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Abstract

Why do individuals borrow and save money at the same time? I present a model in

which sophisticated time-inconsistent agents, when faced with a future investment opportu-

nity, rationally choose to save their wealth and then borrow to fund the investment. The

combination of savings and a loan generates incentives for future selves to invest optimally

by punishing over-consumption. This paper contains two main results. First, I show that

agents who simultaneously save and borrow can have higher lifetime welfare than those who

don’t. Second, I show that agents who have access to a non-secure savings technology can

be better off than those who only have access to secure savings.

∗Contact: karna@uchicago.edu. For comments and suggestions, I thank Abhijit Banerjee, Gary Becker, Xavier
Gabaix, John List, Jonathan Morduch, Sendhil Mullainathan, and participants of the Microeconomics Workshop
at the University of Chicago Graduate School of Business. I have also benefited from discussions with Dean
Karlan, who initially proposed the problem tackled in this paper.
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1 Introduction

Why would an individual simultaneously save and borrow when the interest rate on saving is

no higher than on borrowing? There are a number of economic explanations for such behavior .

Traditional theories usually rely on the option value of savings — under risky conditions, an agent

might maintain savings for use in case of an emergency (if, for example, there are transaction

costs of taking a loan on short notice, or if bankruptcy laws don’t require the agent to repay

a loan even if there are assets in the bank). Behavioral explanations, most notably Laibson,

Repetto and Tobacman (2001), focus on illiquid savings as a self-control device. Agents lock

assets for future consumption while smoothing short-term consumption with high-interest credit

card debt.

This paper is motivated by the environment and experience of microfinance institutions

(MFIs). Morduch and Armendariz (2005) describe how one of the principle innovations of

modern microfinance has been the introduction of savings technologies. Clients of microfinance

are commonly encouraged to maintain savings accounts with the MFI, which can serve as a

source of secondary loans for other clients. There is evidence that some borrowers save more

than is required by the MFI (or necessary to secure access to future loans). Examples of this

phenomenon can be found in Peru (Karlan, 2007), Bangladesh (Dehejia, Montgomery, and

Morduch, 2005), and Cameroon (Baland, Guirkinger, and Mali, 2007). In Baland, Guirkinger,

and Mali’s (2007) data from Cameroon, savings exceed loan size for 20% of the loans. They

present a model in which individuals save and borrow to disguise their wealth in the face of

social pressures to donate.

In this paper, I propose an alternative explanation for simultaneous saving and borrowing.

While this model is not intended to capture every motivation behind an individual’s decision

to save with and borrow from an MFI, it highlights an unexplored mechanism that can help us

understand some of this behavior. As in Laibson, Repetto and Tobacman (2001), agents have

time-inconsistent preferences, but savings serve a different purpose. I exploit the possibility

that savings accounts are not entirely secure. This is a reasonable assumption in settings where

clients’ savings are distributed as secondary loans.1 I show that individuals might value the

uncertainty associated with savings, as this allows them to generate threats that improve the

behavior of future selves. When faced with a future investment opportunity, an agent can create

1This is indeed the case with FINCA in Peru (Karlan, 2007).
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incentives to invest by simultaneously saving and borrowing. The risk associated with saving

can no longer be interpreted as an effective reduction in the interest rate; rather, it serves to

magnify the penalties associated with failing to invest. This also suggests that the presence of

a few unreliable borrowers can prove beneficial to others.

The implications of this model are not limited to microfinance, and I hope to make some

points about commitment devices in general. A commitment device is a technology that allows

an individual to restrict her future choice set or alter rewards and punishments associated with

future decisions. This could, for example, take the form of a contract that stipulates future

investment or a deadline for the completion of a costly task. Such technologies might be valued

by a time-inconsistent agent because they encourage her future selves to make those decisions

that maximize her long-run welfare.2 An interesting implication of the model is that, even when

explicit commitment is unavailable, its effects can be replicated if individuals have access to a

non-secure savings instrument. In this context, what appears to be an irrational destruction of

wealth is in fact the price of the commitment device.

This paper is outlined as follows. Section 2 provides an intuitive description of the model

in the context of related literature. Section 3 covers the main results. Section 4 contains a

discussion of comparative statics generated by the model. Section 5 concludes.

2 Description of the Model

In this section, I describe some of the intuition of the model. The goal of the model is to

explain an individual’s decision to make a savings and borrowing decision at the same time and

in the same bank. I consider a banking structure that is broadly consistent with microfinance.

Individuals can borrow money, which must be repaid by the end of a cycle. During this cycle,

they can also save with the bank (at the same interest rate as borrowing). Savings remain

illiquid until the end of the cycle, but can be used to repay the loan at the end. However, there

is a small risk that agents who save with the bank will fail to get their deposits back.3

The possibility that savings are maintained for their option value is unlikely for two reasons.

First, since the lender organization is the same as the borrower, it is not possible for an agent to

2"Welfare" is not a well-defined concept when agents have time-inconsistent preferences. I follow O’Donoghue
and Rabin (1999), who evaluate welfare as the utility the agent would enjoy if she were a time-consistent agent.

