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Abstract

This paper describes a flexible and tractable bottom-up dynamic correlation modelling framework

with a consistent stochastic recovery specification. The stochastic recovery specification only models the

first two moments of the spot recovery rate as the higher moments of the recovery rate have almost no

contribution to the loss distribution and CDO tranche pricing. Observing that only the joint distribution

of default indicators is needed to build the portfolio loss distribution, we argue that the default indicator

copula should be used instead of the default time copula for the purpose of CDO tranche calibration and

pricing. We then defined a generic class of default indicator copula with the “time locality” property,

which makes it easy to calibrate to index tranche prices across multiple maturities.

This correlation modelling framework has the unique advantage that the joint distribution of default

time and other dynamic properties of the model can be changed independently from the loss distribution

and tranche prices. After calibrating the model to index tranche prices, existing top-down methods can

be applied to the common factor process to construct very flexible systemic dynamics without changing

the already calibrated tranche prices. This modelling framework therefore combines the best features of

the bottom-up and top-down models: it is fully consistent with all the single name market information

and it admits very rich and flexible spread dynamics.

Numerical results from a non-parametric implementation of this modelling framework are also pre-

sented. The non-parametric implementation achieved fast and accurate calibration to the index tranches

across multiple maturities even under extreme market conditions. A conditional Markov chain method

is also proposed to construct the systemic dynamics, which supports an efficient lattice pricing method

for dynamic spread instruments. We also showed how to price tranche options as an example of this fast

lattice method.
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1 Introduction

The base correlation model remains the most common method to price and risk manage synthetic CDOs

(O’Kane & Livesey 2004). It is well known that the base correlation model is not arbitrage free, and it

cannot produce a consistent joint default time distribution; therefore the base correlation model cannot be

used to price and risk manage any default path-dependent or spread-dependent products. Not too long ago,

the deterministic recovery assumption was the common practice within the base correlation framework.

However, in the recent market environments, models with the deterministic recovery often failed to calibrate

to the index tranche market because it forces the senior most tranches to be risk free, leaving too much risk in

the junior part of the capital structure. (Andersen & Sidenius 2004) first proposed the stochastic recovery for

Gaussian Copula. More recently, a number of stochastic recovery specifications have been suggested for the

base correlation framework, e.g. (Amraoui & Hitier 2008) and (Krekel 2008). With these stochastic recovery

specifications, the senior most tranches become risky, allowing the base correlation model to calibrate.

However, most of the existing stochastic recovery specifications are not internally consistent, i.e., they can’t

be used to drive a Monte Carlo simulation and match the underlying CDS curves’ expected recovery across

time. The stochastic recovery specifications therefore introduced another source of inconsistency to the

already inconsistent base correlation framework.

There have been a lot of efforts in developing alternative models to the base correlation model in order

to better price and risk manage the exotic correlation products whose payoff may depend on the default

paths and tranche spreads. One alternative modelling approach is to find a consistent static copula, which

can produce the joint default time distribution in order to price default path-dependent instruments. Random

Factor Loading (Andersen & Sidenius 2004) and the Implied Copula (Hull & White 2006) (Skarke 2005)

are examples of the alternative static copulas. Another alternative modelling approach is to develop dynamic

correlation models, which can price the spread-dependent correlation instruments, e.g., tranche options.

There are two main categories of dynamic correlation models: the top-down approach and the bottom-

up approach. The top-down approach directly models the dynamics of the portfolio loss distribution and

ignores all the single name identities. The advantages of the top-down models include: 1) it is relatively easy

to implement and calibrate and 2) it offers very rich spread dynamics. The main disadvantages of the top-

down models include: 1) it lacks the single name risk and sensitivity 2) it can’t be used to price a bespoke

CDO from the index tranches because the spread dispersion, which is a critical factor in CDO pricing,

is not captured by the top-down models. (Schonbucher 2006), (Sidenius, Piterbarg & Andersen 2006),

(Bennani 2005), (Giesecke & Goldberg 2005) and (Arnsdorf & Halperin 2007) are some representative

examples of the top-down models. (Giesecke & Goldberg 2005) and (Halperin & Tomecek 2008) also

suggested the random thinning as a possible method to incorporate the single name information into the

top-down approach.

