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Abstract

In-spite  of  large  volume  of  Contingent  Credit  Lines  (CCL)  in  all  commercial  banks 

paucity  of  Exposure  at  Default  (EAD)  models,  unsuitability  of  external  data  and 

inconsistent internal data with partial draw-down, has been a major challenge for risk 

managers  as  well  as  regulators  for  managing  CCL portfolios.  Current  paper  is  an 

attempt to build an easy to implement, pragmatic and parsimonious yet accurate model 

to determine exposure distribution of a CCL portfolio. Each of the credit line in a portfolio 

is modeled as a portfolio of large number of option instrument which can be exercised 

by the borrower determining the level  of  usage. Using an algorithm similar  to basic 

CreditRisk+ and Fourier Transforms we arrive at a portfolio level probability distribution 

of usage.
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I Introduction

Bank for International Settlement (BIS) in its Basel II guidelines1 describes capital 

as a function of Probability of Default (PD), Loss Given Default (LGD) and Exposure at 

Default (EAD) with all playing an equally vital role, but a simple Google search on each 

term  returns  5.7  Million,  65  Thousand  and  29  Thousand2 hits  respectively.  Google 

search may not be concrete enough to conclude but it does indicate the trends in terms 

of  importance given to  each component  by  academicians and practitioners.  Similar 

assertions are made by Financial Services Authority (FSA)3, UK regarding EAD models 

as well.

Contingent Credit Lines (CCL) or Loan Commitments4 are contractual promises 

by the bank to specific obligors to lend up to specified limits on pre-determined rates 

and terms. They are generally accompanied with different fees which must be paid over 

the life of the commitment, and the material adverse change (MAC) clause which states 

that bank may cancel the line if the credit quality deteriorates of the specific obligor. 

According to Federal Deposit Insurance Corporation survey5 close to 80% of all 

commercial  and  industrial  loans  are  done  using  commitment  contracts  and  as  of 

1  Refer BCBS (2006) revised document  on Basel II guideline

2  Searched on 24 Feb 2010 from www.google.com

3  Please refer EAD Expectation Note (2007)

4  Contingent Credit Line, Loan/Credit Commitment, Line of Credit has been used interchangeably in the 

paper 

5 For details see Federal Deposit Insurance Corporation, Statistics on Banking, table RC-6 (November 

2009)



September  2009,  the  outstanding  (unused)  CCLs  of  U.S.  firms  were  close  to  $1.9 

trillion. Avery and Berger (1991) states that main reason for using credit commitment is 

to provide flexibility during slowdown and as noted by Kanatas (1987) these can be 

seen  as  hedging  instruments.  Hawkins  (1982)  comments  that  credit  lines  help 

borrowers manage fluctuations in working capital but  Sufi (2008) reports that firm with 

low cash flow or high cash flow volatility rely more heavily on cash rather than credit 

line.

Basel  II  guidelines  calculate  regulatory  capital  charge  of  contingent  credit 

commitments based on credit conversion factor (0% to 50%) and the Risk Weight (0% 

to 100%). As noted by Hull  (1989),  credit  conversion factor (CCF) for  a small  bank 

underestimates  the  capital  requirement  as  “fat  tails”  effect  increases  the  capital 

requirement proportionately more for off-balance sheet items. In its Advanced Internal 

Rating  Based  (AIRB)  methodology  Basel  II  does  allow  banks  to  compute  its  own 

estimates of CCF and henceforth its own estimate of Exposure at Default (EAD) for 

CCL.

Apart from negligence of EAD models by consultants and academics leading to a 

paucity of external data and models, other issues identified by FSA, has been scarcity 

of usable data regarding draw-downs in each bank and unsuitability of external data. 

When external data is available the suitability is always questioned as the estimates will 

be strongly influenced by lender's behavior.

