do not combine state equation errors with measurement
equation errors. For instance, if r; is an interest rate and structural identification
is achieved by assuming Cj (see equation 14) to be lower-triangular, then the
structural shock to the interest rate equation is truly proportional to a change
in the interest rate and the response to such a monetary policy shock has an
economically-sensible interpretation.

Remember that, as with any factor model, we require identification restric-
tions (e.g. principal components methods implicitly involve an identification
restriction that the factors are orthogonal, but other restrictions are possible).
In order to do structural impulse response analysis, additional identification re-
strictions are required (e.g. that Cp is lower-triangular). Note also that the
restrictions such as Cjy being lower triangular are timing restrictions and must
be thought about carefully. For instance, Bernanke, Boivin and Eliasz (2005)
divide the elements of y; into blocks of “slow variables” (i.e. those which are
slow to respond to a monetary policy shock) and “fast variables” as part of their
identification scheme.
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5.4 The TVP-FAVAR

In this monograph, we began by discussing Bayesian VAR modelling, before
arguing that it might be desirable to allow the VAR coefficients to vary over
time. This led us to the homoskedastic TVP-VAR. Next, we argued that it is
usually empirically important to allow for multivariate stochastic volatility. We
can go through exactly the same steps with the FAVAR resulting in a TVP-
FAVAR. Several specifications have been proposed, including Del Negro and
Otrok (2008) and Korobilis (2009a). However, just as with TVP-VARs, it is
worth stressing that TVP-FAVARs can be over-parameterized and that care-
ful incorporation of prior information or the imposing of restrictions (e.g. only
allowing some parameters to vary over time) can be important in obtaining
sensible results. Completely unrestricted versions of them can be difficult to
estimate using MCMC methods since they involve so many different state equa-
tions (i.e. one set for the factors and others to model the evolution of the
parameters).
A very general specification for the TVP-FAVAR is given in Korobilis (2009a)2°

who replaces (53) and (54) by

Yit = Aot + Nieft + ViTe + it (55)

ft _x ftf = ftfp ~
( o ><I>1t< mi )+..+<I>pt< e >+e{ (56)

and assumes each ¢;; follows a univariate stochastic volatility process and var (’5{ ) =

and

i{ has a multivariate stochastic volatility process of the form used in Primiceri
(2005). Finally, the coefficients (for i = 1,.., M) Aoit, Ait, Vs g, .., épt are al-
lowed to evolve according to random walks (i.e. state equations of the same
form as 46 complete the model). All other assumptions are the same as for the
FAVAR.

We will not describe the MCMC algorithm for this model other than to note
that it simply adds more blocks to the MCMC algorithm for the FAVAR. These
blocks are all of forms previously discussed in this monograph. For instance,
the error variances in the measurement equations are drawn using the univariate
stochastic volatility algorithm of Section 3.3.1. The algorithm of Section 3.3.2
can be used to draw E{. The coeflicients Aoit, Ait, Vig, Pit, .., Ppe are all drawn
using the algorithm of Section 3.2, implemented in a very similar fashion as in
the TVP-VAR. In short, as with so many models in empirical macroeconomics,
Bayesian inference in the TVP-FAVAR proceeds by putting together an MCMC
algorithm involving blocks from several simple and familiar algorithms.

29The model of Korobilis (2009a) is actually a slight extension of this since it includes a
dynamic mixture aspect similar to that presented in Section 4.1.3.
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5.5 Empirical Illustration of Factor Methods

To illustrate Bayesian inference in FAVARs and TVP-FAVAR models, we use a
data set of 115 quarterly US macroeconomic variables spanning 1959Q1 though
2006Q3. Following common practice in this literature, we transform all variables
to be stationary. For brevity, we do not list these variables here nor describe the
required stationarity transformations. These details are provided in the manual
on the website associated with this monograph.

The FAVAR is given in (53) and (54). It requires the choice of variables
to isolate in r; and we use the same variables as in our previous VAR and
TVP-VAR empirical illustrations: inflation, unemployment and the interest rate.
Consequently, our FAVAR is the same tri-variate VAR used in previous empirical
illustrations, augmented with factors, f;, which are extracted from a large set
of macroeconomic and financial variables.

We use principal components methods to extract the first two factors which
are used in the FAVAR (g = 2) and two lags in the factor equation (p = 2).3° The
use of principal components methods ensures identification of the model since it
normalizes all factors to have mean zero and variance one. For the FAVAR we
require a prior for the parameters ¥, &1, .., ®,, Noi, Niyo? for i =1,..,M. Full
details of this (relatively noninformative) prior are provided in the manual on
the website associated with this monograph.

