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Abstract. If the output market is perfectly competitive and the firm’s production function is not 
concave, an increase in the output price may lead to an explosive increase in firm’s profits at some 
point. We explore the properties of this point, called a threshold price. We derive the formula for the 
threshold price under very general conditions and show how it helps to study correctness of the profit 
maximization problem, without explicit assumptions about returns to scale or convexity/concavity of 
the production function. 
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Since the insightful work of Shephard (1970) many developments in the production 
theory have been related to the duality between the production and cost functions. See 
Färe and Grosskopf (1994), First et al. (1993) and Martinez-Legaz et al. (2005) for an 
account of more recent results. Mynbaev’s (1996, 1998) study of the duality principle 
has resulted in a new notion, the threshold price, which is the boundary between 
output prices yielding finite profits and those yielding infinite profits. The threshold 
price shows at a relatively elementary level what kind of problems may arise in the 
general equilibrium theory when there are production technologies with increasing 
returns to scale. 

Here we provide an improved exposition of Mynbaev (1998). We derive the formula 
for the threshold price under very general conditions. We show how it helps to study 
correctness of the profit maximization problem both in the competitive and 
monopolistic cases, without explicit assumptions about returns to scale or 
convexity/concavity of the production function. 

An inequality x x'≥  between two vectors means that x xi i' ≥  for all coordinates. By 

definition, 0>p  if and only if 0,...,1 >mpp . mR+  is the set of all vectors 0>p . 

( )x x xn= + +1
2 2 1 2

...
/

 denotes the Euclidean norm of a vector x  and ),( yx  stands for 

the scalar product. 

Consider a firm whose production technology is described by a correspondence f  

such that for each n -dimensional input vector 0>x  the set of m -dimensional output 

vectors is f x Rm( ) ⊂ + . Let f −1  denote the inverse correspondence defined on the 

image )( fℜ  such that f y−1( )  means the set of inputs able to produce output y . The 

product market is assumed to be perfectly competitive and the price of the output 

bundle y Rm∈ +  is ),( yp  where mRp +∈ . The inputs market is not necessarily 
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competitive and the inputs price function W R Rn: + +→  may be nonlinear: for any 

0>x , )(xW  means its price (not per unit!) In case of a perfectly competitive inputs 

market the inputs price is given by the scalar product ),()( xwxW =  where w  is a 

constant vector. 

Denoting by )}(:)(inf{),( 1 yfxxWWyc −∈=  the cost function, by ),( pxF  

)}(:),sup{( xfyyp ∈=  the revenue function and by ),( Wpπ  

}),(:)(),sup{( nRxxfyxWyp +∈∈−=  the profit function we have equivalently 

),( Wpπ  }:)(),(sup{ nRxxWpxF +∈−=  and ),( Wpπ  

)}(:),(),sup{( fyWycyp ℜ∈−= . 

Definition. Let normalized price vectors 0p  satisfy pii

m 0

1
1=

=∑  and consider 

proportional prices 0tpp = . Since the profit function is non-decreasing in output 

prices, the function ),( 0 Wtpπ  is non-decreasing along the ray }0:{ 0 >ttp . If 

),( 0 Wtpπ  is finite at some t , it is finite for all tt <' , and if it happens to be infinite at 

some t , it will be infinite for all tt >'' . Therefore there exists )( 0
00 ptt =  which 

separates all prices 0tp  yielding finite profits from those yielding infinite profits. We 

call the number 00 )( tpT =  a threshold factor and the price 00 )( ppT  a threshold price 

in the direction of 0p . 

It follows that }),(:0sup{)( 00 ∞<π>= WtptpT  }),(:0inf{ 0 ∞=π>= Wtpt  for any 
0p  belonging to the simplex ∑ =>= }1:0{ ippS . Below we explore various 

properties of the threshold price. Simpler theorems are called statements. 

Denote  )}(||:sup{||)( xfyyxg ∈= . Obviously, )(||||),( xgppxF ≤ . g  is called 

locally bounded if it is bounded on each sector 0},||:||{ >≤∈ + rrxRx n . Everywhere 

we assume that g  is locally bounded, W  is non-negative and locally bounded. The 

next theorem contains two versions of the main formula: one is expressed in terms of 
the revenue function and the other in terms of the cost function. Equality of the two 
expressions is a manifestation of duality. 

