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Abstract

People across the developing world join rotational savings and credit associations (roscas)

to fund repeated purchases of nondivisible goods. When the scope for punishment is weak,

there is a natural question about why agents do not defect from these groups. I model a

rosca as a commitment savings device for hyperbolic discounters. Roscas are attractive for

two reasons: the possibility of getting the nondivisible good early (the standard reason),

and the fixed saving requirement (valued only by time-inconsistent agents). I find explicit

conditions under which an agent strictly prefers to remain in a rosca, even in the absence

of formal contracting or social punishment. I show why, unlike with standard commitment

products, a hyperbolic discounter will not postpone entry into a rosca. Finally, this paper

makes predictions about the relative survival of random and fixed roscas. Random roscas

are more resilient and beneficial than fixed roscas when information is limited and matching

for new roscas is fast.

∗Contact: karna@uchicago.edu; I am indebted to my advisors Abhijit Banerjee, Xavier Gabaix and Sendhil
Mullainathan for advice, comments, and support. I thank Jean-Marie Baland, Sylvain Chassang, Antara Dutta,
Dean Karlan, and participants at the MIT Development Workshop for discussions and comments.

1



1 Introduction

Roscas (rotating savings and credit associations) are a prominent form of saving across much of

the developing world. This paper studies roscas from the perspective of hyperbolic discounting,

and models them as equilibrium phenomena in environments with no scope for formal contracting

or social punishment.

A rosca consists of a group of individuals who meet at regular intervals and contribute a

fixed amount to a collective "pot," which is then granted to one of the members. The existing

literature on roscas frequently stresses the need for social sanctions to ensure that participants

do not defect after receiving the pot. One might expect that these sanctions need to be stronger

when individuals have present-biased preferences. I find that this is not the case. In fact,

in contrast to settings with exponential discounters, roscas with hyperbolic discounters might

survive even if no social punishment is possible. A sophisticated hyperbolic discounter has two

objectives: to indulge today, and to discourage her future selves from doing the same. Since a

rosca appeals to the second objective by improving future savings, the individual will continue

to participate even if it involves a sacrifice of immediate consumption. The model below allows

us to solve some puzzles about the high observed survival of roscas, and to derive implications

for existence and sustainability under varying underlying conditions.

This paper is organized as follows. Section 2 outlines the arguments of this paper in some

detail. Section 3 provides a literature review. Section 4 characterizes the autarky equilibrium.

Section 5 discusses roscas as commitment devices, focusing on sustainability in a benchmark

case and the entry problem. Section 6 models roscas as equilibria in a decentralized setting.

Section 7 discusses empirical implications of the model. Section 8 concludes.

2 Outline of Arguments

2.1 Rosca Basics

A rosca "round" consists of exactly as many meetings as there are members. Within a rosca

round, each member gets to take the pot home exactly once. The order in which members are

given the pot can be determined in several ways. In this paper, I focus on "fixed" and "random"

roscas. In a fixed rosca, the order is randomly determined at the first meeting of the rosca, and

1



then repeated indefinitely through future rounds.1 In a random rosca, the order is randomly

determined at the start of each new round. Often, rosca members who leave at the end of a

round are free to rejoin a rosca at a later date. However, people who choose to leave during a

round are punished—they are not allowed to rejoin any future rosca and, if possible, punished

with other forms of social sanctions.

Roscas are widespread across developing countries (and immigrant communities in developed

countries), and often survive in environments with poor contracting and limited or nonexistent

formal banking. Members of the Tidiane community in Senegal use them as a means to save for

annual pilgrimages to Mecca. In Philadelphia, women from the Ivory Coast join roscas to pay

for childbirths and funerals. Roscas can be found in several parts of Kenya, where the money

is put to various uses, from home repairs to the purchase of food and clothing. Levenson and

Besley (1996) point out that, in any given year, one-fifth of all households in Taiwan participate

in a rosca. Bouman (1995) cites several studies of African roscas where participation rates are

even higher, and are a significant saving vehicle.2

2.2 Theoretical Foundations

Following the model proposed by Besley, Coate, and Loury (1993), I assume that agents would

like to save for a nondivisible good. If they were to save alone, each would have to wait a certain

number of periods before she could consume the good. If agents join a rosca instead, they pool

their savings and allow some members to get the nondivisible good sooner. The likelihood of

an early nondivisible gives agents an incentive to join a rosca. This expected benefit, however,

does not persist after they have actually joined. As Anderson, Baland, and Moene (2003) show,

when agents are exponential discounters, they will have an ex-post incentive to leave any rosca.

Consider an agent in a fixed rosca who has just received the nondivisible good. If she now

leaves the rosca, she can replicate the rosca outcome by saving alone (there is no longer a

positive probability of getting the good sooner through the rosca). Furthermore, if she prefers

a declining pattern of savings, she can do strictly better by saving alone. In a random rosca,

some agents have an even greater incentive to leave. Consider the first-ranked agent in a round.

1 In practice, other considerations (such as age) sometimes come into play in determining the initial ordering.
However, my results about an arbitrary individual’s incentive to defect from a fixed rosca would continue to be
relevant.

2Roscas and other informal savings groups are the source of half the national savings in Cameroon. Savings
through roscas amount to 8-10% of Ethiopia’s gross national product.
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If she leaves the rosca after receiving the nondivisible, she can ensure that she continues to be

"first-ranked" by walking out and saving alone. If she stays in the rosca, there is no guarantee

that she will again be ranked first in the next round. By staying on in the rosca, the agent

is effectively continuing to save at a negative interest rate. The authors conclude that, in the

absence of contracting, the threat of social punishment must be severe enough that an agent

who would otherwise choose to leave a rosca will now choose to continue participating.

2.3 Questions to be Answered

The papers described above provide a compelling framework for understanding the ex-ante

appeal and subsequent sustainability of roscas, but they also lead to some interesting questions.

First, there is some evidence that roscas survive even without much threat of social punishment

(Gugerty, 2005). Why do agents not leave after receiving the nondivisible? Second, for any

given outside option, agents in random roscas have greater incentives to leave than agents in

fixed roscas do (the first-ranked member’s expected value of staying on in a random rosca is

lower than anyone’s expected value of staying on in a fixed rosca). Why do random roscas exist,

given that they provide the same ex-ante utility as fixed roscas? Third, even if the threat of

social sanctions can be used to ensure participation within a round, it is unlikely that the threats

apply to people who leave after completing a round. Then, why does the last-ranked member

in a fixed rosca stay on? If she were an exponential discounter, she should leave at the end of a

round if there is any probability that she will find a rosca that ranks her higher (since, even if

she does not find a rosca, she can save alone and do no worse than in her original rosca).

2.4 Results

This paper is built on two key assumptions. First, agents in my model have time-inconsistent

preferences and are aware of it. There is empirical evidence that this is indeed the case—Gugerty

(2005) shows that members of her dataset most often cite self-control problems as the reason

for joining a rosca.3 Second, I take seriously the fact that roscas are informal institutions that

sometimes exist even in environments where contracting and social networks are weak. I assume

that participation cannot be contracted upon and that social punishment is infeasible. In this

context, roscas can be viewed as commitment savings devices with particular advantages. Not

3Some quotes: "You can’t save alone—it is easy to misuse money;" "Saving money at home can make you
extravagant in using it."
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only do they improve savings behavior, but they can survive without social sanctions, and will be

adopted without postponement. In contrast with exponential discounters, roscas generate two

complementary benefits for hyperbolic discounters—value from high expected rank, and value

from commitment. The value from high expected rank ensures that agents will actually enter

a rosca, and the value of future commitment gives agents who receive the pot early a reason to

repay the "debt." The arguments are developed in four broad parts.

First, I describe a sophisticated quasi-hyperbolic discounter who values a nondivisible good,

and solve for her autarky Markov Perfect Equilibrium across the β-parameter space4. As β gets

smaller (she puts more weight on the present), her ideal outcome involves consuming in the

present but saving rapidly for the nondivisible in future periods. However, such behavior does

not constitute an equilibrium. I show that the speed of saving in equilibrium must drop as β

drops.

Second, I show how roscas can be sustainable commitment devices. Roscas provide commit-

ment in the following sense: if, when the agent is furthest away from the nondivisible, she prefers

to remain in the rosca, then she will always prefer to remain in the rosca. This is because, as

she gets closer to the nondivisible, the rosca locks in more of her savings and thus reduces her

incentive to leave. I assume there is a single provider of roscas who cannot make credible threats

of punishment. The only enforceable rule is that an agent who leaves a rosca can never rejoin.

I find that there is always a parameter region where the agent will never leave a rosca.

My argument rests on a key trade-off that a rosca participant faces, especially when her next

nondivisible is far away. If she leaves the rosca, she gets the pleasure of consuming her current

income but faces the unwelcome prospect of saving slowly in autarky in the future. On the

other hand, if she stays in the rosca, she has to sacrifice current consumption, but knows that

her discounted utility from future periods will be higher than in autarky. She will remain in

the rosca if the promise of good future behavior (induced by the rosca) outweighs her desire to

over-consume in the present. I also find here that the parameter region that supports random

roscas is a strict subset of the region that supports fixed roscas.

Roscas also have the particularly appealing property of enticing agents to join without delay.

With standard commitment devices, costs are incurred in the present while benefits (in the form

of matured savings) arrive in the future. This can cause hyperbolic discounters to delay take-up

4The "β" refers to the agent’s hyperbolic discount factor, by which she discounts her entire future in any given
period.
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of such devices, even if they value the commitment. However, in the case of roscas, an agent

knows that there is a likelihood of her being an instant winner (she might get ranked first). I

show that this ensures that the agent will not postpone entry into a rosca.