3To be more precise, the agent perceives a risk that her savings will not mature. Alternatively, we could
assume that there is a risk of delay in repayment (instead of complete default).
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default on a loan while still having access to her savings in the case of a negative shock. Second,

savings are illiquid during a loan cycle. Then, if an agent has a sudden need for liquidity, it is

not clear that it is easier for her to access her savings than it is to simply take out a fresh loan

from the bank. Since alternative banking services are very limited, it is unlikely that a savings

account with an MFI would be useful as collateral for other banks.

I also suggest that, unlike in Laibson, Repetto and Tobacman (2001), agents are not using

savings for their illiquidity. In their model, agents save to ensure adequate consumption in the

distant future, and take out high-interest loans if they suffer negative income shocks. However,

in our context, while savings are not liquid within a loan cycle, they can nevertheless be used

to pay back loans at the end of a cycle. Also, agents make the decision to maintain debt and

savings simultaneously, so the loans are not a response to an unanticipated shock.

In the following model, the agent is a quasi-hyperbolic discounter who has the opportunity

to make an investment in the middle of her life.4 While her early selves would like her to invest,

she is unwilling to make the sacrifice when the opportunity presents itself. If this was simply

a problem of over-consumption due to time-inconsistent preferences, the young agent would try

to lock some of her wealth in an illiquid account (which would mature later in life). However, in

this case, such an action can have adverse effects: first, this reduces future incentives to invest;

and second, it reduces future ability to invest (if investment requires a large amount of liquid

cash). The young agent’s goal is to leave enough liquid assets for future investment while also

creating an incentive to invest. I find that, in some cases, this can be done optimally by saving

in the bank while also borrowing from it. Borrowing ensures that the agent has enough money

to invest in the future. Saving creates the incentive to do so.

Saving, apart from the potential interest earned, is also a source of uncertainty. If the agent

saves her assets in the bank while leaving borrowed money for her future self, that self must

decide whether to (a) indulge her present-biased preferences and consume, or (b) consume less

and invest. If the money was not borrowed (or if savings were entirely secure), she might choose

to indulge. Now, however, indulgence becomes more costly. Since it is possible that her savings

will not mature in the future, she risks defaulting on her own loans if she over-consumes today.

On the other hand, if she invests, she is insuring herself against the small possibility that her

savings will not mature in the future. If the punishment for default is sufficiently high, she will

4 In particular, I focus on forms of investment that can plausibly be construed as safe, such as inventory or
working capital.
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choose to invest.

The young agent is effectively paying (by simultaneously saving and borrowing) for a com-

mitment device. This commitment device generates costly punishments for "bad" behavior,

thus ensuring that her future selves invest optimally. As long as savings are sufficiently (but not

fully) secure, the cost of this commitment device is low enough to justify its use.

3 Model

3.1 Assumptions

There is one individual who lives for 3 periods. As shown in the timeline below, there is no

consumption in period 0 but banking decisions must be made at this time. In period 1, the

agent can consume but also has the opportunity to invest. In period 2, savings mature, loans

are repaid, and the agent consumes her remaining assets.

t

210

Banking decision Investment decision

Saving decision

Consumption decision

Consumption

Loan repayment

Figure 1: Timeline

The agent has an endowment w in period 0. The price of investment is p < w, and the

monetary benefit of investment is b > p. Let g = b−p denote the net benefit of investment. The

agent has a strictly concave per-period utility function u (·). She is a quasi-hyperbolic discounter

with δ = 1 (the exponential discount factor) and 0 < β ≤ 1 (the hyperbolic discount factor).

Following convention, I treat the individual as three independent time-indexed agents: agent 0,

agent 1, and agent 2. Then, agent 0’s discounted utility is V = u (c1) + u (c2) while agent 1’s

discounted utility is U = u (c1)+βu (c2). This automatically implies that the optimal plan from

agent 1’s perspective deviates from agent 0’s optimal plan.

If banking services are used, savings takes place at an exogenous interest rate r (R ≡ 1+ r),

such that x in period 0 yields Rx in period 2. If an agent saves with the bank, the savings

disappear with some probability ε > 0. This can be interpreted as a natural outcome of intra-

group saving — if information is imperfect and there are some unreliable borrowers in a group,
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there is a possibility that my savings will never mature. She also has the option of saving at

home (these savings are fully secure, fully liquid, and earn no interest).

The agent can borrow from the bank at the same interest rate, r. The largest allowed loan

is denoted lmax.5 If she does not repay her loan in full, her assets (amounts saved privately and

in the bank) are seized and she faces an additional utility loss of F . This can be interpreted

as social sanctions or the cost of restricted access to future banking services. I assume that F

is large enough that it is always worth reducing consumption to avoid a risk of future default.6

Formally, for a given ε: u (Rlmax)− u (0) < βεF .7

I use the following notation in the paper: c is the amount consumed in period 1, s is the

amount saved with the bank in period 0, and l is the amount borrowed from the bank in period

0. Any amount neither saved in the bank nor consumed is automatically sent to the next period.

Finally, I apply the following tie-breaking rule: when the agent is indifferent between investing

and not investing, she always chooses to invest.