 The current paper is an attempt to build an easy to implement, parsimonious yet 



accurate model for estimation of exposure for CCL portfolio. Each CCL is modeled as 

portfolio  of  options with  the obligors which they can exercise with  the bank at  pre-

specified terms & conditions. Modeling the exercise of options as a Poisson process, a 

stochastic  distribution  of  exposure  at  different  segment  of  portfolio  level  has  been 

constructed. A standard Fast Fourier Transform algorithm is used to convolute these 

portfolio segments and generate the exposure probability distribution of the complete 

portfolio. 

This model  with help from internal  research of the bank can be used for the 

estimation of EAD for banks as mandated by Basel II for CCL portfolios. Apart from 

regulatory requirement, stochastic exposure distribution generated can form as an input 

for different economic capital model and stress testing procedures to capture accurate 

risk profile of the portfolio. This will  also contribute in providing better insights in the 

problem of managing liquidity risk for portfolio of CCL e.g. credit card portfolio or Home 

Equity Line of Credit (HELC) portfolio.

In the following pages we will see in section II      about past studies related to CCL, 

section III will detail on how we can use options executions to link the draw-downs in a 

portfolio,  section IV provides an implementation with hypothetical portfolios and finally 

section V concludes with potential future research areas and implications.

II CCL, Options & Partial Draw-down

To estimate EAD for CCL there are two standard form of equation used. In the 



first form an appropriate conversion factor is multiplied with the total limit (TL) of the 

facility.

EAD=CF .TL                                                           (1)

In the second form an appropriate conversion factor (α)6 is multiplied with the 

unused part of the limit (L) of the facility.

EAD=CurrentExposure+α ⋅L                                           (2)

As shown by Moral (2006) both will yield same results for EAD except when full 

utilization is in place. As discussed by Miu and Ozdemir (2008) Basel CCF is equivalent 

to α in equation (2). We will use equation (2) for all our subsequent analysis. As current 

exposure and L are known modeling α i.e. partial draw-down of the unused limit will give 

us clear insight into the problem of EAD estimation of CCL.

Studies related to CCL are concentrated around pricing of  CCL7 and level  of 

partial draw-down in each credit line. In the current endeavor we will concentrate on 

latter.

Thakor et al. (1981) utilize a put option8 approach to price the loan commitments 

and measure the sensitivity of these values to changes in interest rates. Partial draw-

down on CCL is explained through, interest elasticity of demand for borrowed funds and 

6 This is also referred as Loan Equivalent amount (LEQ) in many literatures. 
7 Pricing of CCL option theoretic approach has been used by Loukoianova et al. (2006), Chateau (1990), 
Chateau and Wu (2003).
8 In this case the Bank is buying the put option from the obligor as the obligor is selling its debt to the 
bank by availing the credit lines on pre-specified terms and conditions. 



bank customer relationship dynamics. A firm with infinite opportunities for investment 

and no restriction on capital structure or leverage, the interest elasticity will be perfectly 

elastic  and  vice-versa.  Alternatively  if  we  look  into  the  bank  customer  relationship 

framework, customer will try to minimize the expected cost of renewal of the line in next 

year and opportunity loss of not utilizing the full facility this year when availing the line. 

Kaplan  and  Zingales  (1997)  find  that  the  un-drawn  portion  of  credit  lines 

decreases when firms are more liquidity constrained. Gatev and Strahan (2003)9 report 

that partial draw-downs increase when the commercial paper - T bill rate spread rises. 

Both of these studies indicate presence of interest incentive framework for partial draw-

down which inspired Jones and Wu (2009) for using the same for modeling partial draw-

down. They models credit quality as a jump-diffusion process while partial draw-down 

and pricing of CCL is done as a function of dynamic credit state. The proportion of the 

credit  line  drawn  is  modeled  as  function  of  the  difference  between  alternative 

opportunity rate and the marginal cost of line borrowings. Opportunity rate is defined as 

the rate of interest charged to the borrower if she borrows outside the purview of the 

defined  credit  line.  To  incorporate  linking  of  loan  spread to  the  credit  default  swap 

spread of the borrower, marginal cost of borrowing is defined as function of reference 

rate, contractual spread over reference rate and proportion of the excess that is added 

to current period loan. Apart from the interest rate differential, sensitivity of drawdown 

with interest rate differential  is included to model  amount of  partial  draw-down. This 

9 They used a sample from the set of all commercial paper  backup lines of credit on for large US 
Corporation in period 1Q 1991 - 1Q 2002, for a total of 2,695 commitments.



sensitivity is similar to the interest elasticity proposed by Thakor et al. (1981).