The bottom-up approach, on the other hand, starts with the single name spread dynamics and a correla-

tion structure; and then computes the portfolio and tranche spread dynamics as functions of the single name

spread dynamics and the correlation structure. The advantage of the bottom-up approach is that it preserves

the single name identities and the spread dispersion, and offers the single name sensitivity. A bottom-up

model can produce the joint distribution of default times and spreads; therefore, it can cover a wider range

of exotic correlation products than a top-down model. For example, any exotic contract whose payoff de-

pends on the identity of an underlying issuer1 cannot be easily handled with a top-down model. However, a

bottom-up model is much more difficult to implement and calibrate. Often, the model parameters that con-

trol the spread dynamics also affect the tranche prices; therefore the calibration to the index tranche prices

1For example, a vanilla bespoke CDO traded against a risky counterparty who does not post the full collateral. In this case, the

identity of the counterparty is important.
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can put severe restrictions on the resulting spread dynamics, making it difficult to produce the desired spread

dynamics and the goodness of fit to the index tranches simultaneously. Due to these difficulties, there is no

known bottom-up model that can produce good index tranche calibration and flexible spread dynamics to the

best knowledge of the author. (Mortensen 2006), (Chapovsky, Rennie & Tavares 2006) and (Kogan 2008)

are some representative bottom-up dynamic correlation models.

Under the current market conditions, the stochastic recovery is required for a bottom-up dynamic corre-

lation model to achieve good calibration to the index tranche prices. Most of the existing stochastic recovery

specifications cannot be directly used by a bottom-up dynamic correlation model because of their intrinsic

inconsistencies. Defining a consistent and tractable stochastic recovery specification remains a challenge.

The paper is organized as follows: section 2 presents the consistent stochastic recovery specification;

section 3 is the general framework of the dynamic correlation model; section 4 discusses the details of a non-

parametric implementation of the general framework; section 5 shows the calibration and other numerical

results of the non-parametric implementation; section 6 proposes a conditional Markov chain extension and

shows that the dynamic spread instruments can be priced efficiently using a lattice method.

2 Consistent Stochastic Recovery

This section first describes the generic properties of recovery rates; then proposes a tractable and consistent

stochastic recovery specification.

Define τ as the default time of an issuer, and 1τ<t as the indicator that the issuer defaults before time t.

The recovery rate r(t1, t2) is a conditional random variable that represents the recovery rate conditioned on

the issuer defaults between time t1 and t2, i.e. τ ∈ (t1, t2). r(t, t) is used to denote the spot recovery rate when

the issuer defaults exactly at time t, i.e., τ ∈ (t, t +dt).

Definition 2.1. The following terms are defined for the recovery rate to simplify the exposition:

1. spot mean: µ(t, t) = E[r(t, t)]
2. spot variance: σ2(t, t) = Var[r(t, t)]
3. term mean: µ(0, t) = E[r(0, t)]
4. term variance: σ2(0, t) = Var[r(0, t)]

The term mean and variance of recovery rate are important for building the loss distribution at a given

time horizon t using the semi-analytical method (Andersen, Sidenius & Basu 2003). The spot mean and

variance are useful inside a Monte Carlo simulation.

Proposition 2.2. The recovery rate has the following properties:

1. The recovery rate is positive and less than 1: r(t1, t2) ∈ [0,1], µ(t1, t2) ∈ [0,1]
2. The variance of the recovery rate is range bounded: σ2(t1, t2) ∈ [0,µ(t1, t2)(1−µ(t1, t2))]

The lower bound 0 of the recovery rate variance corresponds to the deterministic recovery. The upper

bound of the recovery variance corresponds to a two point distribution with recovery rate values of {0,1}
and probabilities of {1−µ,µ}, whose variance is the largest among all recovery distributions with mean µ.

