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Abstract. If the output market is perfectly competitive and the firm’s production function is not
concave, an increase in the output price may lead to an explosive increase in firm’s profits at some
point. We explore the properties of this point, called a threshold price. We derive the formula for the
threshold price under very general conditions and show how it helps to study correctness of the profit
maximization problem, without explicit assumptions about returns to scale or convexity/concavity of
the production function.
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Since the insightful work of Shephard (1970) many developments in the production
theory have been related to the duality between the production and cost functions. See
Fére and Grosskopf (1994), First et al. (1993) and Martinez-Legaz et al. (2005) for an
account of more recent results. Mynbaev’s (1996, 1998) study of the duality principle
has resulted in a new notion, the threshold price, which is the boundary between
output prices yielding finite profits and those yielding infinite profits. The threshold
price shows at a relatively elementary level what kind of problems may arise in the
general equilibrium theory when there are production technologies with increasing
returns to scale.

Here we provide an improved exposition of Mynbaev (1998). We derive the formula
for the threshold price under very general conditions. We show how it helps to study
correctness of the profit maximization problem both in the competitive and
monopolistic cases, without explicit assumptions about returns to scale or
convexity/concavity of the production function.

An inequality X'= X between two vectors means that X', 2 X; for all coordinates. By
definition, p>0 if and only if p,,..., p,,>0. R is the set of all vectors p>0.

1/2 .
x| = (Xf +...+X§) denotes the Euclidean norm of a vector X and (X,y) stands for
the scalar product.

Consider a firm whose production technology is described by a correspondence f
such that for each n-dimensional input vector x>0 the set of m-dimensional output
vectorsis f(x) O R". Let f~' denote the inverse correspondence defined on the
image 0(f) such that f ™' (y) means the set of inputs able to produce output y. The
product market is assumed to be perfectly competitive and the price of the output
bundle yOR is (p,y) where pOR". The inputs market is not necessarily



competitive and the inputs price function W:R! - R, may be nonlinear: for any
x>0, W(X) means its price (not per unit!) In case of a perfectly competitive inputs
market the inputs price is given by the scalar product W(x) = (w, X) where W is a
constant vector.

Denoting by ¢(y,W) =inf{W(x): xO f '(y)} the cost function, by F(x, p)
=sup{(p,y): yO f(x)} the revenue function and by n( p,W)
=sup{(p,y)-W(x): yO f(x), xOR} the profit function we have equivalently
n(p,W) =sup{F(x, p)-W(x): xOR!} and n(p,W)

=sup{(p,y) —c(y.W): yOu(f)}.

Definition. Let normalized price vectors p° satisfy ZZ | p’ =1 and consider
proportional prices p =tp”. Since the profit function is non-decreasing in output
prices, the function T(tp°,W) is non-decreasing along the ray {tp”:t>0}.If

T[(tpO,W) is finite at some t, it is finite for all t'<t, and if it happens to be infinite at
some t, it will be infinite for all t"'>t. Therefore there exists t, =t,(p’) which
separates all prices tp” yielding finite profits from those yielding infinite profits. We
call the number T(p”) =t° a threshold factor and the price T(p”)p” a threshold price
inthedirection of p°.

It follows that T(p°) =sup{t >0: T(tp’,W) <o} =inf{t>0:10tp",W) =00} for any
p° belonging to the simplex S={p>0: z p =1} . Below we explore various

properties of the threshold price. Simpler theorems are called statements.

Denote g(x) =sup{|| y|l:yO f(x)}. Obviously, F(x, p)<|| p||g(X). g is called
locally bounded if it is bounded on each sector {XOR; :|| x||<r},r >0. Everywhere
we assume that g is locally bounded, W is non-negative and locally bounded. The

next theorem contains two versions of the main formula: one is expressed in terms of
the revenue function and the other in terms of the cost function. Equality of the two
expressions is a manifestation of duality.

Theorem 1. (a) If ||llim W(X) = o0, then for all p0S the threshold factor equals

X|_>oo

T(p) = liminf W(x)/ F(x. p).

(b) If ||lﬁm g(X) = oo, then the threshold factor equals T(p) = li"rrul inf c(y,W)/(p,y)
X|| - 0o y|| - e
forany pOS.