In the following sections, I use backward induction to solve for the Subgame Perfect Nash

Equilibrium under different settings. In each period, the agent observes state variables (assets

in each account), and makes an investment/consumption/savings decision based on the options

available to her.

3.2 No Investment Opportunity

It is useful to first study the agent’s behavior in the absence of the investment opportunity. If

she does not have access to the bank, there is no action available to agent 0. Therefore, agent

1 will simply choose her consumption level to equalize discounted marginal utilities.

max
0≤c≤w

u (c) + βu (w − c)

Agent 1 will choose c to satisfy u0 (c) = βu0 (w − c) (or the corner solution, c = w).

5Let lmax > 2w + g. This ensures that the maximum loan size will not pose a constraint in the analysis that
follows.

6F does not have to constitute an explicit punishment. Basu (2008) shows that the threat of being banned
from access to future loans can be sufficient to ensure that an agent always repays.

7 I also conjecture that, with appropriate assumptions on the concavity of the utility function, the results of
this paper can be derived in the absence of any punishment for default.
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3.2.1 Loan

Now suppose banking is available. Agent 0 would like to improve period 2 consumption. She

would therefore borrow money only if it encouraged agent 1 to raise agent 2’s consumption.

However, since a loan effectively destroys wealth, agent 1 will not save more than in the no-

banking case. Any outcome achieved by a combination of borrowing and saving can be achieved

(or improved on) by simply saving less and borrowing 0.

Proposition 1 When there is no investment to be made, the agent will never borrow in period

0.

The proof of this proposition is in the appendix.

3.2.2 Saving

How much should the agent save in period 0? Given that saving is risky, she might choose to

save only a fraction of wealth in the bank, allowing the rest to pass through agent 1.8 For this

section, agent 0’s discounted utility and agent 1’s discounted utility are respectively described

as the following:

� V (s, c) = u (c) + (1− ε)u (w − c+ rs) + (ε)u (w − c− s)

� U (s, c) = u (c) + β [(1− ε)u (w − c+ rs) + εu (w − c− s)]

Exponential Discounter As a benchmark, I solve for the optimal savings level for an expo-

nential discounter.

Agent 1 takes s as given and solves:

max
0≤c≤w−s

V (s, c)

If there is an interior solution, it is given by the first-order condition:

u0 (c) = (1− ε)u0 (w − c+ rs) + (ε)u0 (w − c− s) (1)

Let c̄exp (s) denote the consumption level that satisfies agent 1’s maximization problem..

8 If u000 (·) > 0, a precautionary saving motive will discourage her from saving all her wealth in the bank. If
not, risk aversion can directly limit the amount to be saved in the bank, even if the interest rate is attractive.

6



Agent 0’s problem is the following:

max
0≤s≤w

V (s, c (s))

Again, for an interior solution, the first-order condition is:

u0 (c) c̄0exp (s) + (1− ε)u0 (w − c+ rs)
¡
r − c̄0exp (s)

¢
+ (ε)u0 (w − c− s)

¡
−1− c̄0exp (s)

¢

Applying the envelope theorem, this can be simplified to:

(1− ε) ru0 (w − c+ rs)− (ε)u0 (w − c− s) = 0 (2)

Conditions 1 and 2, along with the corner restrictions, provide a solution to the optimal

saving problem. Let the utility-maximizing saving level be denoted s̄exp. Observe that, if

(1− ε) r ≤ ε, then s̄exp = 0 and if (1− ε) r > ε, then s̄exp > 0.
9

Let the maximized utilities be Ū exps = U (s̄exp, c̄exp (s̄exp)) and V̄ exps = V (s̄exp, c̄exp (s̄exp)).

Quasi-Hyperbolic Discounter Now, agent 1 solves:

max
0≤s≤w

U (s, c)

The first-order condition for an interior solutions (if it exists) is:

u0 (c) = β (1− ε)u0 (w − c+ rs) + β (ε)u0 (w − c− s) (3)

Let c̄ (s) denote the solution to agent 1’s maximization problem.

Agent 0’s problem is the following:

max
0≤s≤w

V (s, c (s))

Again, for an interior solution, the first-order condition is:

u0 (c) c̄0 (s) + (1− ε)u0 (w − c+ rs)
¡
r − c̄0 (s)

¢
+ (ε)u0 (w − c− s)

¡
−1− c̄0 (s)

¢

9Starting at s = 0, agent 0 would increase saving only if this raised agent 2’s utility. If (1− ε) r ≤ ε, then the
marginal effect on agent 2’s utility from a rise in s cannot be positive.
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By substituting from Condition 3, this can be simplified to:

(1− ε) ru0 (w − c+ rs)− (ε)u0 (w − c− s) = c̄0 (s)u0 (c)
(1− β)

β
(4)

Conditions 3 and 4, along with the corner restrictions, provide a solution to the optimal

saving problem. Let the utility-maximizing saving level be denoted s̄. As for the exponential

discounter, s̄ > 0 if (1− ε) r > ε. However, in this case, agent 0 might choose to save even

if (1− ε) r ≤ ε. This is because the negative effect of "burning" money (by saving) might be

outweighed by reduced consumption by agent 1. Since agent 1 initially consumes too much from

agent 0’s perspective, this could bring marginal utilities across periods closer to each other. Let

the maximized utilities be Ūs = U (s̄, c̄ (s̄)) and V̄s = V (s̄, c̄ (s̄)).