Consider two consecutive time periods of (0, t1) and (t1, t2), the following equation holds because both

sides are the recovery amount between time (0, t2):

r(0, t2)1τ∈(0,t2) = r(0, t1)1τ∈(0,t1) + r(t1, t2)1τ∈(t1,t2) (1)
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Take the expectation on the previous equation:

p(t2)µ(0, t2) = p(t1)µ(0, t1)+(p(t2)− p(t1))µ(t1, t2) (2)

where p(t) = E[1τ<t ] is the default probability over time. Squaring both sides of (1), the cross term disap-

pears because the two periods do not overlap, also note 12 = 1:

r2(0, t2)1τ∈(0,t2) = r2(0, t1)1τ∈(0,t1) + r2(t1, t2)1τ∈(t1,t2)

Then taking the expectation yields:

p(t2)E[r2(0, t2)] = p(t1)E[r2(0, t1)]+(p(t2)− p(t1))E[r2(t1, t2)] (3)

Dividing the period between (0, t) into infinitesimal time intervals, (2) and (3) can be written in the following

continuous form:

Proposition 2.3. Suppose the default probability of the issuer p(t) = E[1τ<t ] is continuous and differentiable

with t. The following relationship exists between the spot mean recovery µ(t, t) and the term mean recovery

µ(0, t):

µ(0, t) =
1

p(t)

∫ t

0
µ(s,s)p′(s)ds =

1

p(t)

∫ p(t)

0
µ(p, p)d p (4)

It is always possible to write the µ(t, t) as µ(p, p) because the inverse function t−1(p) always exists since

the p(t) is monotonic and continuous. Similarly:

µ2(0, t)+σ2(0, t) =
1

p(t)

∫ t

0
[µ2(s,s)+σ2(s,s)]p′(s)ds =

1

p(t)

∫ p(t)

0
[µ2(p, p)+σ2(p, p)]d p (5)

Note that the σ2(0, t) is not just an integration of the σ2(p, p), it also includes the contribution from

changes in the µ(p, p). An observation that immediately follows the Proposition 2.3 is that if the µ(p, p)
and σ2(p, p) are chosen to be analytical functions of the default probability p, the µ(0, t) and σ2(0, t) can be

computed just from the value of p(t) at time t using (4) and (5) regardless of the detailed shape of the p(t)
over time. This property is critical in developing the dynamic correlation modelling framework in the next

section of this paper.

Considering a basket of n credits indexed by the subscript i = 1...n, the notional amount of each credit

is wi. The portfolio loss at time t is the sum of all the individual losses L(t) = ∑n
i=1 wili, where li = 1τi<t(1−

ri(0, t)) is the loss for a unit notional amount of name i. The mean and variance of the li are easy to compute:

E[li] = pi(t)(1−µi(0, t))

Var[li] = pi(t)σ
2
i (0, t)+ pi(t)(1− pi(t))(1−µi(0, t))2

If the 1τi<t and ri(0, t) are independent between names, it is well known that the portfolio loss distribution at

time t can be approximated by a normal distribution according to the central limit theorem (Shelton 2004).

The normal approximation to the loss distribution is fully characterized by the mean and variance of the

portfolio loss L(t), which can be computed as:

E[L(t)] = E[
n

∑
1

wili] =
n

∑
1

wiE[li] =
n

∑
1

wi pi(t)[1−µi(0, t)] (6)

Var[L(t)] = Var[
n

∑
1

wili] =
n

∑
1

w2
i Var[li] =

n

∑
1

w2
i pi(t)[σ

2
i (0, t)+(1− pi(t))(1−µi(0, t))2] (7)
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Therefore, the only recovery rate measures that are required to compute the loss distribution with the in-

dependent defaults and recovery rates are the µi(0, t) and σ2
i (0, t). The fine details of the recovery rate

distribution other than the first two moments do not affect the portfolio loss distribution if n is reasonably

large so that the normal approximation is sufficiently accurate. The same argument can be made for any

conditional independent correlation models, e.g., Gaussian Copula.

Proposition 2.4. Given a conditional independent correlation model, the loss distribution at time t is only

sensitive to the first two moments of the term recovery distribution, i.e., µi(0, t),σ2
i (0, t). The contribution of

higher moments of the recovery rate is no more than the residual error of the normal approximation to the

portfolio loss distribution.