Proof. (a) The proof uses only homogeneity of F(x, p) of degree 1 in p and the
equation T(tp’,W) =sup{tF(x, p°)-W(x): xOR"}, p’ OS. Denote
M, ={x:tF(x, p°)-W(x) =0}, a = li”rrnlian(X)/ F(x, p°)0[0,0]. To make sure

that Titp’,W) < it is sufficient to verify that sup{tF(x, p’) ~W(X): Xx(OM,} <.
The formula for T(p) will be obtained as a consequence of two bounds: upper and



lower. The lower bound is of the form T(p”)= o . Since the case a =0 is trivial, we
assume O >0 and consider two subcases: 0 <oo and O =00,

If a <oo, then by definition for any 0 <e<a there is r >0 such that
W(x)/F(x, p’ea—-g& O] x|>r. Suppose that t <o and let € be so small that
t <o —2¢. Then for ||X| >r we have

W(X)

0y _ — Oy f——
tF(x, p”) ~W(X) F(x,p)(t F(x. p)

J< F(x, p")(a-2e-a+g)<0

so that M, O {x:|| x||<r}. Ttp’,W) < because F is locally bounded and
sup{tF(x, p”) =W(x):xOM, } <tsup{F(x, p°):|| x| r} <.

If a =0, then for any N >0 there exists r >0 such that || X|[>r implies
W(x)/F(x, p°)= N . Fixing any t >0, we can choose N =t +1 and obtain

W)

0y _ - oyt ————
tF(x, p°) ~W(X) F(x,p)(t F(x.p")

js F(x p)(N=-1=-N)<0O| x|>r.
Again, M, O{x:||x||<r} and Ttp’,W) <o . We have shown that T(tp’,W) < for
any t <o (< ). This proves the lower bound.

The upper bound looks like this: T(p’)< o . Assume 0 <o to avoid triviality. By
definition, for any € >0 there is a sequence {X"} such that
WM/ F(xY, p)<a+e, HXN” — 0. Take any t >0 and select € which satisfies
t>a+2¢. Then t-W(x")/F(x",p’)= a+2e—a—-¢g=¢. Hence,

W(x™)
F(x™,p")

T[(tpO,W)ZsupF(XN,pO)(t— jzesupF(xN,po)Z supW(x") = o0
N N N

a+e

because W(X") — oo. Thus, T(tp°,W) =00 for all t >0 and the upper bound obtains.

(b) Denote M, ={yOO(f):t(p°,y)-c(y,W)=0}, a=_ liminf c(y,W)/(p°,y).

SIGATYRE
Obviously, Titp’,W) =sup{t(p°,y)—c(y,W): yOM,}.

First we prove that T(p°)= a . To avoid triviality, assume o >0 .

(i) Let o <o . Take any t[J[0,a) and choose € >0 so that t <a —2¢. For this €
there exists r >0 such that c(y,W)/(p’,y)=a—-¢ forall || y|[>r. Then for || y|>r
we have

t(p’, y) —c(y,W) = (p°, )t —c(Y, W) /(p’, y) < (p°, y)(a—2e - +€)<0.

Hence, M, O{y:||y|€r} and mtp’, W) =tsup{(p",y):y<r}<oo.



(ii) Let a = oo . Fixing any t >0 we can choose N =t+1. Then for this N there exists
r >0 such that || y|[>r implies c(y,W)/(p’,y)=N and

t(p°,y) —c(y,W) =(p°, y)(t —c(y, W) /(p’, y) < (p°, y)(N-1-N)<0.

Hence, M, O{y:||y||<r} and T(tp",W) <00 . We have shown that T(tp’,W) <o for
any t <0 (< o) which means T(p”)=a.

Next we prove that T(p”)< o . Without loss of generality we can consider a <oo . Let
t>a and select € >0 such that t > a +2¢. For this € there is a sequence
{yM1O0O(f) such that c(yN,W)/(p’,yV)<a+e, || y" |- . Then
t—c(y",W)/(p°,y")=¢€ and

m(tp’,W) = sgp( p”, y")t—c(y" W) /(p°’, y")) = ssNup< p’,y")=co.

Thus, T(tp°,W) =00 for all t>a which proves the upper bound. o

Example 1. Using the Cobb-Douglas function y = Ax"x® with a,B>0and a CES

function y=(a,x{ +a,x0)"""

we can define a correspondence

f()={y.y,20:(ax’ +a,x0)"? < Ax"xP} . In order for the set f(x) to be strictly
convex suppose p>1. Then F(x, p)=Ax"X}(p,c + p,c,) where ¢, =(ac) +a,)™"",
¢, =(a +a,c,°) """ and ¢, =(pa, /(p,a))"®™" . Suppose W is homogeneous of
degree y>0. Application of Theorem 1 gives: a) If a +3 <y, then T(p)=co for any
pdS;b)If a+PB>y,then T(p)=0 forany p0S;c)Incase a+p =y denote

c,(p)=A(pc + pzcz)sup{xl“xg’ :W(X)=1}.Then T(p)=1/c,(p), pUS. O

Consider the profit function T(tp,W) along the ray {tp:t >0} with pUS fixed. By
the definition of the threshold factor profit is finite for all t <T(p) and infinite for all
t >T(p). What happens when t =T (p) ? Simple examples show that profit can be

finite or infinite. The next statement describes precisely all the situations in which
T(T(p)p,W) <oo. We exclude the trivial cases T(p) =0 and T(p) =co.