Fourth, I model roscas as decentralized equilibria by lifting two assumptions of the benchmark

case—I vary the available information about agents’ past rosca behavior, and allow the generation

of new roscas in any period (there is some exogenous probability with which people get matched

into new roscas). Agents play a dynamic game and strategies can be conditioned on reputation,

to the extent that it is available. The objective is to find equilibria that prevent frivolous

defection (which would involve leaving one rosca in search of a higher rank in another).

This setup provides two further insights. First, even in completely anonymous environments,

roscas can survive if the probability of matching into new roscas is sufficiently low. Second, I

find conditions under which random roscas can be preferred to fixed roscas. To do so, I model

what is perhaps the most realistic reputation environment—"partial reputation." This is the case

where only the agents who leave without completing a round develop a bad reputation—these

agents can be barred from future roscas. This allows us to restrict our focus to agents’ desires

to leave between rounds. The last-ranked member in a fixed rosca is permanently last ranked,

so she might have an incentive to leave after a round, in anticipation of a better rank in a new

rosca. Now, random roscas have a particular advantage over fixed roscas—by re-randomizing at

the start of every round, they internalize the attractiveness of the outside option. There is no

incentive for a member of a random rosca to leave between rounds. I find that, under certain

conditions, random roscas survive longer and increase welfare relative to fixed roscas.

3 Related Literature

Standard explanations of roscas focus on the individual’s desire to save for a nondivisible good.

In addition to the theoretical models described above, there is a wide range of empirical papers

on roscas in several parts of the world.5 Most rely on an informal notion of social punishment

to explain why agents don’t defect.

Anderson and Baland (2002) find evidence that roscas are used by women to restrict their

husbands’ access to their savings. In their model, women have a greater preference for the

nondivisible than men, but have limited power over expenditures within the household. If

5See Bouman (1994), Handa and Kirton (1999), and Kimuyu (1999).
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women were to save at home, their husbands would direct too much of their savings towards

immediate consumption. On the other hand, if women save in a rosca, husbands have no access

to their savings until the pot is received. At this stage, assuming the woman has sufficient

bargaining power to purchase the nondivisible good, it is in fact purchased. In this setting, a

rosca can be viewed as another kind of commitment savings device. A woman would like to save

for the nondivisible, but she knows that if she saves at home, she will not be able to save as fast

as she would like to. A rosca, by locking in savings, allows her to prevent over-consumption by

her household in future periods.

Gugerty (2005) finds direct evidence that individuals use roscas to overcome their own time-

inconsistency.6 In her dataset, self-control problems are cited as the most common reason for

joining a rosca (36% of the members say it is the primary reason). Based on anecdotal evidence,

there appears to be very limited scope for credible social sanctions. Gugerty’s study is set in

a rural community in Kenya where banks, if available, are very far away. The average rosca in

her dataset is 6.5 years old, with the average round lasting a little under a year. She finds that

only 6% of members left a rosca is the last round studied. 37% of the roscas are fixed , 58%

are random, and the rest use other forms of negotiation/randomization. On the other hand,

Anderson, Baland, and Moene study a poor urban neighborhood near Nairobi, where 71% of

the roscas are fixed and 29% are random. Funds generated through roscas are more often spent

on nondivisible goods with immediate benefits than on large durables.7

Quasi-hyperbolic discounting has been used to describe time-inconsistent preferences in sev-

eral papers.8 The fact these preferences result in a need for commitment has also been widely

studied. For examples, see Ashraf, Gons, Karlan and Yin (2003), Thaler and Bernartzi (2004),

and Ashraf, Karlan and Yin (2005). In the context of this literature, the point of this paper is

to show that roscas are effective commitment devices even without "commitment" in the stan-

dard sense (in settings where agents cannot pre-commit to join and cannot be forced, through

contracts or social punishment, to continue participating).

Finally, there are two aspects of roscas that are worth mentioning even though my results do

6 In a paper on Benin, Dagnelie and LeMay (2005) provide further evidence of roscas being used as commitment
devices.

7Gugerty (2005) finds that the largest proportions of rosca funds are spent on household cooking items, school
fees, and food. In Dagnelie and LeMay’s (2005) dataset, only 19% of funds are spent on durable goods.

8Originally proposed by Phelps and Pollack (1968), it has been developed in papers by Laibson, Harris, Rabin,
and others. More recently, Krusell and Smith (2003b) characterize the mixed-strategy equilibria in a Ramsey-style
consumption-savings problem with lump-sum investment.
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not directly relate to them. First, the allocation of pots can also be determined by an auction.

Though these "bidding" roscas are not common in the empirical papers that motivate my model,

they nevertheless feature prominently in many developing countries. It is possible to conceive of

them as risk-sharing arrangements under limited commitment (see Ligon, Thomas, and Worrall

(2002)). However, this approach is less plausible with fixed and random roscas, where the

allocation order is generally inflexible. Recent papers on bidding roscas include Calomiris and

Rajaraman (1998), Klonner (2005), and Klonner and Rai (2006).

Second, there is the question of efficiency. In a companion paper to the one previously

described, Besley, Coate, and Loury (1994) argue that random (and, by extension, fixed) roscas

do not result in efficient allocations in general. In a recent paper, Ambec and Treich (2005)

show how roscas can be the best possible institutions, ex ante, when agents value commitment

(but their paper assumes contracts are binding and that agents can commit to joining a rosca

at a future date). This leaves open the question of whether, in an environment with hyperbolic

discounting and limited contracting, an institution more efficient or sustainable than roscas

exists.9 However, since roscas do enjoy widespread success, I hope this paper takes a useful step

towards understanding when and why they survive.

4 Autarky Model

In this section, I assume the individual does not have access to a rosca, and study her behavior

in terms of equilibria played across her per-period selves.

4.1 Assumptions

The agent is an infinitely lived, sophisticated quasi-hyperbolic discounter. She has a per-period

non-stochastic income y, and no initial endowment. Borrowing is not possible, and no interest

is earned on savings. There are two types of goods: a consumption good (denoted c; price 1)

and a nondivisible good (denoted d; price ky, where k is a positive integer). Saving has to be

lump-sum, in multiples of y. (This assumption allows us to model autarky equilibria using mixed

strategies). The agent’s per-period utility function is u (c+ bd) (where u is strictly concave and

9One possibility is a lottery, which retains the wealth pooling property of a rosca without the problem of
sustainability. This is a concern that is as relevant to existing theories of fixed and random roscas as it is to mine.
Since roscas do exist in the face of this alternative, two informal explanations (beyond the scope of my model)
come to mind: perhaps people don’t trust the fairness of lotteries, or they dislike the uncertainty about how often
they will win.
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defined over the domain [0,∞), with u (0) = 0; b is a positive constant).

Given this per-period utility function, intertemporal utility at time t is:

Ut = u (ct + bdt) + β
∞X

i=1

δiu (ct+i + bdt+i) , where β ∈ (0, 1) and δ ∈ (0, 1)

Finally, I assume that the nondivisible good is "desirable":

δk−1u (b) >
k−1X

i=0

δiu (y) (1)

This ensures that, if the agent were an exponential discounter, she would repeatedly save all her

wealth for the nondivisible good (any other saving rule would violate either time consistency or

the condition above).

4.2 Equilibrium concept

I decompose the individual into a series of time-indexed independent selves with utility functions

{Ut}, and assume they play a Markov Perfect Equilibrium. In any period, the agent observes

her total wealth, wt, and makes a decision about how much to save, st (st is a gross saving

decision). Wealth and savings are related in the following way: wt = st−1 + y. Since saving is

lump-sum and initial wealth is 0, it must be that wt = iy, where i ∈ {1, 2, 3, ...}. In any state iy

the action set, {0, y, 2y, ..., iy}, includes all feasible levels of saving. A strategy associates every

state w = iy with a sequence of positive probabilities, {πi (0) , πi (y) , πi (2y) , ..., πi (iy)}, that

sums to 1 and denotes a probability distribution over all feasible actions.

We can immediately restrict our set of possible states to: {y, 2y, 3y, ..., (k − 1) y}. Since the

nondivisible provides the only incentive to save, and since initial wealth is 0, there will never be

an equilibrium where the agent encounters wealth higher than ky. The agent with wealth ky

will always save 0, regardless of future behavior.

A strategy is an equilibrium if and only if, for any state w ∈ {y, 2y, 3y, ..., (k − 1) y}, every

action s that is played with positive probability satisfies:

s ∈ max
s0∈{0,1,2,...,w}

£
u
¡
w − s0

¢
+ βδV

¡
s0 + y

¢¤
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Here, V (·) is the value function of the exponential discounter, defined recursively:

V (ay) =
aX

j=0

πa (j) [f (ay − jy) + δV ((j + 1) y)]

where

f (x) =

½
u (x) , if x < ky

u (b) , if x = ky

4.3 Predicting Equilibrium Choice

Multiple-self models with quasi-hyperbolic discounting can lead to a multiplicity of equilibria.

In this section, I present some results that allow us to restrict the set of strategies that are can-

didates for equilibrium, and predict which equilibrium will be chosen in the case of multiplicity.

I find that there is always an equilibrium that weakly dominates all others in every state. The

proofs of the following lemmas and proposition are in Appendix A.

Consider any strategy in which some saving occurs. For this to be an equilibrium, it must

be the case that all deviations (in terms of lower saving) at all levels of wealth are dominated.