The effects of the higher moments of the stochastic recovery distribution are quantified in section 5.3 of

this paper. Since the σ2
i (0, t) enters the variance of the portfolio loss in (7), a stochastic recovery model has

to specify both the mean and variance of the recovery rate in order to correctly reproduce the portfolio loss

distributions over time. Any stochastic recovery specification that does not capture the variance of recovery

is inadequate by construction. Also, the stochastic recovery models that directly specify the term µi(0, t) and

σ2
i (0, t), or the distribution for ri(0, t) are usually not consistent because the implied spot recovery ri(t, t)

is not guaranteed to satisfy the constraints in the Proposition 2.2. Most of the popular stochastic recovery

specifications for the base correlation model, such as (Amraoui & Hitier 2008) and (Krekel 2008), are not

internally consistent for the reasons above.

In conclusion, a consistent and tractable stochastic recovery specification can be easily constructed by

defining the analytical functions for the µi(p, p) and σ2
i (p, p). In a conditional independent model, the µi

and σ2
i can be defined as functions of the conditional default probability. It is natural to choose the µ(p, p)

to be a decreasing function, since it forces the recovery rates to be lower in the bad states of the economy

when a lot of names default. In a conditional independent model, the overall unconditional recovery rate is

a weighted average of the conditional recovery rates over all possible states of the market factor.

Under this stochastic recovery specification, the expected recovery term structure is no longer constant.

The CDS curves are typically built with a constant recovery term structure, which is a convenient but arbi-

trary choice given that we don’t observe the recovery term structure in the market. The recovery locks are

only traded for distressed names at very short maturities, the bid/offer of single name recovery lock is often

as large as 5-10%. Therefore it is not a problem in practice to deviate from the constant expected recovery

rate assumption as long as the single name default probabilities are bootstrapped accordingly so that the

CDS contracts at all maturities are priced to the market.

Another advantage of this stochastic recovery specification is that it gives user some control of the

recovery variance through the parameter σ2
i (p, p). The recovery variance is very important to the CDO

tranche pricing and risk especially when a name is very close to default.

3 Dynamic Correlation Modelling Framework

3.1 JDDI(t) vs JDDT

(Li 2000) first introduced the default time copula to price multi-name credit derivatives. By definition, a

default time copula along with single name default probabilities fully determines the joint distribution of

default time (abbreviated as JDDT ). We can also introduce a similar concept of joint distribution of default

indicators (i.e., 1τi<t) for a given time horizon t (abbreviated as JDDI(t)). We use {JDDI(t)} to denote a set
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Figure 1: JDDI(t) vs JDDT

Two JDDT s

τ1 Range τ2 Range JDDT1 JDDT2

(2,∞) (2,∞) 20% 20%

(2,∞) (1,2) 0% 10%

(1,2) (2,∞) 0% 10%

(1,2) (1,2) 20% 0%

(2,∞) (0,1) 30% 20%

(1,2) (0,1) 0% 10%

(0,1) (2,∞) 20% 10%

(0,1) (1,2) 0% 10%

(0,1) (0,1) 10% 10%

{JDDI(t)}

1τ1<t 1τ2<t JDDI(t = 1) JDDI(t = 2)

0 0 40% 20%

0 1 30% 30%

1 0 20% 20%

1 1 10% 30%

of JDDI(t) over a discrete sample of time {t}, which is usually the quarterly IMM dates for pricing synthetic

CDOs. Both the JDDT and JDDI(t) are based on time 0 information F0 in the following discussion.

Since a default time τ describes the same event as a time series of default indicators that switches from 0

to 1 at τ, the JDDT can be viewed as the joint distribution of N×T default indicators where N is the number

of names in the portfolio and T is the number of samples in time (which can be infinite for continuous time

sampling). Given that the JDDI(t) is the joint distribution of the N default indicators at a given time t,

therefore it is obvious that:

Proposition 3.1. {JDDI(t)} is the marginal distribution of the JDDT at the given time grid {t}. Therefore,

the JDDT contains more information than {JDDI(t)} and there can be infinitely many JDDT s that produce

the same marginal distribution of {JDDI(t)}.