For the purposes of this exercise, it is convenient to restrict the interest rate so that the

agent has no incentive to save if she knows the investment will be made: R < u0(w−p−s)
u0(b+Rs) . This

eliminates any direct savings motive from the problem.

3.3 The Role of Investment

Suppose agent 0 wants the investment to be made in period 1. Then, for agent 1 to respond

appropriately, she should have the necessary liquid cash, and sufficient incentives to invest. First,

consider the case where agent 0 does not engage in banking. The only decision that remains

to be made is a saving amount in period 1. If this amount exceeds p, then the investment is

made. Figures 2 and 3 depict period 1 utility and period 2 utility, each as a function of period 1

consumption, c. In Figure 3, the jump occurs at the minimum savings required for investment.

The optimal outcome from agent 0’s perspective will fall into one of the following three

categories:

(a) u0 (c) = u0 (w − c) (if c > w − p)

(b) c = w − p

(c) u0 (c) = u0 (w − c+ g) (if c < w − p)

The first outcome involves no investment, the second is a corner solution involving investment

(invest, but consume as much as possible in period 1), and in the third case agent 1 not only

invests but also transfers some additional cash to agent 2. If there is indeed a value of c that
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u1

Figure 2: Period 1 utility as a function of period 1 consumption, assuming period 0 did not use
banking.

cwp

u2

Figure 3: Period 2 utility as function of period 1 saving, assuming period 0 did not use banking.
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satisfies condition (c), that must be the solution. If instead, condition (a) is satisfied, then agent

0 will compare the outcomes from condition (a) and condition (b), and choose the one that

provides higher discounted utility.

Now consider the same problem from agent 1’s perspective. Her analysis will be similar to

the one above, except that the RHS of conditions (a) and (c) will be multiplied by β. In other

words, she will have a tendency to consume more than is optimal (from the period 0 perspective).

It is easy to identify the set of possible decisions in period 1 based on the optimal outcome. If

the optimal category is (a), agent 1’s choice must also lie in (a). If the optimal is (b), then agent

1’s choice can lie in (a) or (b). Finally, if the optimal is (c), agent 1’s decision can fall into any

category (which will be determined by the magnitude of β).

3.3.1 Outcomes of Interest

In the following table, I divide possible outcomes into 9 categories based on the following: (1)

the optimal outcome without banking (Opt); (2) agent 0’s optimal banking solution, assuming

agent 1 plays like an exponential discounter (Opt Bank); (3) agent 1’s decision in the absence

of banking; (4) agent 1’s reaction to agent 0’s optimal banking solution.

# Opt Opt Bank Hyp Hyperbolic’s Reaction to Optimal Banking

1 (c) No banking (c) Invest as before (but consume more than ideal)

2 (b) Invest as before (but consume more than ideal)

3 (a) Don’t invest (much worse than ideal)

4 (b) Take a loan (b) Invest as before, and consume the loan (ideal)

5 (a) Invest, and consume the loan (ideal)

6 Don’t invest, but consume less (much worse than ideal)

7 (a) Take a loan (a) Invest, and consume the loan (ideal)

8 Don’t invest, but consume less (much worse than ideal)

9 Save some (a) Don’t invest (but consume more than ideal)

In regions 4, 5, 7, the time-inconsistency poses no problem since agent 1 behaves exactly as

agent 0 would like her to. In regions 1, 2, and 9, agent 1 does not behave in an ideal manner,

but there is no disagreement on the major decision of investment. I will focus on regions 3, 6

and 8. In regions 6 and 8, in particular, agent 0 faces the following problem: the ideal outcome

is one in which a loan is taken and the investment made. However, at the optimal level of loan,

10



c
ww+l-p

u2

w+l

w-p

w-Rl

Figure 4: Period 2 utility if period 0 takes a loan. If agent 1 consumes more than w −Rl∗, she
will default. Also, note that agent 1 can now make the investment at a higher level of c

the quasi-hyperbolic agent will not actually invest. Even though there is enough liquid cash for

the investment, agent 1 does not have enough incentives to forgo current consumption for the

investment.

Suppose agent 0’s optimal outcome involves investment with a loan (investing is sufficiently

expensive that it is worth compensating agent 1 with a loan. The optimal loan, l∗, will satisfy:

u0 (w − p+ l∗) = u0 (b−Rl∗) (5)

However, given that agent 1 is free to make her investment decision, if she is sufficiently time-

inconsistent she might nevertheless not invest.

Consider the decision in period 1. The agent has wealth w + l∗ and must consume some

amount c to maximize her discounted utility. Observe that she will reduce her consumption in

response to the loan. Since a loan is effectively a cost imposed on agent 2, agent 1 will, at the

very least, transfer some additional money to agent 2 to equalize discounted marginal utilities.