It follows directly from concavity that if an agent with low wealth chooses to save a certain

amount, an agent with higher wealth cannot possibly wish to save any less. The stock must

always weakly rise until ky is reached.

Lemma 1 If at wealth w the agent (weakly) prefers to save s, then at any wealth w0 > w the

agent will never save any s0 < s with positive probability.

This means that in any equilibrium in which the nondivisible is purchased with positive

probability, an agent with wealth w will either save w or mix between w and w − y.

If there are multiple equilibria at any values of β, we need to predict which among them

the agent will actually play. This is relatively straightforward if we establish that the best

equilibrium in any one state is also the best equilibrium in all other states. The following

proposition shows that this is indeed the case.

Proposition 1 There is always an equilibrium that is "optimal" in the sense that, at any level

of wealth that is reached in equilibrium, the agent does not strictly prefer to play any other

equilibrium.

This proposition is proved with the help of the following lemmas.
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Lemma 2 Consider two equilibria, denoted A and B. Suppose 1 ≥ πAy (y) ≥ πBy (y) ≥ 0, and

that πAy (y) > 0 and πBy (y) < 1. Then, in any state w, where y ≤ w ≤ (k − 1) y, VA (w) ≥

VB (w).

Lemma 3 Consider two equilibria, A and B, such that πAy (y) = πBy (y) = 1. Let w̄ be the

lowest state at which πAw̄ (w̄) > πBw̄ (w̄). Then, VA (w) ≥ VB (w) at all states w.

The proposition and lemmas above tell us the following: given the set of all possible equilibria

in which the nondivisible is purchased with some probability, the optimal equilibrium is the one

with the highest probability of saving at wealth y. (If there are multiple equilibria with full

saving at y, we repeat the comparison at higher levels of wealth.) Furthermore, any equilibrium

in which the nondivisible is purchased is always preferred to any equilibrium in which it is not

purchased. The agent always wants her future selves to save more; and the more they save, the

more she is willing to save in the current period.

4.4 Optimal Autarky Equilibria Across Parameter Regions

I now construct the optimal autarky equilibrium for all possible values of β. While it might

not be the case that the agent actually plays the optimal equilibrium, it serves as a reasonable

benchmark, especially as it stacks the odds against rosca survival (the better the autarky option,

the lower the agent’s incentive to stay on in a rosca). Clearly, if β = 1, the agent behaves exactly

like an exponential discounter, and if β = 0, she never wishes to save any amount. To map out

the equilibria between these boundaries, I focus on the equilibrium with the highest possible

level of saving at wealth y, for every value of β (starting at β = 1 and dropping down to β = 0).

I find that there is always a β-region in which the agent behaves like an exponential discounter.

However, once β gets sufficiently small, she no longer wishes to save today if she knows she would

start saving tomorrow anyway. Once this occurs, to re-induce saving, the agent plays a mixed

strategy equilibrium. Finally, there is a region that cannot support any saving equilibrium.

A full-saving strategy is defined as the following: at any w ∈ {0, 1, 2, ..., (k − 1) y}, the agent

saves w.

Lemma 4 Consider a strategy with full saving at all w > w0. If the agent at wealth w0 (weakly)

prefers to save w0 than to save any lower amount, agents at all higher levels of wealth strictly

prefer to save fully.
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Proof. The strategy determines some continuation value V (·). If the agent at w0 weakly prefers

to save fully, this means:

βδV
¡
w0 + y

¢
≥ u (y) + βδV

¡
w0
¢

To prove the lemma, we need to show that V (x) is strictly convex for x ≥ w0. Note that

V (x) = δk−xu (b) + δk−x+1V (y). Since V (y) > 0, V is strictly convex.

Proposition 2 Consider β̄ as defined in Equation 2 below. When β ∈ [β̄, 1), the full-saving

strategy is an equilibrium.

Proof. A set of necessary and sufficient no-deviation conditions must be satisfied for the full-

saving strategy to be an equilibrium. Specifically, at every wealth level w ∈ {0, 1, 2, ..., (k − 1) y},

the agent must prefer to save her entire wealth relative to any lower level of saving. If we can

show that, at each w, the agent prefers to save w over w − y, Lemma 1 ensures that all other

conditions will be satisfied. Thus, a full-saving equilibrium exists if and only if, for each w:

βδV (w + y) ≥ u (y) + βδV (w)

By Lemma 4, a necessary and sufficient condition for all the above conditions is:

βδV (2y) ≥ u (y) + βδV (y)

⇔ β ≥ u (y)

δ [V (2y)− V (y)]
=

1− δk

δk−1 [u (b)]
·
u (y)

1− δ

β̄ =
1− δk

δk−1 [u (b)]
·
u (y)

1− δ
(2)

Since u (y) > 0 and V (2y) > V (y), β̄ is above 0. Also, expanding the term, we see that it must

be less than 1 if the nondivisible is desirable (Condition 1).

The proposition above also tells us that at β̄, agents at wealth greater than y strictly prefer

to save fully if all future selves save. Therefore, when the full-saving equilibrium can no longer

be supported, we expect to find a region in which the agent with y plays a mixed strategy, but

all others save fully. Below β̄, to create incentives to save, the agent with wealth y must play

a strategy where she saves with some probability πy (y) < 1. Then, she knows that if she does

not save today, there is a possibility that she will not even save tomorrow. By worsening the

consequences of not saving today, she again becomes willing to save.
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The next proposition establishes that there is always a β-region in which a mixed strategy

is played—one with full saving above y, and mixing at y. As β drops below β̄, the agent at y

will save with decreasing probability down to some β (defined in the proof of the proposition)

at which πy (y) = 0. This strategy will be an equilibrium at any β ∈
³
β̄, β

´
only if agents at

wealth levels above y continue to strictly prefer to save. If that condition holds, then β is the

cutoff below which saving equilibria can no longer be supported.

However, if δ is reasonably high, and u (b) sufficiently close to u (y), this will not be the case.10

Then, there will be a region in which the optimal equilibrium will involve mixing between y and

0 at wealth y, mixing between 2y and y at wealth 2y, and full saving at all higher levels of wealth.

While explicit solutions for mixed strategy equilibria depend on actual parameter values (see

Appendix D for an example with k = 2), they can always be constructed using the following

rule: Moving down from β̄, solve for πy (y) at each β so that the agent at y is indifferent between

saving and consuming. Continue until some β1 where either (a) the agent at 2y no longer strictly

prefers to save, or (b) πy (y) = 0. If (b), then define β = β1. If (a), continue below β1, now

solving for πy (y) and π2y (2y) to get indifference at y and 2y, respectively. Continue until some

β2 where either (a) the agent at 3y is indifferent, or (b) πy (y) = 0. If (b), β = β2. If (a),

continue. By repeating these steps until (b) is satisfied, there will be some i ∈ {1, 2, ..., k − 1}

such that βi = β. This is formalized in Proposition 3 (the proof is in Appendix A).

Proposition 3 There exist
©
β1, β2, ..., βk−1

ª
satisfying β̄ > β1 ≥ β2 ≥ ... ≥ βk−1 = β, such

that the optimal equilibrium at any β has the following properties: for β ∈ [β1, β̄), wealth y

plays a mixed strategy while all others save fully; for β ∈ [β2, β1), wealth y and 2y play mixed

strategies while all others save fully; and so on.

Ultimately, β is the point at which the agent at y no longer wishes to save (πy (y) = 0). It

is clear that πy (y) must go to 0 before other probabilities, πw (w), do. If this were not the case,

it would mean that the agent at y would be saving some πy (y) > 0 while an agent at a higher

level of wealth, w̄, saved with πw̄ (w̄) = 0. But then it would not be rational for agent y to save,

since the nondivisible would never be bought.

Proposition 4 There is some β > 0 in [β, β̄) such that, for β > β, there is always an equi-

librium in which the nondivisible is purchased, and for β0 ≤ β, the nondivisible can never be

10As δ gets high, the incentives to defect at 2y start to get almost as strong as the incentive to defect at y,
because the fact that we are one period closer to the durable good becomes less significant. See Appendix B for
an example.
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purchased in equilibrium.(β is defined Equation 11 in Appendix A, and β̄ is defined in Equation

2.)

The proof is in Appendix A. In Appendix C, I also show that for β ∈ [β, β̄], the lifetime

autarky utility for the agent at wealth y is weakly concave in β (see Figure 2).

5 Roscas as Commitment Devices

When agents are hyperbolic discounters, it is natural to think of roscas as commitment savings

devices. I describe a rosca as a group of k people (k as defined in Section 3), where one rosca

round lasts k periods. The per-period contribution is y. This rosca can be either fixed or

random.

Consider an agent in a fixed rosca, in the period after which she has received the nondivisible.

Suppose she values the commitment provided by the rosca and chooses to stay. Then, she knows

that in all future periods she will continue to stay. This is because, for every additional period

that she participates in the rosca, more of her savings get locked in (they are consumed by

someone else, so there is no way for her to access them). This argument can be similarly applied

to the first-ranked agent in a random rosca. If she chooses to stay in the rosca in the second

period, the lock-in property ensures that she will always choose to stay.

This value of commitment that a rosca provides also allows for an effective punishment mech-

anism to ensure continued participation even without the threat of formal or social punishment.

If an agent knows that once she leaves a rosca she can never return, she might strictly prefer

to stay even when she is furthest away from her next nondivisible. This insight is formalized in

the following subsection.