To illustrate the relationship between the {JDDI(t)} and the JDDT , Figure 1 (left) showed two JDDT s

for a portfolio with two names over two time periods. The two JDDT s have the identical marginal dis-

tribution {JDDI(t)}, which is shown on the right. Figure 1 clearly shown that the JDDT contains more

information than the {JDDI(t)}. For example, if we consider an instrument that pays $1 only if both name

default within the time period (1, 2), its price can be uniquely determined by either of the JDDT s, but not

by the {JDDI(t)}. It is also interesting to note that the two JDDT s in Figure 1 produce different prices for

this instrument even though their marginal distribution {JDDI(t)} are identical.

Since the pioneering work of (Li 2000), it becomes a very common practice to calibrate a default time

copula to index tranches, then use the calibrated default time copula to price other vanilla and exotic instru-

ments. This common practice is seriously flawed because of the following key observation:

Proposition 3.2. All the vanilla credit derivatives, such as CDS, CDO, NTD basket or CDOn, can be priced

from their expected survival (or loss) curves over time. Therefore their prices are fully determined by the

{JDDI(t)} and the stochastic recovery specification.

Proposition 3.2 implies that the index tranche prices contain no information beyond {JDDI(t)}; there-

fore the JDDT from a default time copula calibrated only to index tranche prices is completely arbitrary and

it does not reflect any market information. It is dangerous to use such a default time copula to price exotic

instruments whose value is sensitive to the JDDT . A more sensible modelling approach is to calibrate both

the {JDDI(t)} and JDDT to relevant market observables: the {JDDI(t)} of the model should be calibrated
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to the index tranche prices; while the JDDT should be calibrated to exotic instruments whose value depends

on the JDDT , such as forward starting tranches or tranche options. Ideally, the calibration of {JDDI(t)}
and JDDT should not depend on each other so that their calibration can be carried out independently. In this

section, we present a modelling framework with these properties.

3.2 Default Indicator Copulas

The most fundamental building block of our dynamic correlation modelling framework is the copula func-

tions on default indicators, which specifies the {JDDI(t)} rather than the JDDT . Since a JDDI(t) is specific

to a given time horizon, default indicator copula functions have to be defined for every discrete sample of

time in {t} as oppose to the case in default time copula where a single copula function governs the depen-

dencies across all time horizon. The {JDDI(t)} of a credit portfolio has to satisfy the following constraint

since the default event is irreversible:

Proposition 3.3. In a credit portfolio, the probability of any subset of names being in default state together

has to monotonically increase over time.

The following three conditions define a consistent set of default indicator copulas over time whose

{JDDI(t)} satisfy the constraint in Proposition 3.3 by construction:

Definition 3.4. A set of default indicator copula functions over time can be defined by:

1. An increasing stochastic process Xt that represents the common factor. The distribution function of

the Xt is denoted as F(x, t) = P{Xt < x}, which is also referred as the marginal distribution of Xt .

f (x, t) denotes the distribution density function of Xt: f (x, t) = ∂F(x,t)
∂x

. An increasing Xt implies that:

∂F(x, t)

∂t
≤ 0 (8)

2. A conditional default probability function pi(x, t) = E[1τi<t |Xt = x] that satisfies the following con-

straints:

pi(x, t) ∈ [0,1] (9)

pi(t) = E[pi(x, t)] =
∫

pi(x, t) f (x, t)dx (10)

∂pi(x, t)

∂x
≥ 0 (11)

∂pi(x, t)

∂t
≥ 0 (12)

The pi(t) is the unconditional default probability for the i-th name, which is extracted from the under-

lying CDS curves. The pi(x, t) function needs to have some name specific parameters so that it can be

calibrated to pi(t) according to (10). Whenever F(x, t) changes, the pi(x, t) has to be re-calibrated to

pi(t) to ensure consistency with the underlying single CDS. (11) and (12) ensure that the conditional

default probability pi(x, t) are increasing for any possible path of Xt given that the Xt is increasing.