Theorem 1. (a) If ∞=
∞→

)(lim
||||

xW
x

, then for all Sp ∈  the threshold factor equals 

),(/)(inflim)(
||||

pxFxWpT
x ∞→

= . 

(b) If ∞=
∞→

)(lim
||||

xg
x

, then the threshold factor equals ),/(),(inflim)(
||||

ypWycpT
y ∞→

=  

for any Sp ∈ . 

Proof. (a) The proof uses only homogeneity of ),( pxF  of degree 1 in p  and the 

equation ),( 0 Wtpπ  .},:)(),(sup{ 00 SpRxxWpxtF n ∈∈−= +  Denote 

}0)(),(:{ 0 ≥−=+ xWpxtFxM , ],0[),(/)(inflim 0

||||
∞∈=α

∞→
pxFxW

x
. To make sure 

that ∞<π ),( 0 Wtp  it is sufficient to verify that ∞<∈− +}:)(),(sup{ 0 MxxWpxtF . 

The formula for )( pT  will be obtained as a consequence of two bounds: upper and 
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lower. The lower bound is of the form α≥)( 0pT . Since the case 0=α  is trivial, we 

assume 0>α  and consider two subcases: ∞<α  and ∞=α . 

If ∞<α , then by definition for any α<ε<0  there is 0>r  such that 

.||||),(/)( 0 rxpxFxW >∀ε−α≥  Suppose that α<t  and let ε  be so small that 

ε−α< 2t . Then for x r>  we have 

0)2)(,(
),(

)(
),()(),( 0

0

00 <ε+α−ε−α<







−=− pxF

pxF

xW
tpxFxWpxtF  

so that }||||:{ rxxM ≤⊂+ . ∞<π ),( 0 Wtp  because F  is locally bounded and 

.}||||:),(sup{}:)(),(sup{ 00 ∞<≤≤∈− + rxpxFtMxxWpxtF  

If ∞=α , then for any 0>N  there exists 0>r  such that rx >||||  implies 

NpxFxW ≥),(/)( 0 . Fixing any 0>t , we can choose 1+= tN  and obtain 

.||||0)1)(,(
),(

)(
),()(),( 0

0

00 rxNNpxF
pxF

xW
tpxFxWpxtF >∀<−−≤








−=−  

Again, }||||:{ rxxM ≤⊂+  and ∞<π ),( 0 Wtp . We have shown that ∞<π ),( 0 Wtp  for 

any )( ∞≤α<t . This proves the lower bound. 

The upper bound looks like this: α≤)( 0pT . Assume ∞<α  to avoid triviality. By 

definition, for any 0>ε  there is a sequence }{ Nx  such that 

ε+α≤),(/)( 0pxFxW NN , ∞→Nx . Take any α>t  and select ε  which satisfies 

ε+α≥ 2t . Then .2),(/)( 0 ε=ε−α−ε+α≥− pxFxWt NN  Hence, 









−≥π

),(

)(
),(sup),(

0

00

pxF

xW
tpxFWtp N

N
N

N
≥ ≥

+
= ∞ε

ε
α ε

sup ( , ) sup ( )
N

N

N

NF x p W x0  

because ∞→)( NxW . Thus, ∞=π ),( 0 Wtp  for all α>t  and the upper bound obtains. 

(b) Denote }0),(),(:)({ 0 ≥−ℜ∈=+ WycyptfyM , ),/(),(inflim 0

||||),(
ypWyc

yfy ∞→ℜ∈
=α . 

Obviously, }:),(),(sup{),( 00
+∈−=π MyWycyptWtp . 

First we prove that α≥)( 0pT . To avoid triviality, assume 0>α . 

(i) Let ∞<α . Take any ),0[ α∈t  and choose 0>ε  so that ε−α< 2t . For this ε  

there exists 0>r  such that ε−α≥),/(),( 0 ypWyc  for all ry >|||| . Then for ry >||||  

we have 

0)2)(,()),/(),()(,(),(),( 0000 <ε+α−ε−α≤−=− ypypWyctypWycypt . 