Both of the approach (Thakor et al. (1981) and Jones et al. (2009)) looks intuitive 

and  convincing  but  implementing  the  same  in  banks  where  most  of  the  CCL are 

extended to unrated obligors whose market spread may not be easily available, might 

pose  problems of  parameterization.  Some  parameter  like  interest  elasticity  may  be 

affected by firm specific behavior as well as present macro economic variables. Another 

approach of estimating usage of limits under continuous-time model where the credit 

provider  and  the  credit  taker  interact  within  a  game-theoretic  framework  has  been 

attempted by Leippold et al (2003).

Attempts to directly estimate partial draw-down has also been undertaken in past. 

Asarnow and James (1995) present partial draw-down estimates based on credit lines 

issued by Citibank to publicly-rated North American firms over the five-year period from 

1987 to 1992. They found a downward sloping of usage level from high rated obligors to 

low rated obligors i.e. lower rated firms would have already consumed their credit lines 

earlier  than  when  it  approaches  default.  Similar  trend  is  also  noted  by  Araten  and 

Jacobs (2001) where partial draw-down decreases as the firm approaches default. Their 

estimates of partial draw-down is based on 1,021 observations (408 facilities of 399 

borrowers)  at  a  quarterly  frequency  in  the  period  1Q  1995  -  4Q  2000  for  Chase 

borrowers. They also report that level of usage has been affected by risk rating but not 

by commitment size and borrower industry. Jacobs (2008) empirical study is based on 

dataset encompassing 281 defaulted instruments from 720 U.S. borrowers with public 



credit ratings over the period from 1985 to 2006. He finds that similar trends in terms of 

usage and points out statistically significant affect of obligor profits in the level of usage. 

Agarwal et. al. (2005) examined utilization of HELC in US market and confirms 

that borrowers with deteriorating credit quality increase their utilization. Jiménez et al. 

(2009) reports a credit line usage of different firms granted by banks in Spain between 

1984 and 2005.  The final  dataset used consisted of 696,445 credit  lines granted to 

334,442 firms by 404 banks. They reported variety of factors such as commitment size; 

collateralization and maturity of the CCLs affect the usage level. They also report a 

statistically significant higher usage rate for firms that are defaulting at least 3 years 

prior to default and the usage monotonically increases as the default approaches for 

these firms. 

Level of usage is mainly affected by two distinct forces, the lender might realize 

the deteriorating credit quality of the borrower and cut back the limits thereby increasing 

the  utilization  ratio  or  the  borrower  may actually  use  up the  line  before  the  lender 

realizes deteriorating credit quality. As indicated by Qi (2009) with credit card usage in 

US, borrowers are more active than lenders in this game of “race to default.” Martin and 

Santomero (1997) analyzes the pricing of CCL from demand side of firms and show that 

credit  line  usage  depends  on  business  growth  potential  of  the  firm as  well  as  the 

uncertainty  involved  in  those  investment  opportunities.  External  macro  economic 

variables, size of credit line, collateralization etc.  may also determine level of partial 

draw-down of obligors.



III Partial Draw-down at Portfolio Level

To put ourselves on firmer basis lets define a bank B with a CCL portfolio of N 

obligors each having one facility of CCL each. Each of these credit lines with the bank 

can be used before the expiry of the contract. For obligor A with CCL size of LA we can 

safely  assume that  A has  infinite  number  of  put  options  which  she  can  choose  to 

exercise and the number of instrument she will exercise will decide the level of partial 

draw-down. If she exercises all the puts, than she will have consumed her whole limit. 