This increases the relative attractiveness of the investment. However, if β is sufficiently low, she

will still choose c > w + l∗ − p (This is formally described in the sections below). This is the

type of agent we are going to study.
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Figure 4 shows how agent 2’s utility function changes (from the broken line to the unbroken

line) as a result of a loan. Since a loan needs to be repaid, note that the new utility function

has a steeper slope (relative to the old function) everywhere.

3.4 Inducing Investment

As l rises, agent 1’s marginal benefit of saving increases (relative to the marginal cost of saving)

with loan size. However, as we have seen, a loan of l∗ might not be sufficient to induce investment.

Then, the agent in period 0 has access to three types of actions:

1. Give up on investing and save some amount s in the bank. The maximized utilities from

saving are Ūs and V̄s.

2. Increase l so that the agent in period 1 has an incentive to invest.

3. Simultaneously save and borrow. This creates a threat for the period 1 agent — if she does

not invest, there is a possibility that she will be unable to pay her loan in period 2. If F

is large, this threat can create incentives to invest.

3.4.1 Pure Loan

Consider agent 1’s decision as the loan size increases. She will focus on two effects. First,

investment requires a lower sacrifice of current consumption (since the loan transfers consump-

tion from period 2 to period 1). Second, the marginal utility loss for agent 2 (as a function of

c) becomes higher, thus creating incentives to consume less. These effects together lead to a

reduction in c, possibly up to a point where the investment becomes worthwhile.

The proposition in the next section establishes the following: if some l is large enough for

the investment to be made, it will continue to be made at all larger values of l. Also, given

the assumption on F , it is clear that agent 1 will choose to invest at l ≥ w
r (if not, agent 2

would default regardless of agent 1’s consumption level). Therefore, agent 0 can always induce

investment with a sufficiently large loan. Let the smallest such loan be denoted l̄, which will

satisfy l∗ < l̄ ≤ w
r . Agent 0’s discounted utility from this loan is:

V̄l = u
¡
w − p+ l̄

¢
+ u

¡
b−Rl̄

¢
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Agent 1’s discounted utility is:

Ūl = u
¡
w − p+ l̄

¢
+ βu

¡
b−Rl̄

¢

3.4.2 Simultaneous Saving and Borrowing

In this section, I show how a combination of loans and savings can be used to induce investment.

The following two propositions show that, for any target consumption c (and corresponding loan

level, l), there is a function that pins down the level of "simultaneous saving and borrowing"

needed to ensure investment. I also establish some convenient properties of this function. Section

3.5 provides a graphical intuition of the results below.

Let x be the amount of simultaneous borrowing and saving and l be the level of pure bor-

rowing (so that the total loan is l+x and the total saved in the bank is x). Assume l+x ≤ w+g
r

(this ensures that loan repayment is feasible). Let ĉ (l, x) be agent 1’s optimal consumption level.

The following two points are established in Proposition 2: As long as no investment is made,

agent 1’s consumption is decreasing in loan size and level of simultaneous saving and borrowing.

If agent 1 decides to invest, she will continue to invest for larger levels of l or x.

Proposition 2 Assume l + x ≤ w+g
r . (a) When ĉ > w + l − p, ĉ (l, x) decreases strictly in x,

and when ĉ ≤ w+ l− p, ĉ (l, x) decreases weakly in x. (b) When ĉ > w+ l− p, ĉ (l, x) decreases

strictly in l, and when ĉ ≤ w + l − p, an increase in l can never lead to c > w + l − p.

Proof. At any level of l and x, agent 1’s optimal choice of c can fall into one of the following

categories: (i) c = w − rl −Rx and satisfies (corner, no investment)

u0 (c) > β
£
(1− ε)u0 (w − c− rl) + (ε)u0 (w − c− rl −Rx)

¤

(ii) c ∈ (w + l − p,w − rl −Rx) and satisfies (interior, no investment)

u0 (c) = β
£
(1− ε)u0 (w − c− rl) + (ε)u0 (w − c− rl −Rx)

¤

(iii) c = w + l − p and (corner, investment)

u0 (c) > β
£
(1− ε)u0 (w − c+ b− rl) + (ε)u0 (w − c+ b− rl −Rx)

¤
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(iv) c ∈ [0, w + l − p) and satisfies (interior, investment)

u0 (c) = β
£
(1− ε)u0 (w − c+ b− rl) + (ε)u0 (w − c+ b− rl −Rx)

¤

(a) Consider the change in c in response to an increase in x in each of the categories.

(i) An increase in x must lead to a decrease in c (this is necessitated by the shift in the

corner).

(ii) An increase in x raises the RHS of the equality condition. c must decrease to re-

establish equality (or move to category (iii)).

(iii) An increase in x raises the RHS of the inequality. If the agent continues to invest, c

must remain the same or decrease. Also, agent 1 will certainly not choose to forgo

investment. Suppose she does. Then,

u (c) + β [(1− ε)u (w − c+ b− rl) + (ε)u (w − c+ b− rl −Rx)]

< u (c̃) + β [(1− ε)u (w − c̃− rl) + (ε)u (w − c̃− rl −Rx)]

where c = w+ l−p and c̃ satisfies the condition described in category (i) or (ii). Now

consider a marginal reduction in x. The LHS rises by less than the RHS. Then, it

was not optimal to be in category (iii) in the first place. Contradiction.