To carry out impulse response analysis we require additional identifying
assumptions. With regards to the equations for r;, we adopt the same identifying
assumptions as in our previous empirical illustrations. These allow us to identify
a monetary policy shock. With regards to the variables in y;, suffice it to note
here is that we adopt the same assumptions as Bernanke, Boivin and Eliasz
(2005). The basic idea of their identifying scheme is described in Section 5.2.3
above.

Figures 6 and 7 plot impulse responses to the monetary policy shock for
the FAVAR. Figure 6 plots impulse responses for the main variables which are
included in ;. The patterns in Figure 6 are broadly similar as those obtained in
our empirical illustration using VARs (compare Figure 6 to Figure 4). However,
the magnitudes of the impulse responses are somewhat different. Here we are
finding more evidence that a monetary policy shock will decrease inflation. Fig-
ure 7 plots the response of a few randomly selected variables to the monetary
policy shock.3!

30These choices are only illustrative. In a substantive empirical exercise, the researcher
would select these more carefully (e.g. using model selection methods such discussed previously
in this monograph).

31See the manual on the website associated with this monograph for a definition of the
abbreviations used in Figures 7 and 10. Briefly GDPC96 is GDP, GSAVE is savings, PRFI is
private residential fixed investment, MANEMP is employment in manufacturing, AHEMAN is
earnings in manufacturing, HOUST is housing starts, GS10 is a 10 year interest rate, EXJPUS
is the Japanese-US exchange rate, PPTACO is a producer price index, OILPRICE is the oil
price, HHSNTN is an index of consumer expectations and PMNO is the NAPM orders index.
All impulse responses are to the original untransformed versions of these variables.
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Figure 7: Posterior of impulse responses of selected variables to monetary

policy shock

We now present results for a TVP-FAVAR defined in (55) and (56), but with
the restriction that the parameters in the measurement equation are constant
over time.*> The (relatively noninformative) prior we use is described in the

manual on the website associated with this monograph.

Figure 8 plots the posterior means of the standard deviations of the errors
in the two equations where the factors are the dependent variable and the three
equations where r; are the dependent variables. It can be seen that there is
substantive evidence of variation in volatilities (in particular, for equation for
the first factor). The bottom three panels of Figure 8 look similar to Figure 5
and indicate the substantial increase in volatility associated with the 1970s and
early 1980s preceding the Great Moderation of the business cycle. However,
this pattern is somewhat muted relative to Figure 5 since the inclusion of the
factors means that the standard deviation of the errors becomes smaller.

32We do this since it is difficult to estimate time variation in coefficients in both the mea-
surement and state equation without additional restrictions or very strong prior information.
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Figure 8: Time-varying volatilities of errors in five key equations of the
TVP-FAVAR

Figures 9 and 10 plot impulse responses in the same format as Figures 6
and 7. With the TVP-FAVAR these will be time varying so we plot them
for three different time periods. A comparison of Figure 9 to Figure 4 (which
presents the same impulse responses using a TVP-VAR) indicate that broad
patterns are roughly similar, but there are some important differences between
the two figures. Similarly, a comparison of Figure 10 to Figure 8 indicates broad
similarities, but in some specific cases important differences can be found.

57



Ipu'se rzsponse o iration, 1977 Q1

mplse esaonse cf uremaloyment, 197531

Ivpuse response of iverest rate, 197501

puse responss o° imerest rate, 1951.03

—
\\ //
- P
f 9 17 A f 9 TR Rm? f 5 17 18’ 2

98

Figure 9: Posterior of impulse responses of main variables to monetary policy
shock at different times
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Figure 10: Posterior means impulse responses of selected variables to
monetary policy shock at different times

Conclusion
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In this monograph, we have discussed VARs, TVP-VAR, FAVARs and TVP-
FAVARs, including versions of these models with multivariate stochastic volatil-
ity. These classes of models have become very popular with empirical macro-
economists since they allow for insight into the relationships between macroeco-
nomic variables in a manner which lets the data speak in a relatively uncon-
strained manner. However, the cost of working with such unconstrained models
is that they risk being over-parameterized. Accordingly, researchers have found
it desirable to impose soft or hard restrictions on these models. Soft restrictions
typically involve shrinking coefficients towards a particular value (usually zero)
whereas hard ones involve the imposition of exact restrictions. Bayesian meth-
ods have been found to be an attractive and logically consistent way of handling
such restrictions.

We have shown have Bayesian inference can be implemented in a variety of
ways in these models, with emphasis on specifications that are of interest to the
practitioner. Apart from the simplest of VARs, MCMC algorithms are required.
This monograph describes these algorithms in a varying degree of detail. We



draw the reader’s attention to the website associated with this monograph which
contains Matlab code for most of the models described above. A manual on
this website provides a complete listing of all formulae used in each MCMC
algorithm. Thus, our aim has been to provide a complete set of Bayesian tools
for the practitioner interested in a wide variety of models commonly used in
empirical macroeconomics.
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