3. Default indicators 1τi<t are independent conditioned on Xt = x.

In practice, any pi(x, t) function that satisfies the constraints (9) to (12) can be used to construct the

copula functions of default indicators. For example, a Gaussian default indicator copula can be constructed
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from Definition 3.4 by choosing:

F(x, t) = Φ(x)

pi(x, t) = Φ(
Φ−1(pi(t))−

√
ρx√

1−ρ
) (13)

where ρ ∈ [0,1) is the correlation and Φ(x) is the cumulative normal distribution function. In the Gaussian

default indicator copula, the common factor Xt is a constant process whose value is determined immediately

after t = 0, therefore the (8), (11) and (12) are trivially satisfied. Even though Gaussian Copula was intro-

duced by (Li 2000) as a default time copula, we actually only need the Gaussian default indicator copula as

in (13) to price CDO tranches. The classic Gaussian copula lacks the degree of freedom to calibrate to index

tranche prices, a more flexible specification of default indicator copulas is given in section 4.

Following (Andersen, Sidenius & Basu 2003), a CDO tranches can be priced semi-analytically under

Definition 3.4 because of the conditional independence of the default indicators. We rewrite the mean and

variance of portfolio loss conditioned on Xt = x from (6) and (7) as:

µL(x) =
n

∑
1

wi pi(x, t)[1−µi(0, pi(x, t))]

σ2
L(x) =

n

∑
1

w2
i pi(t)[σ

2
i (0, pi(x, t))+(1− pi(x, t))(1−µi(0, pi(x, t)))

2]

Then the conditional ETL for a 0 to K base tranche can be computed from the normal approximation:

E[min(L(t),K)|x] = K +(µL(x)−K)Φ(
K −µL(x)

σL(x)
)−σL(x)φ(

K −µL(x)

σL(x)
) (14)

where φ is the normal distribution density function. The conditional ETL can then be integrated over the

f (x, t) to obtain the unconditional ETL:

E[min(L(t),K)] =
∫

E[min(L(t),K)|x] f (x, t)dx (15)

The ETL of a regular tranche with non-zero attachment is just the difference between the ETLs of two

base tranches. To price super senior tranches, we also need the expected tranche amortization (ETA) due to

default recovery, which can be computed in a similar manner as the ETL. A CDO tranche can be priced as

a regular CDS once the ETL and ETA curves are known. The semi-analytical pricing method is extremely

fast with the normal approximation, and we will show later that it is accurate enough in practice.

3.3 Model Dynamics and Time Locality

Under Definition 3.4, conditioned on a full path of Xt sampled at time grid {t}, the default indicators at each

time in {t} are independent, which is equivalent to the independence of default times sampled at the same

time grid. Therefore:

Proposition 3.5. If the default time τi is discretely sampled at the same time grid {t} as the common factor

Xt , the τi are independent conditioned on the full path of Xt .

Definition 3.4 not only specified the default indicator copulas and the {JDDI(t)}, it also determines the

JDDT and the full systemic spread dynamics if more information on the dynamics of the common factor

process is known:
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Proposition 3.6. In Definition 3.4, the dynamics of Xt determines the systemic dynamics in the following

way:

1. At any time t, the marginal distributions F(x, t) determines the JDDI(t).
2. The Markov chain of Xt , ie: P[Xt |Xs] for all {t,s; t > s}, determines the JDDT .

3. The full dynamics of Xt determines the joint distribution of default time and the systemic factors

(JDDT SF)

The first property in Proposition 3.6 is due to the conditional independence of the default indicators,

which ensures that JDDI(t) is unique conditioned on a given value of Xt ; therefore the distribution F(x, t)
fully determines the unconditional JDDI(t). Similarly, the conditional independence of default time from

Proposition 3.5 ensures that the JDDT is unique conditioned on a given path of Xt , therefore the uncondi-

tional JDDT is fully determined by a Markov chain on Xt which specifies the distribution of all the possible

paths of Xt .

Proposition 3.6 implies that each Markov chain on Xt uniquely defines a default time copula. However,

the Markov chain does not fully specify the dynamics of Xt because the Xt may further depends on other state

variables2. Therefore, the JDDT can be viewed as the marginal distribution of the even broader JDDT SF ,

which is the joint distribution of default times, Xt and other systemic factors. The full specification of Xt

dynamics has to uniquely determine the JDDT SF because the Xt is the only source of systemic randomness

in Definition 3.4.