Hence, }||||:{ ryyM ≤⊂+  and ∞<≤=π }:),sup{(),( 00 ryyptWtp . 
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(ii) Let ∞=α . Fixing any 0>t  we can choose 1+= tN . Then for this N  there exists 

0>r  such that ry >||||  implies NypWyc ≥),/(),( 0  and 

0)1)(,()),/(),()(,(),(),( 0000 <−−≤−=− NNypypWyctypWycypt . 

Hence, }||||:{ ryyM ≤⊂+  and ∞<π ),( 0 Wtp . We have shown that ∞<π ),( 0 Wtp  for 

any )( ∞≤α<t  which means α≥)( 0pT . 

Next we prove that α≤)( 0pT . Without loss of generality we can consider ∞<α . Let 

α>t  and select 0>ε  such that ε+α≥ 2t . For this ε  there is a sequence 

)(}{ fyN ℜ⊂  such that ε+α≤),/(),( 0 NN ypWyc , ∞→|||| Ny . Then 

ε≥− ),/(),( 0 NN ypWyct  and 

∞=ε≥−≥π ),(sup)),/(),()(,(sup),( 0000 N

N

NNN

N
ypypWyctypWtp . 

Thus, ∞=π ),( 0 Wtp  for all α>t  which proves the upper bound. □ 

 Example 1. Using the Cobb-Douglas function βα= 21 xAxy  with 0, >βα and a CES 

function ρρρ += /1
2211 )( xaxay  we can define a correspondence 

})(:0,{)( 21
/1

221121
βαρρρ ≤+≥= xAxxaxayyxf . In order for the set )(xf  to be strictly 

convex suppose 1>ρ . Then )(),( 221121 cpcpxAxpxF += βα  where ρ−ρ += /1
2011 )( acac , 

ρ−ρ−+= 1
0212 )( caac  and ( ) )1(1

12210 )/(
−ρ= apapc . Suppose W  is homogeneous of 

degree 0>γ . Application of Theorem 1 gives: a) If γ<β+α , then ∞=)( pT  for any 

Sp ∈ ; b) If γ>β+α , then 0)( =pT  for any Sp ∈ ; c) In case γ=β+α  denote 

}1)(:sup{)()( 2122113 =+= βα xWxxcpcpApc . Then )(/1)( 3 pcpT = , Sp ∈ . □ 

Consider the profit function ),( Wtpπ  along the ray }0:{ >ttp  with Sp ∈  fixed. By 

the definition of the threshold factor profit is finite for all )( pTt <  and infinite for all 

)( pTt > . What happens when )( pTt = ? Simple examples show that profit can be 

finite or infinite. The next statement describes precisely all the situations in which 
∞<π ),)(( WppT . We exclude the trivial cases 0)( =pT  and ∞=)( pT . 

Statement 1. Suppose ∞=
∞→

)(lim
||||

xW
x

, ∞=
∞→

)(lim
||||

xg
x

 and let f  and W  be such that 

∞<< )(0 pT . Consider any Sp ∈ . Then the condition ∞<π ),)(( WppT  is 

equivalent to each of the next conditions: 

(i) ∞<−
∞→ℜ∈

)],()(),[(suplim
||||),(

WycpTyp
yfy

 and (ii) .)]()(),([suplim
||||

∞<−
∞→

xWpTpxF
x

 

Proof. We show that the condition ∞<π ),)(( WppT  is equivalent to (i). Suppose that 

(i) is not true. Then there exists a sequence )(}{ fyN ℜ⊂  such that 

∞→− ),()(),( WycpTyp NN . It follows that 

∞=−≥π )},()(),{(sup),)(( WycpTypWppT NN

N
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which contradicts the assumption. Conversely, let (i) be true but ∞=π ),)(( WppT . 

Then there exists a sequence )(}{ fyN ℜ⊂  such that ∞→− ),()(),( WycpTyp NN . 

Since the function ),(),)(( WycyppT −  is locally bounded, }{ Ny  must be 

unbounded. But then (i) is violated. The proof of the equivalence of ∞<π ),)(( WppT  

to (ii) is equally simple. □ 

The threshold price has been defined as the product SpppT ∈,)( . Suppose that 

),()( xwxW = . Then the threshold price will depend on w : pwpT ),( . The next result 

shows that pwpT ),(  as a function of w possesses properties of a homogeneous 

production function of degree 1. 