5.1 Sustainability

I first analyze a rosca that operates according to the following rule: any agent who leaves can

never rejoin any rosca, but cannot be punished in any other way. This can be interpreted as a

case where roscas can only form at some central location, which allows agents’ past behavior to

be monitored.11 While this is admittedly a stylized environment, it is one in which roscas with

exponential discounters cannot survive (and hence allows us to isolate the arguments that lead

to such starkly different results for hyperbolic discounters).
11This assumption in relaxed in Section 5.
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5.1.1 Fixed Roscas

Consider the last-ranked agent in a fixed rosca. How strong is her temptation to defect in the

first period? If she has a strict incentive to stay on in the rosca, it follows that she will always

have a strict incentive to stay on. If the agent were an exponential discounter, she would not

have this strict incentive since there are no social sanctions and she could replicate the rosca

outcomes in autarky.

Suppose the last-ranked agent is a hyperbolic discounter who is unable to save continuously

in autarky. She would ideally like to pause the rosca for one period (so she could consume her

income today) and continue with rosca participation from tomorrow (since continuous saving

in the future maximizes her discounted utility). However, pausing the rosca is not an option.

She now faces a trade-off between autarky (high instantaneous utility, low future utility) and

staying in the rosca (low instantaneous utility, high future utility). If she values the commitment

provided by the rosca highly enough that she is willing to forego current consumption, she will

strictly prefer to stay on.

Proposition 5 Consider β∗ as defined in Equation 3 below, and β̄ as defined in Equation 2.

Suppose a member of a rosca knows that the other members of the rosca will never defect. Then,

when the alternative is autarky, she strictly prefers to never defect if β ∈
¡
β∗, β̄

¢
. If β < β∗,

there will be periods when she strictly prefers to leave. If β ≥ β̄, there will be periods when she

weakly prefers to leave.

Proof. Consider an agent’s decision when she is k periods away from the next nondivisible.

For simplicity, denote the continuation value from autarky equilibrium at any level of wealth,

VA (·). Denote the continuation value from a strategy in which all future selves save fully, VF (·).

First consider the region, β ∈ [β, β̄). If the individual defects from the rosca, she will have to

play autarky forever (and forego any contributions she has made to the rosca so far). Since in

autarky she is indifferent between saving and not saving at wealth y, her autarky utility will

be βδVA (2y), where VA (2y) involves probabilistic saving in at least some future periods. If the

agent remains in the rosca, her utility is βδVF (2y). Since VF (2y) involves optimal saving by

all future selves, it must be greater than VA (2y). Therefore, if the agent chooses to save with

positive probability in autarky, she will strictly prefer to remain in the rosca.

Second, I show that there is a region below β in which the agent still strictly prefers to
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remain in the rosca. Consider the indifference condition at β. The agent at y is made indifferent

with π = 0:

βδVA (2y) = u (y) +
βδu (y)

1− δ

The utility from a rosca, βδVF (2y), still strictly dominates the utility from autarky. The agent

continues to strictly prefer a rosca down to β∗ that satisfies:

β∗δVF (2y) = u (y) +
β∗δu (y)
1− δ

⇔ β∗ =
u (y)

δ
h
VF (2y)− u(y)

1−δ

i

⇔ β∗ =
u (y)

δ
h
δk−2{u(b)}
1−δk − u(y)

1−δ

i (3)

Since u (y) > 0, we know that β∗ > 0.

It is useful to note here that β∗ < β. This means that, even if the agent’s preferences are

so present-biased that she would never save in autarky, she might be willing to sacrifice current

consumption for the sake of future benefits from a rosca.

Source of Commitment A natural question here is: what exactly about the rosca provides

commitment to the hyperbolic discounter? A rosca comes with (1) the threat of being barred

for non-payment and (2) illiquidity of savings. We can consider two alternative commitment

savings devices that separately perform these functions: a friend who promises to monitor your

saving and credibly threatens to stop helping if you under-save, and a fixed-deposit that locks

up your savings until you reach a target amount (in this case, ky).

In the
¡
β, β̄

¢
range, illiquidity plays no role, since even in autarky the agent never dips into

her savings. As long as we are in a region where some saving occurs in equilibrium, access

to a fixed deposit cannot improve savings behavior. Here, a fixed rosca is very similar to a

friend who offers to "help". The fact that the rosca can offer a credible threat to deny access to

defectors creates a large enough utility gap between the rosca and autarky equilibria to ensure

participation.12

12 In this case, if the agent were able to play history dependent (instead of Markov) equilibria with herself, she
should be able to replicate rosca behavior. However, an individual’s ability to play such equilibria on her own
is limited by the fact that the punishment strategy would be dominated by the strategy along the equilibrium
path. If she deviates under a history-dependent equilibrium, she can easily renegotiate with herself to not play
the punishment strategy.
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At lower levels of β, the illiquidity provided by the rosca can play a role. Consider the region

in which an agent stays in a rosca but would not save in autarky (β < β):

βδk−1u (b)

1− δk
≥ u (y) +

βδu (y)

1− δ

Now, suppose the agent had the helpful friend instead of the rosca. The above condition might

no longer be sufficient to ensure cooperation. She would also need to ensure that at wealth 2y

she did not have an incentive to consume everything:

βδk−2u (b)

1− δk
≥ u (2y) +

βδu (y)

1− δ

If u (·) is not very concave, and δ is sufficiently high, then the second condition can fail even if the

first is satisfied. With δ high, the agent does not benefit as much from being one period closer

to the nondivisible. On the other hand, if u is almost linear, the benefit of consuming 2y can be

enough to outweigh the fact that she will no longer save in the future.13 However, even when

the illiquidity plays a role, this does not make the contracting aspect of a rosca irrelevant. With

a fixed-deposit instead of a rosca, the agent might simply not deposit any money in subsequent

periods.

While this is by no means an exhaustive list of alternative commitment savings devices, the

examples above allow us to decompose the commitment provided by roscas.14

5.1.2 Random Roscas

The only difference between a random and a fixed rosca is that, in a random rosca, the ordering

is re-randomized at the start of each round. Consider an agent who has received the nondivisible

in period 1. In period 2, her expected value from staying in the rosca is βδk−1u(b)
(1−δ)k . If, in this

period, she stays in the rosca, she will always stay in the rosca, since this is the furthest away

from the nondivisible she can ever be.

Proposition 6 If δ is sufficiently large, there is a β-region, bounded by
¡
β∗ran, β̄ran

¢
, within

which an agent will always strictly prefer to remain in a random rosca (when the alternative is

13One can expand the region in which illiquidity plays a role if there is either an intermediate "temptation"
good or if income is stochastic. In each of these cases, the agent will have a greater incentive to dip into her
savings in autarky, and she might therefore further value the fact that a rosca will prevent her from doing so.
14As Section 4.2 demonstrates, roscas have another attractive property not shared by these devices.
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autarky). The region will be a strict subset of the region in which an agent stays in a fixed rosca:

β∗ran > β∗, β̄ran < β̄.

Proof. First, I show that the β-region that supports full participation in a random rosca must

be smaller than the equivalent region for a fixed rosca. The lowest expected value from staying

in a random rosca is smaller than the lowest expected value from staying in a fixed rosca:

βδk−1u (b)
(1− δ) k

<
βδk−1u (b)

1− δk

(This is always true for δ < 1 and k > 1). In each case, the outside option (autarky) is identical.

Therefore, if an agent weakly prefers to stay in a random rosca, she will strictly prefer to stay

in a fixed rosca.

Second, consider the first-ranked agent’s decision in the second period of a rosca round. She

will remain in the rosca if βδ
k−1u(b)
(1−δ)k is higher than her autarky equilibrium. If there is a region in

which this is true, the lower bound, β∗ran, must lie in (0, β)and the upper bound, β̄ran, must lie

in (β, β̄) . This is because, at β = 0 and β = β̄, autarky is strictly preferred, and for β ∈
¡
0, β

¢
,

autarky utility is linear and increasing in β, and for β ∈
£
β, β̄

¤
, autarky utility is concave and

increasing in β. β∗ran is given by:

β∗ranδ
k−1u (b)

(1− δ) k
= u (y) +

β∗ranδu (y)
1− δ

β∗ran =
(1− δ)u (y)

δk−1u (b)− kδu (y)
(4)

In Appendix E, I show that, for δ → 1, β → u(y)
u(b)−(k−1)u(y) > 0. So, for any δ, however large,

there will be no autarky saving for β < u(y)
u(b)−(k−1)u(y) . As δ → 1, β∗ran → 0. This ensures that,

for sufficiently high δ, there will be a region in which an agent always prefers to remain in a

random rosca.

The intuition for the above result is the following: as δ gets large, the agent does not mind

the fact that her rank in the next round is uncertain (her expected utility converges to the

expected utility of staying on in a fixed rosca). However, when δ is small, she cares about the

fact that she has to wait particularly long for the next nondivisible. This limits the range of

β-values for which she will choose to remain in the rosca. The graphs below provide a summary

of the results from the sections above.
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Figure 1: Comparison of β-regions that support random and fixed roscas. The lowest (broken)
line indicates the type of equilibrium played in autarky.
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ran
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U

Figure 2: Comparison of lifetime utilities across β. The thickest line is the utility of a fixed
rosca member who is k periods away from her next nondivisible. The lower line of medium
thickness is the utility of a random rosca member in period 2, conditional on having received
the nondivisible in period 1. The thinnest (crooked) line is the autarky utility at wealth y. In¡
β∗, β̄

¢
, fixed roscas are preferred to autarky. In

¡
β∗ran, β̄ran

¢
, random roscas are preferred to

autarky.
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5.2 Entry and Welfare

A potential problem with commitment savings devices, especially when start dates cannot be

contracted upon, is that the agent might have an incentive to postpone entry.15 As O’Donoghue

and Rabin (1999) show, when tasks are costly in the present and have delayed benefits, a quasi-

hyperbolic discounter will procrastinate even though the welfare-maximizing outcome involves

completing the task immediately.