(iv) Using the reasoning in category (iii), an increase in x leads to an decrease in c.

(b) Consider the change in c in response to an increase in l in each of these categories.

(i) An increase in l must lead to a decrease in c because of the shift in the corner.

(ii) An increase in l raises the RHS of the equality condition. c must decrease to re-

establish equality (or move to category (iii)).

(iii) First, note that an increase in l cannot lead agent 1 to forgo investment. Suppose

she now forgoes investment and consumes some c̃ > w + l − p. Then,

u (c̃) + β [(1− ε)u (w − c− rl) + (ε)u (w − c− rl −Rx)]

> u (c) + β [(1− ε)u (w − c+ b− rl) + (ε)u (w − c+ b− rl −Rx)]

14



where c = w + l − p > c̃. A marginal decrease in l leads to a larger rise in

the LHS of this inequality. So it would not have been optimal for the agent to

be in category (iii) in the first place. Contradiction. Now, as long as u0 (c) >

β [(1− ε)u0 (w − c+ b− rl) + (ε)u0 (w − c+ b− rl −Rx)], an increase in l will lead

to an increase in c. After equality is achieved, c will move inversely with l and the

agent will be in category (iv).

(iv) Using the reasoning above, we know that c will move inversely with l (as far as it is

feasible).

Proposition 3 shows that the level of simultaneous saving and borrowing required to induce

investment is decreasing in loan size. Since a larger loan size makes investment less painful

for agent 1, this reduces agent 0’s need to provide additional inducement through simultaneous

saving and borrowing.

Proposition 3 Let x̂ (l) be the minimum level of x required to ensure investment. Assume

l ≤ w
r . Then, (a) x̂ (l) ≤ w+rl

r and (b) x̂ (l) is weakly decreasing in l.

Proof. (a) By the assumption on F , agent 1 will not risk default. Therefore, if x + l ≥ w
r , or

x ≥ w−rl
r , she will certainly invest.

(b) Consider some l and the corresponding x (l). By the definition of x (l),

u (w − p+ l) + β [(1− ε)u (b−Rl) + (ε)u (b−Rl −Rx)] (6)

≥ u (c) + β [(1− ε)u (w − c− rl) + (ε)u (w − c− rl −Rx)]

for any c < w − p+ l. Now, consider l̃ > l. Suppose there is some c̃ < w − p+ l̃ such that

u
³
w − p+ l̃

´
+ β

h
(1− ε)u

³
b−Rl̃

´
+ (ε)u

³
b−Rl̃ −Rx

´i

< u (c̃) + β
h
(1− ε)u

³
w − c̃− rl̃

´
+ (ε)u

³
w − c̃− rl̃ −Rx

´i

Let l̃ − l = k. Then, by the concavity of u,

u
³
w − p+ l̃ − k

´
+ β

h
(1− ε)u

³
b−Rl̃ +Rk

´
+ (ε)u

³
b−Rl̃ −Rx+Rk

´i

< u (c̃− k) + β
h
(1− ε)u

³
w − c̃− rl̃ +Rk

´
+ (ε)u

³
w − c̃− rl̃ −Rx+Rk

´i
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This contradicts Condition 6. Therefore, x
³
l̃
´
≤ x (l).

Note that l̄ is the lowest loan level for which x̂ (l) = 0.

3.5 Simultaneous Saving & Borrowing: Existence

The following thought experiment illustrates the role of simultaneous saving and borrowing.

Suppose, starting at s = 0 and l = l∗ (the optimal level), agent 0 was to increase loan and

bank saving simultaneously and by identical amounts. The period 1 utility (as a function of c)

will remain unchanged. However, period 2 utility as a function of c will drop. In Figure 5, the

broken line represents the base case (s = 0 and l = l∗). The solid line, depicting period 2 utility

after some simultaneous borrowing an saving, is broken into four segments. The lowest segment

is the region in which the agent in period 2 will certainly default. The second-lowest segment

is the region in which agent 2 might default (if the savings do not mature). The second-highest

segment is the case where there is no chance of default, and the investment is not made. The

uppermost segment describes the case where the investment is made in period 1.

c
ww+l-p

u2

w+l

w-Rl-Rx

w-Rl

Figure 5: Period 2 utility as agent 0 raises loan and savings simultaneously

Suppose, at s = 0 and l = l∗, agent 1 chooses some amount c that satisfies w + l − p < c <

w−Rl−Rx. In this case, she is avoiding default but not making the investment. Suppose agent
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0 saves more and borrows more. Now, the region in which default is possible expands. If agent

1 continues to save her original amount, she might face punishment in period 2. To prevent

this, she must raise the amount she saves. Here, it can become optimal for the agent to invest.

Note that if ε is low, the final outcome is close to the optimal outcome (from the perspective of

period 0).

In this case, saving creates the incentive to invest, while borrowing is used to actually fund

the investment.

Proposition 4 There is a parameter region over (r, β, F, ε) in which the agent will save s > 0

and borrow l > 0 in period 0.