We assume she has n number of puts at her disposal, where n is sufficiently large. Also 

size of each put can be given as

Q A=
LA

n
                                                         (5)

So the amount of partial draw-down can be given as r X QA where r is the number 

of puts exercised by A in the time frame of consideration. So the probability generating 

function (PGF) of the option exercise can be defined as follows:

      F A  z =P r=0Z0+P r=1Z1+P r=2Z2+P r=3Z 3+P  r=4Z 4 . . . . ..       (6)

Let’s assume expected usage of the CCL is αA so average number of puts used 

by A is λA=
αA LA

Q A
                                                                 (7)

Using a Poisson process of exercise of each option we have the PGF given by 

equation (6) reduces to
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For all obligors, m (m<N) in the portfolio having put size equal to Q we have the 

PGF  for  r  number  of  puts  being  used  and  assuming  independence  of  obligors  in 

exercising of each option
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                                 (9)

Now lets assume the overall average usage in the portfolio is α and unused limits 

in this portfolio of m obligor be Li hence we have
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∑
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                                                        (10)

Let S i=∑
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                     (11)

So the PGF of usage being equal to r X Q will be given by 

                          F
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Now for any real portfolio, Q will  not be equal for all  obligors. To simplify our 

calculation we will  segregate the whole portfolio in different sub-portfolios,  such that 



obligors in each sub-portfolio  will  have same size of  put  as Q i.  Since in  each sub-

portfolio Qi is same whenever there is exercise of 1 put there is usage of 1XQi and if 

there is exercise of 2 puts there is usage of 2XQi so we can write:

                                             P usage=r⋅Q
i =P r puts being used                                      (13)

So the PGF of the sub-portfolio usage can be written as:

                               F
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                                    (15)

Hence to find the usage distribution of the whole portfolio we must convolute 

each of these sub-portfolios. Hence form equation (11) for the whole portfolio with t sub-

portfolios PGF can be written as (assuming independence of each sub-portfolio):
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                           (16) 

Now to determine the exposure distribution of the portfolio we can have from 

Taylor’s theorem

                                 P Usage=r .Qi =
1

r!

d r  FQ z 

dz r
∣Z=0  for r=0,1,2,…                          (17)

                         Let 
W r=

1

r!

d r F
Q
Z 

dz r
∣Z= 0=

1

r!

d r−1

dz r−1

d F
Q
Z  

dz
∣Z= 0

                              (18)

As  ∑
i= 1

t

S i  is constant hence:
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By Lebinitz’s formula for nth order differentiation we can have:
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                                                       (22)

And we have from equation (18) 
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Hence combining equation (20), (21), (22) and (23) at Z=0 we have
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Hence from (24) and (10)

                                                  W r=
1

r
∑

i;Qi≤ r

βi .W r−Qi
                                                 (25) 

Now if we have Qi  with integers starting from 1 to a large enough integer we can 



get the complete probability distribution of portfolio usage, starting from W
0
=∑

i= 1

t

S
i .

If  we let  Qi  vary  from 1  we will  have exposure  distribution  from 1  $ as  seen from 

equation (3) Qi represents the size of each put.

Till now we have used a constant α for the whole portfolio, in reality we will have 

a portfolio where  α will be different for each segment of the portfolio depending upon 

product type, and other factors etc. As noted in a survey10 banks generally prefer to use 

segment  wise  α for  its  EAD estimation.  Hence after  performing the computation till 

equation 25 we will be left with probability distribution of usage for different segments of 

the portfolio. To finally arrive at a portfolio level exposure distribution we will follow a 

standard convolution procedure using Fourier Transforms.