Statement 2. Let ),()( xwxW = . Then ),( wpT  as a function of w  is monotone, 

homogeneous of degree 1, concave and continuous. 

Proof. We consider only case (a) of Theorem 1, case (b) being similar. 

Monotonicity: if ww ≥' , then by Theorem 1 

),(),(/),(inflim),(/),'(inflim)',(
||||||||

wpTpxFxwpxFxwwpT
xx

=≥=
∞→∞→

. 

Homogeneity: 

),(),(/),(inflim),(
||||

wptTpxFxtwtwpT
x

==
∞→

. 

Concavity: for any ',],1,0[ wwt ∈  

).',()1(),(
),(

),'(
)1(

),(

),(
inflim

),(/),')1((inflim)')1(,(

||||

||||

wpTtwptT
pxF

xw
t

pxF

xw
t

pxFxwttwwttwpT

x

x

−+≥







−+=

−+=−+

∞→

∞→

 

Continuity. Denote '/max)',( ii
i

wwww =λ . Obviously, 

)',()',(
),(

)'/('
inflim

),(
inflim),(

||||||||
wpTww

pxF

wwxw

pxF

xw
wpT iiii

x

ii

x
λ≤== ∑∑

∞→∞→
 

Since 1)',( →λ ww  when 'ww → , we have )',(),(suplim
'

wpTwpT
ww

≤
→

. By symmetry 

also ),()',(suplim
'

wpTwpT
ww

≤
→

 which proves continuity. □ 

Example 2. Continuing Example 1, we get in case ),()( xwxW = : a) If 1<β+α , then 

∞=pwpT ),(  for all Sp ∈ ; b) if 1>β+α , then 0),( =pwpT  for all Sp ∈ ; and c) if 

1=β+α , then )/()(),( 221121
1 cpcppwwApwpT +βα= βα−βα  for all 0>p  such that 

.121 =+ pp  □ 

Next we study the geometry of product prices for which profit is finite. Define the sets 
FIN  and INF  by }),(:0{ ∞<π>= WppFIN , }),(:0{ ∞=π>= WppINF . It is 

clear that these sets are complementary. We say that the profit maximization (PM) 
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problem is: 1) correct, if INF  is empty, 2) semi-correct, if both FIN  and INF  are 
not empty, and 3) incorrect, if FIN  is empty. 

Statement 3. Suppose ∞=
∞→

)(lim
||||

xW
x

, ∞=
∞→

)(lim
||||

xg
x

. We can assert that  

(a) The set FIN  is convex. With every FINp ∈  this set contains the rectangle 

}'0:'{ ppp ≤≤ . FIN  is limited by coordinate planes }0:{ =ipp , mi ,...,1= , and the 

surface { }.1:),(/)(inflim
1||||
∑ =∞→

=m

i i
x

ppxFxWp . 

(b) There are three mutually exclusive possibilities (what we call a crowd principle): 

(i) ∞=)( pT  for any Sp ∈ , (ii) ∞<< )(0 pT  for any Sp ∈ , and (iii) 0)( =pT  for all 

Sp ∈ . 

(c) The next equivalencies are true: 

(i) The PM problem is correct ⇔ SppxFxW
x

∈∀∞=
∞→

),(/)(inflim
||||

 

(ii) The PM problem is semi-correct ⇔ SppxFxW
x

∈∀∞<<
∞→

),(/)(inflim0
||||

 

(iii) The PM problem is incorrect ⇔ SppxFxW
x

∈∀=
∞→

0),(/)(inflim
||||

 

Proof. (a) Convexity of FIN  follows from convexity of π in product prices. 

Since π is monotone in product prices, with every FINp ∈  this set contains the 

rectangle }'0:'{ ppp ≤≤ . 

Along the ray }0:{ 0 >ttp , where 10 =∑ ip , π is finite for )( pTt <  and infinite for 

)( pTt > . This means the set FIN  is bounded by the surface ∑ = }1:)({ ipppT  in 

the northeast direction. 

(b) Note that )(||||),()(min xgppxFxgpi
i

≤≤  and therefore 

)(

)(
inflim

min

1

),(

)(
inflim)(

)(

)(
inflim

||||

1
|||||||||||| xg

xW

ppxF

xW
pT

xg

xW

p x
i

xx ∞→∞→∞→
≤=≤  

This implies the crowd principle. □ 

Now we wish to characterize all triples ),,( Wfp  for which ∞<π ),,( Wfp . 