Proof. If r is sufficiently low, the optimal outcome involves a loan, l∗ > 0. Let agent 0’s optimal

discounted utility be denoted V ∗:

V ∗ = u (w − p+ l∗) + u (b−Rl∗)

Recall that the optimal no-investment outcome is denoted V̄s. For any r, an upper bound

on V̄s exists and can be found by setting ε = 0. Therefore, if r is sufficiently low (regardless

of ε), the optimal investment outcome is strictly preferred to the best achievable no-investment

outcome.

V ∗ > V̄s

Given r, if β is sufficiently low, the optimal investment outcome is strictly preferred to the

best achievable investment outcome.

V ∗ > V̄l

Let D be the difference between the optimal outcome and the best possible outcome from a

pure loan or pure saving:

D = V ∗ −max
©
V̄l, V̄s

ª
> 0

Since there is an upper bound on V̄s that does not depend on ε, there must be a lower bound

on D that does not depend on ε. Let this value be denoted Dmin. If r is sufficiently low, and if

given r, β is sufficiently low, Dmin > 0.

For any target l, let the period 0 discounted utility from simultaneous saving and borrowing
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be denoted Vsb (l). By construction,

Vsb (l) = [u (w − p+ l) + (1− ε)u (b−Rl) + (ε)u (b−Rl −Rx̂ (l))]

Let the optimal value of Vsb (l) be V̄sb.

V̄sb = max
l≥0

Vsb (l)

Since x̂ (l) is bounded above (Proposition 6), limε→0 Vsb (l) = u (w − p+ l) + u (b−Rl).

Therefore, if ε is sufficiently low, V ∗ − V̄sb < Dmin.

Finally, given ε, assume F is large enough (re-apply the previous assumption on F ):

u (Rlmax)− u (0) < βεF

Under these conditions, agent 0 strictly prefers simultaneous saving and borrowing to pure

saving and pure borrowing.

The actual optimal point will not involve pinning agent 1 to the original optimal consumption.

Suppose agent 0 chose l = l∗ and the corresponding l̂ (x∗). The marginal utility benefit (to agent

1) and marginal utility cost (to agent 2) from raising l are, respectively:

u0 (w − p+ l∗)

(1− ε)Ru0 (b−Rl∗) + (ε)R
¡
1 + x̂0 (l∗)

¢
u0 (b−Rl∗ −Rx̂ (l∗))

If x̂ did not vary with l, agent 0 would clearly like to reduce the loan size and transfer some

consumption to agent 2 (this follows from the definition of l∗). Whether she actually does so

depends on the magnitude of x̂0 (l). If x̂0 (l) has a large magnitude (i.e. it is costly to induce

investment — x̂0 (l) is close to −1), then agent 0 will in fact choose to raise l. If x̂0 (l) has a small

magnitude, agent 0 might lower l.

If agent 0 lowers l, she must raise x to maintain incentives for agent 1 to invest. This

lowers the wealth available in period 1, which results in a lowering of c and raising of agent

2’s consumption level. While this brings the marginal utilities of consumption between the two

periods closer to each other, it also lowers the total amount of wealth to be shared. Alternatively,

consider a rise in l and a drop in x. While this raises c and lowers agent 2’s consumption (thus
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pushing marginal utilities further apart), the change in c is greater than the change in agent 2’s

consumption. The relative strengths of this trade-off will determine the direction in which the

actual l will deviate from l∗.

It is also useful to note here that if, instead, the individual only had access to secure savings

(at a lower interest rate), then she would never choose to borrow and save simultaneously. In this

case, it is impossible for agent 0 to create a discontinuity in period 2 utility that gets exacerbated

if agent 1 over-consumes. To induce her future self to save, she will have to create incentives by

lowering the relative marginal cost of saving in period 1. Rather than use the costly device of

saving and borrowing, she will simply borrow to the point where agent 1 is willing to save. This

is because, in either case, agent 0 must appeal to the period 1 agent’s incentive to invest without

a new threat being created. To see this, consider any loan-savings combination that induces

investment. As shown in the proposition below, agent 0 can reduce both loan and savings in

such a way that total wealth rises (less money is burned), and the benefits accrue to agent 1.

If agent1 has money at her disposal, her incentive to invest remains intact. Thus, investment

continues to happen with less money wasted due to simultaneous saving and borrowing.

Proposition 5 Suppose the agent can borrow at interest rate r (R ≡ 1 + r) and can save at

interest rate t (T = 1 + t), where r > t. Then she will never save and borrow simultaneously.

The proof of this proposition is in the appendix.

4 Comparative Statics and Welfare

The propositions of the previous section suggest some natural comparative statics. I look at

variation in the four (potentially) observable exogenous variables — r, β, ε, F — and examine their

impact on the values associated with pure saving, pure borrowing, and simultaneous borrowing

and saving. To recap Proposition 4: (a) If r is sufficiently low, then agent 0 prefers the optimal

investment outcome (V ∗) to the pure saving (no-investment) outcome (V̄s); (b) If β is sufficiently

low, then agent 0 prefers V ∗ to the pure-loan (investment) outcome (V̄l); (c) If ε is sufficiently

low (but above 0), then agent 0 prefers the simultaneous borrowing and saving (investment)

outcome (V̄sb) to V̄s and V̄l; (d) If F is sufficiently high, then the assumption (in parts a, b, and

c) that the agent will always avoid the possibility of future default (if possible) indeed holds

true.
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We can think of F varying both at the level of the bank and at the level of the individual.