For simplicity lets assume we have only two distinct segment of the CCL portfolio 

and  from  (25)  we  can  have  two  distinct  vectors  (F  =f0,f1,…fl-1&  G=g0,g1,….gm-1) 

representing the probabilities of usage for each segment. Let R represent the vector 

formed by convolution of F and G.  To perform Fast Fourier Transform (FFT)11 we will 

pad each of the vector such that length of each vector is s, where s=>l+m and s is of the 

form 2x where x is an integer. We know from convolution theorem that 

                           R=F G=Inverse FFT⊗ FFT F  . FFT G                                (26)

Hence  R  will  give  us  the  overall  portfolio  usage  probability  distribution.  The 

procedure can easily be replicated if we have more than two segments in our portfolio.

10 See RMA Survey  (2004) on estimation of EAD & LGD
11 For details on Convolution using FFT please refer Mario (2004) and Robertson (1992)



IV Numerical Experiment

For a typical CCL portfolio,  ΣSi  for the whole portfolio may be quite large and we 

are trying to assign probability to each dollar of usage in the algorithm so it may finally 

turn  out  to  be  daunting  task  to  achieve  the  full  distribution.  For  the  calculation  of 

negative exponential of a very large number (ΣSi) for initiation of the calculation (as W0) 

we will  soon be confronted with precision issues under double-precision12 regime of 

most  common  software  applications.  Most  applications  including  Matlab,  Octave  or 

Microsoft  Excel  under  default  settings  will  approximate  W0 as  zero  and  as  the 

distribution depends on W0 for derivation of full distribution, the full distribution would be 

evaluated incorrectly. 

There  may  be  many  alternative  to  circumvent  the  problem  in  standard 

applications. One solution to this problem may be use of libraries which can handle very 

high precision calculation13. This may also require higher computational power in terms 

of hardware as well, the specification of which is beyond the scope of the current paper. 

For illustration14 we have chosen two sample segments15 of 20 obligors each with 

of α =10% and α = 40% respectively with limits16 of each obligor varying from $2,266 to 

$96,330. Each of the obligor limit is divided into 1,000 puts. The figure in appendix B 

illustrates that the usage distribution of each segment and final convoluted portfolio; the 

12 For details see Monniaux (2008)
13 See http://gmplib.org/ for details 

14 The calculations are done using Linux based Genius 1.0.7 as arbitrary precision calculator and Linux 
based Octave for FFT and final distribution evaluation.
15 Details of the portfolio presented in appendix A
16 The limits are chosen by using Microsoft Excel’s random number generation function between $500 
and $100,000



descriptive statistics of each of the distributions are presented in table 3 of appendix B 

for reference.

To explore the affect of choice of n in the exposure distribution we use first five 

obligors of  portfolio  A.  The results  of  the experiment  are summarized in  Table 3 in 

appendix C. As noted the standard deviation of the usage distribution decreases as we 

increase the number  of  puts  used.  This  may be explained by  the fact  that  we are 

implicitly assuming a known value of α in our modeling i.e. a zero volatility of α and this 

fact is becoming more prominent once we start increasing the number of puts (n) i.e. 

more like real life scenario. The mean value remain relatively stable but the extreme 

points converge towards the mean to produce a shrinkage in the distribution shape.

 Another prime variable in the algorithm is the value set for α, we vary the value of 

α to find its affect on the final distribution. The results of the same are summarized in 

Table 4 in appendix C. For our 5 obligor portfolio we see increase in the usage level 

also increase the volatility associated.

To  incorporate  volatility  of  α explicitly  in  the  model  we can  also  use a  mixed 

Poisson process where we chose different values of  λ from an assumed distribution. 

More commonly used mixture distribution has distribution of  λ as Gamma distribution, 

resulting  in  negative  binomial;  this  has  the  advantage  of  analytically  tractable  two 

parameter distribution. Similar combination17 can be used to incorporate volatility of  α 

explicitly in each segment of the portfolio. 

17 See Karlis and Xekalaki (2005) for various mixed Poisson distributions



An argument against using any mixed distribution may be that this will induces a 

second set of assumptions in our model and will require the banks to calculate usage 

volatility of each segment. In the current model the volatility of the final distribution will 

depend how spread out the expected usage is between each the segment. This may be 

more pragmatic approach considering that it  will  have minimum data requirement at 

portfolio-segment level and segmentation of the portfolio can be decided with internal 

research and expert judgment on usage.