Statement 1. Suppose ||llilm W(X) =00, ||lﬁm g(xX)=c0 and let f and W be such that

0<T(p)<o.Consider any pS. Then the condition T(T(p)p,W) <o is
equivalent to each of the next conditions:

() limsup [(p,Y)T(P)—c(y,W)]<co and (ii) limsup[F(X, p)T(p) ~W(X)] < co.

¥ 0CH, Iyl [IX]| - o

Proof. We show that the condition Ti(T(p)p,W) < is equivalent to (i). Suppose that
(i) is not true. Then there exists a sequence {y"} 0 O(f) such that
(P, Y)OT(p)—c(y", W) - oo . It follows that

(T (p)p,W)=2 SI;P{( p.y")T(p)—c(y" . W)} =



which contradicts the assumption. Conversely, let (i) be true but T(T(p) p,W) =oo.
Then there exists a sequence {y"} 0 O(f) such that (p,y")T(p)-c(y",W) - .
Since the function (T(p)p,y)—c(y,W) is locally bounded, {y"} must be
unbounded. But then (i) is violated. The proof of the equivalence of (T (p)p,W) <o
to (ii) is equally simple. O

The threshold price has been defined as the product T(p)p, pS. Suppose that
W(X) =(w, X). Then the threshold price will depend on w: T(p,w)p. The next result
shows that T(p,w)p as a function of W possesses properties of a homogeneous
production function of degree 1.

Statement 2. Let W(X) =(w, X). Then T(p,w) as a function of W is monotone,
homogeneous of degree 1, concave and continuous.

Proof. We consider only case (a) of Theorem 1, case (b) being similar.

Monotonicity: if W'=w, then by Theorem 1

T(p.w) =liminf (W, %)/ F(x, p) 2 liminf (w, x)/ F(x. p) =T (p.w)..

Homogeneity:

T(p,tw) =1i"IIHIinf(tW, X)/ F(X, p)=tT(p,w).

Concavity: for any t 0[0,1], w,w

T(p.w+(1=tW) = liminf (tw+ (1 =)W . %)/ F (X, p)

(WX) gy W0
F(X. p) F(X,p)

[IX]| =

:liminf[t }2tT(p,W)+(l—t)T(p,V\/).

Continuity. Denote A(W,W') = max W /Ww.". Obviously,

T(powy = liminf 225 = iming 2% XD s T o)
K-= F(X,p) - F(x, p)

Since A(W,w') - 1 when w - W', we have limsupT(p,w)<T(p,w'). By symmetry

W w

also limsupT(p,w')<T(p,w) which proves continuity. O

Example 2. Continuing Example 1, we get in case W(X) =(w, X): a) If a +B <1, then
T(p,w)p=o forall pOS;b)if a+B>1,then T(p,w)p=0 forall pOS; and c) if
a+B=1,then T(p,w)p=(Aa’B")"'W'Wp/(pC, + p,c,) forall p>0 such that
pt+p, =10

Next we study the geometry of product prices for which profit is finite. Define the sets

FIN and INF by FIN={p>0:1(p,W) <o}, INF ={p>0:7T(p,W) =00} It is
clear that these sets are complementary. We say that the profit maximization (PM)
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problem is: 1) correct, if INF is empty, 2) semi-correct, if both FIN and INF are
not empty, and 3) incorrect, if FIN is empty.

Statement 3. Suppose ||lﬁm W(X) =00, ||lﬁm g(X) =00 . We can assert that

(a) The set FIN is convex. With every pLJFIN this set contains the rectangle
{p:0< p'<s p}. FIN is limited by coordinate planes {p: p =0}, i =1,...,m, and the

surface iplllllgllljng(X)/ F(x p) :Zm p = 1},.

(b) There are three mutually exclusive possibilities (what we call a crowd principle):

(i) T(p)=oo forany pOS, (ii) 0<T(p) <o forany pOS, and (iii) T(p)=0 for all
pOsS.