As F drops, agent 0’s ability to use simultaneous saving and borrowing as a threat initially

stays constant and then abruptly declines. Once F drops sufficiently low, it is not even in agent

0’s interest to have a loan repaid. Hence, we expect that clients of banks with weaker default

penalties or individuals that are less susceptible to punishment will be less likely to engage in

simultaneous saving and borrowing.

It is common for microfinance institutions to assign clients to groups before issuing loans. If

internal savings takes place within such groups, the probability of savings not maturing, ε, is

likely to vary across groups. When ε = 0, simultaneous saving and borrowing cannot happen.

As ε rises, the initial effect is ambiguous: the condition on F becomes easier to satisfy, thus

increasing the likelihood of simultaneous behavior; but the relative attractiveness of V̄l compared

to V̄sb rises. Ultimately, ε becomes too high to justify the utility cost of saving any money.

As β rises, V̄l rises and approaches V̄sb. However, this also makes it easier for the threat of

punishment to have bite. So, for low values of β, the effect of a rise is ambiguous, but ultimately

the pure loan option dominates and simultaneous saving and borrowing disappears.

Finally, consider the effect of changes in the interest rate. As we have seen, an increase in r

from very low levels leads to a rise in V̄s and a drop in V̄l and V̄sb. Also, this leads to a tightening

on the conditions for ε and β, with no change in the condition for F . Therefore, the likelihood

of simultaneous saving and borrowing declines in r.

The model also provides some interesting welfare implications that are directly linked to

the time inconsistent preferences of the agent. Following convention, we can think of welfare

as agent 0’s discounted lifetime utility. We can see that rises in ε and F , both of which are

associated with utility reductions for an exponential discounter, can raise the quasi-hyperbolic

agent’s utility. This is because a positive value of ε and a high value of F allow agent 0 to

construct a commitment device for agent 1. This is impossible to do if ε = 0 or F very low.

5 Conclusion

I have attempted to solve a puzzle of simultaneous borrowing and saving by providing a new

rationale for the phenomenon. When agents are sophisticated quasi-hyperbolic discounters,

access to a non-secure source of saving can be useful — by creating the threat of a large punishment

in the event of default, the agent can induce her future selves to invest. Actual utility loss in

20



equilibrium is limited if the probability of default is low.

I have shown that, in this setting, simultaneous borrowing and saving cannot be optimal

if agents have time-consistent preferences. I have also shown that, if savings are secure, an

interest rate differential cannot explain this behavior. The agent is always better off when she

simply borrows to fund investment. Furthermore, when there is a small chance that savings will

disappear, the agent can find herself better off than if savings mature with certainty.

6 Appendix

A Additional Proofs

Statement of Proposition 1: When there is no investment to be made, the agent will never

borrow in period 0.

Proof. Suppose agent 0 saves any amount s and borrows l > 0. The period 1 wealth is w−s+ l.

Agent 1 will consume some 0 ≤ c∗ ≤ w − s− rl (since she will avoid default in the bad state in

period 2). From the period 0 perspective, lifetime utility is:

u (c∗) + (1− ε)u (w − c∗ + rs− rl) + εu (w − c∗ − s− rl) (7)

Now, consider the same s as above, but change the loan to l̂ = 0. The period 1 wealth is

now w − s. Consider the following consumption period 1: ĉ = c∗ + rl. This is an outcome

where the agent in 1 consumes what was previously interest on the loan, while leaving period 2

consumption unchanged. This gives us a lower bound on welfare from agent 0’s perspective (if

the agent in 1 deviates from this plan, it will be to transfer more consumption to period 2).

Agent 0’s discounted utility is bounded below by:

u (c+ rl) + (1− ε)u (w − c∗ + rs− rl) + εu (w − c∗ − s− rl) (8)

The utility in 8 is strictly higher than the utility in 7.

Statement of Proposition 5: Suppose the agent can borrow at interest rate r (R ≡ 1 + r)

and can save at interest rate t (T = 1 + t), where r > t. Then she will never save and borrow

simultaneously.
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Proof. Agent 0 will either plan for the investment to be made, or not. If the investment is not

made, clearly the optimal strategy is to save some amount s such that:

u0 (w − s) = u0 (Ts)

In this case, no loan will be taken.

If the agent 0 takes a loan, it must be to induce investment in period 1. Suppose the agent

borrows l > 0 and saves s > 0. It must be the case that the investment is made in period 1.

The utility from period 0 perspective (where s1 is the amount saved in period 1) is:

u (w − s+ l − s1) + u (b+ s1 − p+ Ts−Rl)

Now suppose we lower l and s such that ∆s = R
T∆l. The period 1 incentive to save rises. Utility

from the period 0 perspective must go up.
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