One  of  the  segmentation  possibilities  of  the  portfolio  may  be  based  on 

commitment fee18 and service fee19. As shown by Thakor and Udell (1987) when the 

bank is uncertain about the level of partial draw-down, it may segregate borrowers by 

keeping  high  commitment  fees  and  low  service  fees  in  one  contract  and  low 

commitment fees and high service fees in other contract. Former would be attractive to 

borrowers with higher probability  of  draw-down as they are more probable to pay a 

service fee and more interested in having an active credit line, this will not be true for 

borrowers  who  are  less  confident  about  draw-downs.  Contract  choice  may  not  be 

always that simple as discussed by Maksimovic (1990) it may also depend on structure 

of the borrower’s industry, as in imperfect competition presence of predetermined rates 

of financing in borrowers armory provides enhanced strategic position.

V Conclusion

This  paper  formulated  a  parsimonious  model  for  estimation  of  exposure  at 

18 commitment fee is an up-front fee paid when the commitment is made

19 an service or annual fee is paid on the borrowed amount



portfolio level for a typical CCL portfolio by modeling each CCL with a borrower as a 

portfolio of option instruments. The exercise of each put has been modeled as standard 

Poisson process where average usage (α) of CCL at the portfolio level is assumed to be 

known. This value as indicated by Agarwal  et.  al.  (2005),  Qi  (2009),  Jiménez et al. 

(2009) Gatev et al. (2006) etc. depends on change in credit quality, difference between 

contractual rate and actual market rate and other factors. Both empirical research and 

theory  suggest  a  correlation  between  credit  quality  and  usage  of  credit  line.  The 

algorithm presented here can accommodate different values of   α, to handle mentioned 

correlation the portfolio may be segmented in terms of credit  quality along with any 

other criterion decided by the bank. Some of the methods of estimating  α has been 

outlined by Moral (2006) and similar research needs to done on the area of finding 

expected usage at a given type of portfolio and as indicated earlier, they can work best 

if  the  bank  themselves  does  the  research  on  internal  data,  as  this  will  be  highly 

influenced by Bank’s behavior in catching early signs of deterioration in credit quality. 

Further  work  may  also  be  needed  so  that  stable  distribution  parameters  can  be 

determined which will not be affected by choice of number of puts used.

Most  of  the  current  credit  risk  model  viz.  JP  Morgan’s  CreditMetrics,  KMV 

Portfolio Manager, CSFB CreditRisk+20 has constant exposure as an input to calculate 

credit  Value-at-Risk.  Rosen  and  Marina  (2002)  describes  that  stochastic  exposures 

make a notable difference in credit economic capital calculation. Akkaya and Wagner 

20 For details see Gordy (2000) or Crouhy, Galai and Mark (2000) for a comparison of some credit risk 
models. 



(2003)  describe  stochastic  exposure  in  CreditRisk+ modeling  framework.  Stochastic 

Exposure generated from the discussed model can be useful in improvement of credit 

economic capital modeling for CCL portfolio. 

Accurate exposure calculation is fundamental for liquidity risk management as 

well,  e.g.  credit  card portfolio  or  HELC where all  the accounts has a un-drawn but 

committed line pose a challenge to risk managers in  terms of expected usage and 

henceforth  liquidity  positions;  the  algorithm  presented  here  may  prove  helpful  in 

providing meaningful insight into the problem.

The other implication of the algorithm is in the area of EAD estimation for Basel 

II.  As  pointed  out  earlier  compared to  PD estimation,  limited  research  has gone in 

estimating  EAD.  This  can  provide  a  good  starting  point  for  the  banks  under  AIRB 

approach of Basel II. Finally this may also be used in terms of stress testing tool to 

determine worst  case liquidity  scenarios for  the  portfolio.  As we have the  complete 

distribution of the usage value we can get a good estimate of our worst case scenarios 

from 99th or 99.9th percentile depending upon the risk appetite of the bank. 