Since commitment saving typically entails saving today for future benefits, the agent might

wait to join even if she values the commitment. This problem disappears with roscas because of

the initial randomization in ranking. I show below that the possibility of getting the nondivisible

in the current period ensures that the hyperbolic discounter will not want to postpone entry.16

Suppose there is no defection from a rosca once it forms. In this section, I study a single

agent’s entry decision. An agent faces identical expected values from joining a random rosca or

a fixed rosca. In each case, she expects to get the nondivisible once every k periods, with some

uncertainty about her exact rank. The expected value is u(b)
k

h
1 + βδ

1−δ

i
.

Proposition 7 If an agent knows that she will always stay in a rosca once she joins, she will

always join in the first period of her life.

Proof. Suppose an agent can join a rosca in any period, and knows she will remain in it forever

once she enters. She will join in the first period of her life only if she would rather not postpone

by one period:

u (b)

k

∙
1 +

βδ

1− δ

¸
> u (y) +

u (b)

k

∙
βδ

1− δ

¸

⇒ u (b)

u (y)
> k

It is important to note that this condition does not depend on β. We can see that, as long as

the nondivisible is desirable, the condition is always satisfied. The desirability condition (from

15 If the agent’s true welfare is measured by taking the discounted sum of her utility with β = 1, the welfare
maximizing outcome is the one where she starts saving immediately.
16This result relies on the assumption that goods yield immediate benefits (as supported by many empirical

studies). However, even when goods are more durable, agents will be less likely to postpone entry into roscas
than other commitment devices.
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Equation 1) is:

δk−1u (b) >
k−1X

i=0

δiu (y)

⇒ u (b)

u (y)
>

Pk−1
i=0 δ

i

δk−1

For δ ∈ (0, 1), it is always true that
k−1
i=0 δi

δk−1
> k. Therefore, if the nondivisible is desirable to

exponential discounters, then hyperbolic discounters will never choose to postpone entry into a

rosca.

Since the individual has present-biased preferences, she is tempted by the possibility of an

immediate reward in the same way that she is tempted to over-consume in the present. This

shows that, if the conditions for remaining in the rosca are met, the expected value of the rosca

is sufficiently high that she will choose to join immediately.

6 Roscas as Decentralized Equilibria

In the previous section, I have shown that it is possible for a hyperbolic discounter to strictly

prefer to remain in a rosca at all times if departure results in being banned from future roscas.

It follows that if all agents in a rosca satisfy the parameter conditions, then no individual has an

ex-post incentive to leave if others choose to stay. In this section, I loosen two assumptions. I

limit the available information about an agent’s past rosca behavior. This places a restriction on

what rosca rules can be conditioned on. I also allow the formation of new roscas in any period.

The rate at which this happens is pinned down by an exogenous probability with which rosca

aspirants get matched into groups of size k.

This gives us two key results. First, while we have seen that neither contracts nor social

sanctions are needed to prevent defection from a rosca, we would like to know how roscas might

survive if there is limited information about agents’ past behavior. I find that, even under

complete anonymity, roscas can survive if the exogenous probability of finding new roscas is

sufficiently low. This follows directly from the commitment value for hyperbolic discounters.

If all agents were exponential discounters, even an infinitesimal probability of finding a higher

rank in a new rosca would create a strict incentive to leave.

Second, the previous section does not provide a reason for random roscas to exist (the greatest
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incentive to defect from random roscas is stronger than for fixed roscas, while ex-ante utilities

are the same). In this section I show that under limited reputation, when matching is fast,

random roscas are more resilient than fixed roscas. Suppose we have "partial reputation"—this

is a case where agents who have left roscas in the middle of past rounds are remembered as

defectors, but agents who leave after completing a round are indistinguishable from all others

(this is reasonable—we are most likely to remember the people who owe us money). This limits

the problem of defection during rounds, but leaves open the possibility that an agent might

wish to leave after completing a round. Now, a particular advantage of random roscas becomes

salient. Since the ordering is re-randomized at the end of each round, no agent has an incentive

to leave a random rosca between rounds. On the other hand, the last-ranked member of a fixed

rosca knows that she will be last-ranked forever. Therefore, she might still wish to leave at the

end of a round, which would keep her reputation intact and allow her to rejoin a new rosca with

a higher expected rank. This gives us conditions under which random roscas are both more

sustainable and more welfare-generating than fixed roscas.17

6.1 Assumptions

I study three reputation environments. Under anonymity, agents’ past behavior is completely

invisible. Under partial reputation, agent’s histories become public to the extent that others

know if they have ever defected from a rosca during a round. This can be thought of as a black

mark that defectors acquire (this is a natural outcome if memory is costly). Finally, under full

reputation, an agent’s entire past rosca behavior is publicly known (strategies can be conditioned

on whether the agent has ever left a rosca). The better the reputation environment is, the easier

it is for roscas to condition strategies on agents’ past behavior, thus increasing the sustainability

and benefits of roscas.

I assume a large, growing population of identical hyperbolic discounters. For analytical

convenience, I restrict the agents to β ∈
¡
β∗, β

¢
. In this region, agents value a rosca and would

not save in autarky (so their actions are limited to rosca-related decisions). Finally, I assume

that in any period, an infinitesimal proportion of the population experiences a shock that leaves

them unable to save from the current period onwards. For the purposes of this exercise, we can

17This distinction between fixed and random roscas survives even if agents are exponential discounters. It
should be possible to extend the results of this section to settings without time-inconsistency (of course, we would
then have to also introduce some exogenous punishment for defection).

21



think of them as becoming fully myopic (β = 0).

6.1.1 Timing and Strategies

I assume there are two rosca "pools"—the pool of agents looking for a new rosca (pool New),

and the pool of agents who wish to fill an open slot in an existing rosca (pool Old). The timing

of the game is as follows. Each period is divided into 5 sub-periods:

a) Agents in existing roscas choose whether to stay (Y ) or leave (N). Agents who are not in a

rosca choose whether to move to Old (by default, they are in New).

b) Each existing rosca (defined as a rosca with at least 1 remaining member) with vacated

slots makes rank-specific offers to agents in pool Old. In pool New, some proportion, p,

of agents are randomly matched into groups of size k. (p is exogenously determined. I

assume this is an index of how easily people are able to find each other and form groups).

c) Agents accept (Y ) or reject (N) offers of membership in roscas (in either pool).

d) New roscas randomly determine the ordering. Existing random roscas randomly determine

the ordering if a new round is starting.

e) Agents in roscas decide whether to stay (Y ) or leave (N).

If any agent leaves a rosca or rejects an offer, she can only re-enter the pool in the following

period. Any rosca that is unable to fill its slots breaks up and agents re-enter the pool in the

following period.

In any period, the following actions are available to agents: those in an existing rosca observe

their state (profile of other members and distance to the next nondivisible) and must choose Y

or N in sub-periods (a) and (e). Agents who are not in a rosca choose whether to move to Old

in sub-period (a). If they receive an offer, they choose Y or N in sub-period (c). Finally, in

sub-period (e), agents can again choose Y or N after learning their rank.

A rosca round starts in sub-period (d) of period 1 and continues for k periods. Then, for

example, under partial reputation, if an agent leaves in subperiod (c) of round 1 (before the

ordering is determined), she does not acquire a reputation as a defector.

A rosca strategy is a decision about how to choose members from pool Old if there is an

opening in the rosca (all members are aware of their rosca strategy). An equilibrium is an
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action associated with each information set (for individuals) and a rosca strategy for each rosca

configuration, such that no agent has an incentive to deviate from her strategy at any information

set.

6.2 Outside Option

The problem of sustainability is directly affected by an agent’s outside option. This is defined

as the expected lifetime utility from leaving a rosca in any period. Especially when available

information is low, an agent might know that she has a realistic chance of leaving a rosca in

which she has a low rank, and re-entering one with a higher expected rank.

Assume all roscas survive forever. Consider an agent in a fixed rosca who is k periods away

from the next nondivisible. Suppose she is free to leave the rosca and re-enter any other rosca

starting in the next period. If she is certain to get a new rosca (p = 1), clearly she prefers to

leave (if not, it would violate the assumption that β > β∗). We would like to find conditions

under which she will not leave her rosca. The agent will have a strict incentive to stay if p < p∗,

where p∗ is defined by:

βδk−1u (b)

1− δk
= u (y) + βδ

⎡
⎣
p∗
³

u(b)
k(1−δ)

´
+ (1− p∗)u (y)

1− (1− p∗) δ

⎤
⎦

⇒ p∗ =
(1− δ)

³
βδk−1u(b)
1−δk

´
− (1− δ + βδ)u (y)

βδu(b)
k(1−δ) −

βδku(b)

1−δk + (δ − βδ)u (y)
(5)

Similarly, consider the first-ranked agent in a random rosca that survives forever. If, by

leaving, she can find a new rosca with some probability p, she will only stay on in her current

rosca for p ≤ p∗ran, where p
∗
ran is given by:

βδk−1
µ

u (b)

k (1− δ)

¶
= u (y) + βδ

⎡
⎣
p∗ran

³
u(b)

k(1−δ)

´
+ (1− p∗ran)u (y)

1− (1− p∗ran) δ

⎤
⎦ (6a)

⇒ p∗ran =
(1− δ)

³
βδk−1u(b)
k(1−δ)

´
− (1− δ + βδ)u (y)

βδu(b)
k(1−δ) −

βδku(b)
k(1−δ) + (δ − βδ)u (y)

It follows that p∗ran < p∗. In other words, to ensure that no one has an incentive to leave, the

probability of forming new roscas needs to be relatively lower in a setting with random roscas.
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6.3 Fixed Roscas

6.3.1 Anonymity

Here, I assume that strategies cannot be conditioned on any aspect of an agent’s past behavior.