Statement 4. Factor p  as Sptpp ∈= 00 , . 

(a) If ∞=
∞→

)(lim
||||

xW
x

, then ∞<π ),,( Wfp  if and only if one of the conditions 

(i) 
),(

)(
inflim

|||| pxF

xW
t

x ∞→
<  or (ii) 

),(

)(
inflim

|||| pxF

xW
t

x ∞→
=   and ∞<−

∞→
)](),([suplim

||||

xWpxtF
x

 



 7 

holds. 

(b) Alternatively, if ∞=
∞→

)(lim
||||

xg
x

, then ),,( Wfpπ  is finite if and only if one of the 

conditions 

(i) 
),(

),(
inflim

||||),( yp

Wyc
t

yfy ∞→ℜ∈
<  or (ii) 

),(

),(
inflim

||||),( yp

Wyc
t

yfy ∞→ℜ∈
=   and 

∞<−
∞→ℜ∈

)],(),([suplim
||||),(

Wycypt
yfy

 

holds. 

The proof is immediate from Theorem 1 and Statement 1. 

The next application of the threshold price is to characterization of decreasing returns 
to scale. Given Wf ,  we say that the production unit exhibits decreasing returns to 

scale, if ∞=
∞→ℜ∈

),/(),(lim
||||),(

ypWyc
yfy

 for any 0>p . 

Statement 5. Let ∞=
∞→

)(lim
||||

xW
x

, ∞=
∞→

)(lim
||||

xg
x

. The production unit exhibits 

decreasing returns to scale if and only if ∞=
∞→

),(/)(inflim
||||

pxFxW
x

 for any 0>p . In 

this condition, the words "for any" can be replaced by "for some". The condition is 
equivalent to the following: for any positive p,ε  there exists a constant 

0),( >ε= pCC  such that CxWpxF +ε≤ )(),(  for all 0≥x . 

When ),()( xwxW = , the last condition means that ),( pxF  grows slower than any 

positively sloped linear function. 

To prove Statement 5 it suffices to compare the two parts of Theorem 1. 

The final statement relates to the monopolist case when the threshold price does not 
make sense but some ideas used above are still applicable. Suppose that the product 
market is described by inverse demand functions )(),...,(1 yPyP m  such that )),(( yyP  

gives the product price. We assume that 0)( >yP  for all 0≠y  and that 

∞<≥ }:)(sup{ ryyPi  for all ,,...,1,0 mir =>  that is, the prices )(),...,(1 yPyP m  can 

increase to infinity when 0→y . f  and W  will satisfy the same conditions as before 

( g  is locally bounded, W  is non-negative and locally bounded) and lim ( ) .
x

W x
→∞

= ∞  

Define ),( PxF  )}(:)),(sup{( xfyyyP ∈= . Note that ∞=
→

),(suplim
0||||

PxF
x

 is 

possible. 

Statement 6. Denote ),(/)(inflim
||||

PxFxWT
x ∞→

= . Under the conditions just described 

the monopolist’s profit ),,( WfPπ  is finite if and only if ∞<
→

),(suplim
0||||

PxF
x

 and one 

of the conditions 

(i) 1>T  or (ii) 1=T  and ∞<−
∞→

)](),([suplim
||||

xWPxF
x
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holds. 

Proof. Note that the normalization 10 =∑ ip  in Theorem 1 was arbitrary. Instead, the 

normalization mpi =∑
0  can be used. Besides, the vector 0p  was fixed. In the present 

context we can put )1,...,1(0 =p  and consider pseudo-prices 0,0 >= ttpp . By putting 

),( 0
1 tpxF  







 ∈= ∑

=

)(:)(sup
1

0 xfyyyPtp i

m

i
ii  

we obtain a function which is homogeneous of degree 1 in pseudo-prices. With 1=t  

one has ),(),( 0
1 PxFpxF = . Theorem 1 and Statement 4 can be formally used (as if 

the firm in question was competitive) to obtain Statement 6. 

Similar statements can be obtained for the situation when dependence on input prices 
is linear and on output prices − nonlinear. The threshold factor and price are defined 
by varying input prices. □ 
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