(c) The next equivalencies are true:

(i) The PM problem is correct < lin”1 infW(x)/F(x,p)=c OpOS

[Ix]] -

(i1) The PM problem is semi-correct < 0 <liminfW(X)/F(X,p)<c [OpOS

I =

(iii) The PM problem is incorrect < lilnnl infW(x)/F(x,p)=0 [OpOS

IX|| -

Proof. (a) Convexity of FIN follows from convexity of T in product prices.

Since T is monotone in product prices, with every pJFIN this set contains the
rectangle {p':0< p'< p}.

Along the ray {tp” :t >0}, where Z p,o =1, 7 is finite for t <T(p) and infinite for
t >T(p). This means the set FIN is bounded by the surface { pT(p): z p =1} in

the northeast direction.

(b) Note that min pg(x) < F(x, p) || p|| 9(x) and therefore

iminf V) < T(p) = liminf ) <1 g g WX

liminf <—
T Y Eoop) S minp W g0

This implies the crowd principle. o

Now we wish to characterize all triples (p, f,W) for which n(p, f W)<o.
Statement 4. Factor p as p=tp’, p’0S.

(a) If lim W(X) =0, then Ti(p, f,W) < oo if and only if one of the conditions

I -

(1) t<liminf (X) or (ii) t =liminf ) and limsup[tF(Xx, p) —W(X)] <
- F(X, p) - F(X, p) Il e



holds.

(b) Alternatively, if ||lﬁm g(Xx) =co, then m(p, f,W) is finite if and only if one of the

conditions
(i) t< liminf Cy, W) or (i) t= liminf cy,W) and
ED(f)yllwl—'oo (p’y) ED(f),”y”_mn (p’y)
limsup [t(p,y)—C(y,W)] <o
% OCE). ]Iyl -
holds.

The proof is immediate from Theorem 1 and Statement 1.

The next application of the threshold price is to characterization of decreasing returns
to scale. Given f,W we say that the production unit exhibits decreasing returns to
scale, if lim c(y,W)/(p,y)=o forany p>0.
¥ 0. Iyl
Statement 5. Let |lﬁm W(X) =00, ||lﬁm g(Xx) = oo . The production unit exhibits
X|| - X|[ - o0

decreasing returns to scale if and only if lilm infW(X)/F(X,p)=o forany p>0.In

X 0
this condition, the words "for any" can be replaced by "for some". The condition is
equivalent to the following: for any positive €, p there exists a constant

C=C(g, p) >0 such that F(x, p)<eW(x)+C forall x=0.

When W(X) =(w, X), the last condition means that F (X, p) grows slower than any
positively sloped linear function.

To prove Statement 5 it suffices to compare the two parts of Theorem 1.

The final statement relates to the monopolist case when the threshold price does not
make sense but some ideas used above are still applicable. Suppose that the product
market is described by inverse demand functions P,(Y)...., P,(y) such that (P(y),y)
gives the product price. We assume that P(y) >0 for all y#0 and that

sup{P(y) 1|y|| 2r}<oo forall r>0,i=1,...,m, thatis, the prices B(y),...,P,(y) can
increase to infinity when y — 0. f and W will satisfy the same conditions as before
(g is locally bounded, W is non-negative and locally bounded) and limW(X) = co.

X - 00

Define F(x,P) =sup{(P(y),y):yO f(x)}. Note that limsup F(X,P) = is

x| -0

possible.

Statement 6. Denote T = 11”n”1 inf W(x)/ F (X, P). Under the conditions just described

the monopolist’s profit (P, f,W) is finite if and only if limsup F(x,P) <o and one
x| -0

of the conditions

(1) T>1or (i) T =1 and limsup[F(x,P)-W(X)] <o

X =



holds.

Proof. Note that the normalization Z p’ =1 in Theorem 1 was arbitrary. Instead, the
normalization Z P’ =m can be used. Besides, the vector p° was fixed. In the present

context we can put p’ =(1,...,1) and consider pseudo-prices p=tp°,t>0. By putting

F(xtp") =sup{ZtrJ.°F?(y)M ryd f(X)}

i=1

we obtain a function which is homogeneous of degree 1 in pseudo-prices. With t =1
one has F (X, p’) = F(x,P). Theorem 1 and Statement 4 can be formally used (as if
the firm in question was competitive) to obtain Statement 6.

Similar statements can be obtained for the situation when dependence on input prices
is linear and on output prices - nonlinear. The threshold factor and price are defined
by varying input prices. O
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