If there is an opening in a rosca, the rosca simply decides whether to make an arbitrary offer

to a person in the pool. Similarly, an agent has no information about the other members’ past

rosca experience.

First, consider fixed roscas. We can see that if p is low enough, there are equilibria with

roscas surviving over time. Without such limits on p, every agent will have an incentive to leave

her rosca immediately after receiving the nondivisible—she can consume her income today and

join a new rosca in the next period.

Proposition 8 Assume complete anonymity. Consider p∗ as defined in Equation 5. Then,

strategies in which agents always stay in fixed roscas constitute an equilibrium only when p ≤ p∗.

Proof. Suppose p ≤ p∗. Consider the following strategy: Agents in roscas, or with rosca offers,

always play Y ; agents outside roscas always enter New; roscas with openings randomly make

offers from Old. Then, by definition of p∗, the outside option from defection is sufficiently small

that the agent who is k periods away from the next nondivisible prefers to remain in the rosca.

Therefore, every group of k agents who are lucky enough to form a rosca will never separate.

Suppose p > p∗. By the definition of p∗, a rosca cannot survive forever in equilibrium: if

all agents have a strategy of never leaving a rosca, then any individual who has just received a

nondivisible has a strict incentive to deviate.

6.3.2 Partial Reputation

Under partial reputation, an agent develops a bad reputation if she has left during any round,

which is defined as starting in the sub-period in which the ordering is randomized in period 1,

and ending after round k (and continuing every k periods after that).

Now, the problems associated with anonymity are alleviated to some extent. It is possible

for agents to have strategies where they refuse to join roscas with people who have left during

a past round (believing that anyone who has done so is now a β = 0 type). However, such

strategies cannot stop the last-ranked member of a fixed rosca from leaving at the end of a
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round. Since she cannot be distinguished from those who have never been in a rosca, she will

have an incentive to join a new rosca if p is high enough.

Proposition 9 Assume partial reputation. Consider p∗ as defined in Equation 5. Then, strate-

gies in which agents always stay in fixed roscas constitute an equilibrium only when p ≤ p∗.

Proof. (1) Assume p ≤ p∗. Then, agents can play the same equilibrium strategy as under

anonymity.

(2) Assume p > p∗. Roscas cannot last forever with the same membership. Since there is no

strategy that can be conditioned on whether an agent left at the end of a round, the last ranked

player has a strict incentive to leave after a round if she knows that, in the future, all agents

will stay in a rosca forever.

6.3.3 Full Reputation

In this section, I assume that strategies can be conditioned on whether an agent has left a rosca

in the past, and if so, at what stage of a round she left. Here, fixed roscas can be sustained even

with p = 1. Consider the following beliefs: Any agent who has ever left a past rosca is now a

β = 0 type. Consider the following strategies: a rosca with open slots accepts any people who

have never left a rosca before; agents outside roscas remain in New; agents in roscas or with

rosca offers always play Y unless there is a β = 0 type in the group. Since any agent who leaves

a rosca must play autarky, we know that no agent will leave. The strategies described are an

equilibrium, and the beliefs are justified.

6.4 Random Roscas

Following the arguments above, we can see that under full reputation and anonymity, the set

of parameter values (β, p) at which there is no defection from random roscas is a subset of the

values at which there is no defection from fixed roscas. Under full reputation, both random and

fixed roscas will survive at any p, but this happens for a larger set of β-values in the case of

fixed roscas. Under anonymity, since p∗ran < p∗ and β∗ran > β∗, random roscas will survive over

both a larger set of β-values and a larger set of matching probabilities.

However, with partial reputation, when p is high, I find that random roscas can survive

forever even when fixed roscas cannot. The intuition for this result is the following. When
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p > p∗, there cannot be a fixed rosca in which all agents stay forever, because the last ranked

member would have an incentive to leave. However, there is no such incentive to leave a random

rosca between rounds. Therefore, if β is high enough so that agents within the rosca prefer to

stay rather than play autarky, then random roscas will survive forever, and any agent’s expected

value from a rosca will be higher than it would be under fixed roscas (see Figure 3 in Section 7).

Proposition 10 Assume partial reputation. If β > β∗ran (as defined in Equation 4), then

random roscas can survive forever in equilibrium. If, in addition, p > p∗, then random roscas

are strictly welfare improving relative to fixed roscas.

Proof. Consider the following beliefs: any agent who has left a rosca during a past round has

β = 0. Consider the following strategies: a rosca with open slots accepts any people who have

never left a past rosca; individuals outside roscas enter New; agents in roscas or with rosca offers

play Y only if the other members have never left a past rosca.

Suppose there is an equilibrium with random roscas. It must be the case that the first-ranked

agent always prefers to remain in the rosca:

βδk−1u (b)
(1− δ) k

> u (y) +
βδu (y)

1− δ

⇒ β > β∗ran

If this condition is satisfied, then random roscas will exist forever for any value of p.

Now suppose p > p∗. Then, the expected value for any agent entering a rosca is: u(b)
k

³
1 + βδ

1−δ

´
.

If fixed roscas survived forever, this would be identical to the expected value from fixed roscas.

Since there is no such equilibrium, the expected value from fixed roscas must be lower.

These results are discussed further in the next section.

7 Empirical Implications

I now study how the results in previous sections can be related to our empirical understanding

of roscas. My focus is on implications that directly related to quasi-hyperbolic discounting,
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including (1) comparative statics generated by the model, (2) predictions about the survival of

random and fixed roscas, and (3) comparisons between durable and nondurable goods.

If hyperbolic discounting is indeed a primary explanation of rosca participation, then this

model predicts that members of long-lasting roscas will exhibit intermediate levels of time-

inconsistency. The actual size of the β-region within which roscas survive depends on several

parameter values. All else equal, roscas are more likely to survive as the nondivisible gets more

expensive relative to income. Also, roscas are more likely to survive as the utility from small

units of consumption increases relative to the utility from the nondivisible (up to the point where

the nondivisible is no longer valued even by exponential discounters).

In the previous section, we have seen how it is possible for roscas to survive in decentralized

settings. The defection incentive in these cases is created by the option value of a higher rank in

a new rosca. In environments that are completely anonymous, fixed roscas can survive forever

only if matching for new roscas is sufficiently low. When there is some reputation, fixed roscas

again survive when matching is sufficiently slow, but random roscas can be welfare-improving

when matching probabilities are high. When roscas can access more information about an

agent’s past rosca behavior, equilibria with repeating fixed roscas can exist even under perfect

matching (see Figure 3).

This gives us some testable predictions. If we conjecture that the likelihood of matching is

positively correlated with population density, then p rises as communities get urbanized. When

reputation is informal, the availability of information is likely to be inversely correlated with

urbanization (full reputation is a feature of very small rural communities, while urban areas

are more anonymous). Then, the model predicts that fixed roscas are more likely than random

roscas at fully rural and fully urban extremes. In semi-rural communities, we are more likely to

encounter conditions suited to the survival of random roscas.18

The Anderson, Baland (2002) study, set in an urban neighborhood, finds that a majority of

roscas are fixed. The Gugerty (2005) study, set in rural Kenya, finds that a majority of roscas

are random. These patterns appear consistent with my predictions, but we would require more

information for an accurate analysis.

In this model, as in some earlier models, I describe the nondivisible good as yielding a one-

18Anderson, Baland, and Moene (2003) make predictions about participation in random and fixed roscas un-
der individual heterogeneity. An approach that integrates their predictions with mine is probably feasible and
potentially useful.
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Figure 3: Partial Reputation (p is the exogenous probability of matching into new rosca groups;
assume p∗ran is close to p

∗): In region A, only fixed roscas can survive forever. In region B, fixed
and random roscas can survive forever. In region C, no roscas survive forever (if any roscas
exist, they must be fixed). In region D, random roscas are more likely to survive, and provide
higher welfare than any fixed rosca equilibrium.

period benefit. This is not an unreasonable assumption, since there is a range of empirical

evidence suggesting that rosca members do not spend the money on durable goods. However,

it is useful to identify implications for rosca survival if they save for durable goods instead.

When benefits are spread across multiple periods, agents might place less value on immediate

consumption. This has two implications. First, as the good becomes more durable, agents are

more likely to postpone entry into roscas. Second, once an agent is actually in a rosca, the

conditions under which roscas survive will expand. Since the benefit from a potentially higher

rank in a new rosca is dampened, agents are more willing to remain in an existing rosca than

they would if they were purchasing nondurables. This implies that, as goods get more durable,

individuals may choose to delay entry into roscas but existing roscas are more likely to survive

over time.
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8 Conclusion

I have shown that roscas can be effective commitment savings devices even without the threat

of social sanctions. Agents with self-control problems derive benefits from staying in a rosca

and improving their savings behavior. A particularly useful feature of roscas is that hyperbolic

discounters have no incentive to postpone take-up. Unlike other commitment savings devices

that yield delayed benefits, roscas always come with the possibility that an agent might be an

instant winner. The randomization of rank and subsequent commitment play complementary

roles—the first draws an agent into a rosca, and the second gives her a reason to stay.