Further  work  needs  to  be  done  to  improve  the  algorithm so  as  to  use  it  in 

standard software applications with minimized hardware requirements. This will greatly 

help in quick and smooth implementation of the otherwise intuitive model.
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Appendix A

Table 1: Portfolio A

α=10%,n=1000
Obligor Unused Limit ($) Actual Put Size Rounded Put Size

A         81,289 81.29 82
B         13,626 13.63 14
C         10,941 10.94 11
D         20,709 20.71 21
E         20,786 20.79 21
F         70,371 70.37 71
G         63,514 63.51 64
H         65,435 65.44 66
J         96,330 96.33 97
I         87,555 87.56 88
J         33,906 33.91 34
K         40,567 40.57 41
L         23,650 23.65 24
M         10,779 10.78 11
N         20,838 20.84 21
O           7,602 7.60 8
M         16,695 16.70 17
Q         48,049 48.05 49
R         81,403 81.40 82
S         26,139 26.14 27

Table 2: Portfolio B

α=40%,n=1000
Obligor Unused Limit ($) Actual Put Size Rounded Put Size

A           7,129 7.12 8
B         29,253 29.25 30
C         27,353 27.35 28
D         41,340 41.34 42
E           2,266 2.26 3
F         51,946 51.94 52
G         23,439 23.43 24
H         70,214 70.21 71
J           6,191 6.19 7
I         55,709 55.7 56
J         45,242 45.24 46
K           5,861 5.86 6
L         80,444 80.44 81
M         44,273 44.27 45
N         19,605 19.6 20
O         34,828 34.82 35
M         68,265 68.27 69
Q         18,571 18.57 19
R         36,324 36.32 37
S         23,826 23.82 24



Appendix B 

Table 3: Descriptive Statistics of Sample Portfolio 21 Limits

Portfolio A B Convoluted 
Portfolio (C)α 10.00% 40.00%

Mean ($) 84,019 276,831 360,850

Standard 
Deviation ($)

2,287 3,691 4,342

Skewness 0.0324 0.0156 0.0144
Kurtosis 3.0011 3.0002 3.0005

Figure 1: Chart for Probability Distribution of sample portfolio A and B

 

21   Here n is set at 1000



Appendix C

Table 4: Variation of Usage Distribution ($) parameters with n22

Percentile n=700 n=800 n=900 n=1000 n=1100 n=1200 n=1300 n=1400 n=1500

50.00% 14,718 14,720 14,722 14,723 14,724 14,726 14,726 14,726 14,727

99.00% 17,272 17,100 16,970 16,849 16,741 16,662 16,583 16,520 16,460

99.50% 17,557 17,364 17,219 17,084 16,965 16,874 16,788 16,718 16,651

99.75% 17,823 17,612 17,452 17,304 17,173 17,074 16,978 16,903 16,829

99.90% 18,151 17,916 17,739 17,574 17,429 17,320 17,214 17,130 17,048

Standard Deviation 1,058 988 936 886 842 809 777 751 726

Table 5: Variation of Usage Distribution ($) parameters with α23

Percentile  α=0.10 α=0.20 α=0.40  α=0.50  α=0.60  α=0.70  α=0.80

50.00% 14,724 29,459 58,929 73,664 88,400 103,135 117,870

95.00% 16,214 31,552 61,876 76,955 92,001 107,023 122,024

99.00% 16,850 32,439 63,116 78,338 93,513 108,652 123,764

99.90% 17,575 33,445 64,519 79,901 95,220 110,492 125,728

99.97% 17,904 33,899 65,151 80,603 95,987 111,319 126,610

Standard 
Deviation

886 1,253 1,722 1,981 2,170 2,344 2,506

22  Ηere α is kept constant at 10%

23  Here n is kept constant at 1000. Lower numbers for n and α is chosen to reduce computational time 

taken.
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