In this paper, I also highlight the relative advantages of fixed and random roscas. Within a

round, agents in random roscas have a weaker incentive to stay than they would in fixed roscas.

However, between rounds, agents in random roscas never have an incentive to leave, while late

ranked agents in fixed roscas might prefer to leave if they can join a new rosca. Empirically,

both random and fixed roscas exist in large numbers. I make predictions about the survival of

each, based on the depth of reputation and the speed of matching in a community.

This paper gives us several directions for further research. Models that allow for heterogenous

populations (with varying time preferences and saving objectives) are likely to alter the size

and structure of roscas and conditions under which they survive in the absence of contracting.

Additional insights might also be gained from endogenizing the matching speed (p) as described

in Section 6. Also, there is scope for testing the predictions of the model, especially if convincing

measures of time-inconsistency, reputation, and matching speed can be constructed.

However, the overall idea of roscas as commitment savings devices in environments with poor

contracting seems to be realistic, and helps explain their resilience across the developing world.

9 Appendix

A Proofs for Section 4

Proof of Lemma 1. Suppose not. If at wealth w the agent saves s with positive probability,

it means:

u (w − s) + βδV (s+ y) ≥ u
¡
w − s0

¢
+ βδV

¡
s0 + y

¢
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Now, if at wealth w0 > w the agent saves s0 with positive probability, it means:

u
¡
w0 − s

¢
+ βδV (s+ y) ≤ u

¡
w0 − s0

¢
+ βδV

¡
s0 + y

¢

This implies that:

u
¡
w − s0

¢
− u (w − s) ≤ u

¡
w0 − s0

¢
− u

¡
w0 − s

¢

This violates strict concavity of u.

Proof of Lemma 2. Step 1:

Since πAy (y) > 0, we know that:

u (y) + βδV A (y) ≤ βδV A (2y) (7)

Since πBy (y) < 1, we know that:

u (y) + βδV B (y) ≥ βδV B (2y) (8)

By definition, we know the following is true for α = A,B:

Vα (y) = παy (y) [δVα (2y)] +
£
1− παy (y)

¤
[u (y) + δVα (y)] (9)

Vα (y) =
παy (y) [δVα (2y)] +

£
1− παy (y)

¤
u (y)

1−
£
1− παy (y)

¤
δ

Combining Equation 9 with Inequalities 7 and 8, respectively, we get:

βδ (1− δ)VA (2y) ≥ u (y)
£
1− δ + δπAy (y) (1− β)

¤
+ βu (y)

βδ (1− δ)VB (2y) ≤ u (y)
£
1− δ + δπBy (y) (1− β)

¤
+ βu (y)

Therefore:

VA (2y) ≥ VB (2y) (10)

Step 2:

(a) Suppose πBy (y) = 0. Then, VB (y) =
u(y)
1−δ . Also, by Inequality 7, we know that δV

A (2y) >

u (y)+ δV A (y). Then, by Equation 9, we know that VA (y) > u (y)+ δVα (y)⇒ VA (y) >
u(y)
1−δ =
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VB (y).

(b) Suppose 1 > πAy (y) ≥ πBy (y) > 0. Then, by Inequalities 7 and 8 and Inequality 10, we

know that VA (y) ≥ VB (y).

(c) Suppose πAy (y) = 1 and πBy (y) > 0. Then, VA (y) = δVA (2y). By Inequality, 8 we

know that δVB (2y) > u (y) + δVB (y). Then, by Equation 9, VB (y) < δVB (2y). So, by 10,

VA (y) > VB (y).

Therefore:

VA (y) ≥ VB (y)

Step 3:

Suppose there is some w̄ such that, for all w ≤ w̄ < ky, VA (w) ≥ VB (w). Then, I show that

VA (w̄ + y) ≥ VB (w̄ + y).

Suppose not. Then, VB (w̄ + y) > VA (w̄ + y). Since πAy (y) > 0, it must be true that

πAi (i) > 0 for all y ≤ i ≤ (k − 1) y. Then, βδVA (w̄ + y) ≥ u (j) + βδVA (w̄ + y − j) for all

y ≤ j ≤ w̄. It follows from our assumptions that βδVB (w̄ + y) > u (j) + βδVB (w̄ + y − j) for

all y ≤ j ≤ w̄. This means that at state w̄, the agent playing equilibrium B strictly prefers

to save w̄ over all other options. So VB (w̄) = δVB (w̄ + y). But VA (w̄) ≤ δVA (w̄ + y). So

VA (w̄) < VB (w̄). This contradicts our assumption.

The lemma is proved.

Proof of Lemma 3. Following Step 1 of the previous lemma, this means that VA (w̄ + y) >

VB (w̄ + y). Following Step 2 of the previous lemma, VA (w̄) > VB (w̄). By equation 9 and

given that πAw (w) = πBw (w) for w < w̄, we know that VA (w̄ − y) > VB (w̄ − y). Repeating this

argument, we see that VA (w) > VB (w) for all w ≤ w̄ + y. Following Step 3 of the previous

lemma, VA (w) > VB (w) for all w.

Proof of Proposition 1. At least one Markov Perfect Equilibrium exists (Fudenberg and

Tirole, 1991). Lemmas 2 and 3 give us a complete and transitive ordering over any set of

equilibria.

For Proposition 3, I simplify the notation in the following manner: for any wealth level w,

πw (w) is rewritten as πw. This implicitly implies that πw (w − y) = 1−πw (since agents playing

mixed strategy equilibria will not save less).
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Proof of Proposition 3. This can be proved by applying the following algorithm to construct
©
β1, β2, ..., βk−1

ª
.

Step 1:

By construction:

u (y) + β̄δV (y; 1, 1, ..., 1) = β̄δV (2y; 1, 1, ..., 1)

And by concavity of V (Lemma 4):

u (y) + β̄δV (iy; 1, 1, ..., 1) > β̄δV ((i+ 1) y; 1, 1, ..., 1) , for i ≥ 2

Consider strategies π = (π1 (β) , 1, 1, .., 1) for β < β̄, where 0 ≤ π1 < 1. Then, by definition:

V (y;π) =
π1δV (2y;π) + (1− π1)u (y)

1− (1− π1) δ

V (2y;π) = δk−2u (b) + δk−1V (y;π)

So:

V (y;π) =
π1δ

k−1u (b) + (1− π1)u (y)

1− (1− π1) δ − π1δ
k

It can be verified that, if the nondivisible is good, ∂V (y;π)∂π1
> ∂V (2y;π)

∂π1
> 0.

For this strategy to be an equilibrium, the following must be true: (a) wealth y is indifferent

between saving and not saving, and (b) wealth 2y and above strictly prefer to save. Wealth y’s

indifference condition is:

u (y) + βδV (y;π) = βδV (2y;π)

⇒ u (y) + βδV (y;π) = βδk−1u (b) + βδkV (y;π)

⇒ V (y;π) =
δk−1u (b)

δ − δk
− u (y)

β
¡
δ − δk

¢

Clearly, ∂V (y;π)∂β > 0. Then, for β < β̄, the indifference condition and the definition of V (y;π)
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yield a probability π1 (β). Define β as the lowest value of β at which indifference holds:

u (y) + βδV (y; 0, 1, 1, ..., 1) = βδV (2y; 0, 1, 1, ..., 1)

⇒ β

Ã

δk−1u (b) +
δku (y)

1− δ

!

= u (y) + βδ
u (y)

1− δ

⇒ β =
u (y)

δk−1u (b)− (δ−δk)u(y)
1−δ

(11)

Now, we must verify that this strategy is indeed optimal at higher levels of wealth. By

concavity of V , we know that 2y strictly prefers to save if β = β̄. For lower levels of β, π1 (β)

determines V (2y;π) and V (3y;π), each of which is continuous and increasing in π1. Suppose,

at β = β,

u (y) + βδV (2y;π) ≤ βδV (3y;π)

Then, β1 = β2 = ... = βk−1 = β. Optimal equilibria across the entire parameter region have

been characterized.

Suppose, at β = β,

u (y) + βδV (2y;π) > βδV (3y;π)

Then, since ∂V (3y;π)
∂π1

> ∂V (2y;π)
∂π1

> 0 and V (3y;π) > V (2y;π), there must be a unique β1,

β < β1 < β̄, such that

u (y) + β1δV (2y;π) = β1δV (3y;π)

Below β1, wealth 2 is no longer willing to save fully.

We have now fully characterized the optimal equilibrium for β1 ≤ β ≤ β̄. In this region,

wealth levels 2 and above save fully. This maximizes the incentive of wealth y to save, so the

equilibrium described above is indeed optimal.

Step 2:

Now, consider the case where β < β1 < β̄. Then, there will be some β2 such that, for

β ∈ [β2, β1), wealth y and 2y will play mixed strategies while all higher levels of wealth will

save. So we are considering strategies of the following form: π = (π1 (β) , π2 (β) , 1, 1, ..., 1).
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The indifference conditions are:

u (y) + βδV (y;π) = βδV (2y;π)

u (y) + βδV (2y;π) = βδV (3y;π)

This yields:

V (y;π) =
δk−2u (b)

δ − δk−1
− 2u (y)

β
¡
δ − δk−1

¢ (12)

V (2y;π) =
δk−2u (b)

δ − δk−1
− u (y)

β

"
2

¡
δ − δk−1

¢ − 1
δ

#

(13)

Again, ∂V (y;π)
∂β , ∂V (2y;π)∂β > 0

By definition:

V (y;π) =
π1δV (2y;π) + (1− π1)u (y)

1− (1− π1) δ
(14)

V (2y;π) =
π2δV (3y;π) + (1− π1)u (y)

1− (1− π1) δ
(15)

V (3y) = δk−3u (b) + δk−2V (y;π) (16)

Substituting from equation 13 in equation 14, we get the function π1 (β) that satisfies

π01 (β) > 0. Substituting from equation 12 in equation 16, and further substituting in equa-

tion 15, we get the function π2 (β) with π02 (β) > 0. Note that wealth y’s indifference condition

implies that it can never be the case that π1 > 0 and π2 = 0.

Again, following the arguments of step 1, β2 is defined by the higher of π1 (β) = 0, and:

u (y) + βδV (3y;π) = βδV (4y;π)

If the first is true, then β2 = β3 = ... = βk−1. If not, repeat the steps above as described in

general below.

Step 3:

Suppose we have found βn. For β < βn, consider π = (π1 (β) , π2 (β) , ..., πn+1 (β) , 1, 1, ..., 1).
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Indifference conditions, for all i ≤ n+ 1, are:

u (y) + βδV (iy;π) = βδV ((1 + 1) y;π)

By definition, for all i ≤ n+ 1:

V (iy;π) =
πiδV ((i+ 1) y;π) + (1− πi)u (y)

1− (1− πi) δ
(17)

And:

V ((n+ 2) y;π) = δk−n−2u (b) + δk−n−1V (y;π)

Substituting from the indifference conditions into Equations 17 yields functions πi (β) for all

i ≤ n+ 1. βn+1 is defined by the higher of π1 (β) = 0 and:

u (y) + βδV ((n+ 2) y;π) = βδV ((n+ 3) y;π)

If the former is true, then βn+1 = βn+2 = ... = βk−1. If not, repeat this step.

Proof of Proposition 4. (1) By Step 1 of Proposition 3, we know that if full saving is

sustainable at wealth higher than y, then β = β. Therefore, β must be a lower bound on β

because, at β < β, the agent at y will never save.

(2) Take any β0 ∈ [β, β̄) such that there is a saving equilibrium at β0. Then, there must be a

saving equilibrium at all β00 > β0, since, given strategies at other states, each agent has a strictly

greater incentive to save at β00 than at β0 (from Proposition 3).

B Example for Section 4.4

Suppose the nondivisible costs 3y. Then a full saving equilibrium exists as long as the agent at

y strictly prefers to save fully:

βδ2u (b)

1− δ3
> u (y) +

βδ3u (b)

1− δ3

35



Once β falls low enough so that the above condition fails, the agent at y can start playing a

mixed strategy, which must satisfy:

βδ2u (b) + βδ3V (y) = u (y) + βδV (y)

The RHS responds faster to πy (y) than the LHS does. If the agent at 2y continues to save fully,

the agent at y can be kept indifferent down to some
³
β̂, 0

´
, which in this case corresponds to:

β̂δ2u (b) +
β̂δ3u (y)

1− δ
= u (y) +

β̂δu (y)

1− δ

⇒ β̂ =
u (y)

δ [δu (b)− (1 + δ)u (y)]

If the agent at 2y is still willing to save fully at the
³
β̂, 0

´
combination, then the following

condition must hold:

β̂δu (b) +
β̂δ2u (y)

1− δ
≥ u (y) + β̂δ2u (b) +

β̂δ3u (y)

1− δ

⇒ β̂ ≥ u (y)

δ [(1− δ)u (b) + δu (y)]

For both of these conditions to be simultaneously satisfied, we must satisfy:

(1− δ)u (b) + δu (y) ≥ δu (b)− (1 + δ)u (y)

⇒ (1 + 2δ)u (y) ≥ (2δ − 1)u (b)

which is only true if δ is sufficiently small, or if u (y) is sufficiently large relative to u (b).

C Mixed Strategy Equilibria

I show that the utility from autarky (from the point of view of the agent at wealth y) is weakly

concave over [β, β̄]. Take β ∈
¡
βi, βi−1

¢
. Recall that this is a region in which agents at wealth

iy and below play a mixed strategy. Since they are all indifferent, we know that for j ≤ i:

u (y) + βδV (jy) = βδV (jy + y)
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and for j > i:

V (jy) = δk−ju (b) + δk−j+1V (y)

Combining these, we get:

V (y) =
δk−iu (b)

1− δk−i+1

which means that the lifetime utility at wealth y is: β δk−iu(b)
1−δk−i −

iu(y)

1−δk−i . Since i is weakly

decreasing in β and δk−iu(b)
1−δk−i is strictly increasing in i, lifetime utility is less responsive to β as β

rises; i.e. it is weakly concave.

D The k = 2 Case

I solve an example in which k = 2. First, I provide explicit solutions for all key terms. Then, I

make specific assumptions about δ, u (y), and u (b), and graph the resulting values.

Here, β̄ =
¡
1+δ
δ

¢ u(y)
u(b) and β = β = 1

δ
u(y)

u(b)−u(y) . For β ∈
¡
β, β̄

¢
, the agent plays a mixed

strategy, where she saves with probability π at wealth y. The mixed strategy satisfies the

indifference condition:

βδu (b) + βδ2V = u (y) + βδV

⇒ V =
βδu (b)− u (y)

βδ − βδ2

V is also given by,

V =
πδu (b) + (1− π)u (y)

(1− δ) (1 + πδ)

where

π =
β

1 + β

u (b)

u (y)
− 1 + βδ

δ + βδ

Then, in autarky, the agent’s utilities from equilibrium (at wealth y) are given by:
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βδu (b)

1− δ2
, for β ≥ β̄

u (y) +

∙
βδu (b)− u (y)

1− δ

¸
, for β ∈

¡
β, β̄

¢

u (y) +
βδu (y)

1− δ
, for β ≤ β

Now I look at roscas. The lower bound of the region in which the agent always prefers a

fixed rosca is:

β∗ =

¡
1− δ2

¢
u (y)

δu (b)− (1 + δ) δu (y)

In the region with no autarky saving, the agent always strictly prefers a random rosca if:

βδu (b)

2 (1− δ)
> u (y) +

βδu (y)

1− δ

This determines β∗ran (assuming δ is high enough):

β∗ran =
2 (1− δ)u (y)

δ (u (b)− 2u (y))

In the region with partial saving in autarky, the agent always strictly prefers a random rosca

if:

βδu (b)

2 (1− δ)
> u (y) +

∙
βδu (b)− u (y)

1− δ

¸

This determines β̄ran:

β̄ran = 2

µ
u (y)

u (b)

¶

Finally, under anonymity and partial reputation, fixed roscas survive forever if p < p∗, where:

p∗ =
(1− δ)

³
βδu(b)

1−δ2
´
− (1− δ + βδ)u (y)

βδu(b)
2(1−δ) −

βδ2u(b)

1−δ2 + (δ − βδ)u (y)

Let us assume that δ = .95, u (y) = 1, u (b) = 2.5. This ensures that the nondivisible is

desirable to an exponential discounter. Then, β̄ = 0.821, β = 0.702, β∗ = 0.187. The lifetime
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utilities from equilibrium (at wealth y) are:

24.359β, for β ≥ β̄

47.5β − 19, for β ∈
¡
β, β̄

¢

19β + 1, for β ≤ β

The agent will always strictly prefer to stay in a random rosca if β ∈
¡
β∗ran, β̄ran

¢
= (0.211, 0.8).

(See Figure 4 for a graphical summary of these results.)

Under the assumptions above, p∗ = .05−.268β
.341β−.95 . In Figure 5, I plot p

∗ as a function of β.

E Approximations of Critical Values

To see how the critical β values relate to each other, I take first-order approximations for δ close

to 1. Let δ = 1 − ε, where ε is very close to 0. The comparative statics suggested by these

approximations are discussed in Section 7.

β̄ =
1− δk

δk−1 − δk

µ
u (y)

u (b)

¶
=

1− (1− ε)k

(1− ε)k−1 − (1− ε)k

µ
u (y)

u (b)

¶

→ k

µ
u (y)

u (b)

¶

β =
u (y) (1− δ)

(1− δ) δk−1u (b)− δu (y)
¡
1− δk−1

¢

=
u (y) (1− (1− ε))

(1− (1− ε)) (1− ε)k−1 u (b)− (1− ε)u (y)
³
1− (1− ε)k−1

´

→ u (y)

u (b)− (k − 1)u (y) > 0

β∗ =

¡
1− δk

¢
(1− δ)u (y)

¡
δk−1 − δk

¢
u (b)−

¡
δ − δk+1

¢
u (y)

=

³
1− (1− ε)k

´
(1− (1− ε))u (y)

³
(1− ε)k−1 − (1− ε)k

´
u (b)−

³
(1− ε)− (1− ε)k+1

´
u (y)

→ 0
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ran

∗ ̄ran

utility from fixed rosca

utility from random rosca

Autarky utility


̄∗

Figure 4: The lowest utility from a random rosca is lower than the lowest utility from a fixed
rosca. The region in which a random rosca survives is smaller than the region in which a fixed
rosca survives.

0.3 0.4 0.5 0.6 0.7

-0.1

0.0

0.1

0.2

x

y

Figure 5: The x axis spans the relevant β-range. The y axis shows the corresponding value of
p∗.
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