A key benefit that directly follows the first property in Proposition 3.6 is the “time locality”: if we change

F(x, t) at a given t, it only affects the JDDI(t) for that time and it won’t affect the JDDI(t) at any other time.

Furthermore, the µi(0, pi(x, t)) and σ2
i (0, pi(x, t)) of recovery rates in (4), (5) only depend on the conditional

default probability pi(x, t), therefore:

Proposition 3.7. The loss distribution from Definition 3.4 and the stochastic recovery specifications in

(4), (5) also has the “time locality”, i.e.: the loss distribution at a given time horizon t in this modelling

framework is fully determined by the marginal distribution F(x, t).

The “time locality” is a very important property that greatly simplifies the pricing and calibration across

multiple maturities. With “time locality”, the CDO tranches can be priced from the marginal distributions

of F(x, t) via (14), (15) without knowing the joint distribution (aka, the Markov chain) of Xt across multiple

time horizons; and the calibration to different maturity can be carried out almost independently by finding

the appropriate marginal distribution F(x, t)3. The only constraints on the calibration across maturities are

the monotonic constraint from (11), (12) and (8), which are technical in nature and normally do not pose

any serious limitations. In contrast, the pricing and calibration across multiple maturities can be quite chal-

lenging in existing bottom-up models without the “time locality” property. For example, in the “chaining”

model suggested by (Sidenius 2007), the tranche pricing requires multi-dimensional integration over the

joint distribution of Xt across multiple time horizons, which quickly become intractable numerically when

the number of maturities increases.

Pricing and calibrating across multiple maturities consistently has been one of the most difficult mod-

elling problem in synthetic CDOs. We addressed this difficult problem effectively by constructing the mod-

elling framework with the “time locality” property. The “time locality” property is a key consideration in

the specification of the default indicator copulas in Definition 3.4, as well as the stochastic recovery in (4)

(5).

2For example, Xt can be an integral of an underlying hazard rate process yt , as in (Chapovsky, Rennie & Tavares 2006)
3The pi(x, t) has to be re-calibrated using (10) when changing the F(x, t) in order to maintain the consistency with the single

name default probability pi(t)
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Figure 2: Progressive Calibration of the Model

Steps Model Info. Model Parameters Market Input Products Covered

1 {JDDI(t)} F(x, t)
Single name CDS and

Index Tranches, Very

Liquid

Bespoke CDOs, NTD Bas-

ket, long/short CDO and

CDOn

2 JDDT Markov chain on Xt

Some market observ-

ables on default path

dependent instruments.

Illiquid

All default path-dependent

instruments, such as water-

fall synthetics, forward start-

ing or step-up tranches, loss

triggered LSS

3 JDDT SF Full dynamics of Xt

Very few market observ-

ables on tranche options,

almost no liquidity

Products that depend on

systemic spread dynamics:

such as senior tranche op-

tions, spread triggered LSS

etc

4

JDDT SF +

idiosyncratic

spread dynam-

ics

Full dynamics in Xt +

idiosyncratic dynam-

ics compatible with

pi(x, t)

Some market observ-

ables on single name

swaption, some liquidity

Products that depend on

both systemic and idiosyn-

cratic spread dynamics, such

as junior tranche options,

etc.

3.4 Progressive Calibration

Proposition 3.6 directly connects the dynamics of Xt to the systemic dynamics of the model. It allows us to

calibrate the model progressively by choosing the appropriate properties of the Xt process. For example, we

can change the JDDT without affecting the {JDDI(t)} and the loss distribution by building different Markov

chains on the same marginal distribution of F(x, t); we can also change the JDDT SF without changing the

JDDT by choose different dynamics of Xt while preserving the Markov chain of Xt .

A very rich set of research has been published on building top-down models on the portfolio loss process.

A very convenient observation is that if we add the additional constraint that the Xt is positive, then the Xt has

the exactly same property as the portfolio loss process, i.e., they are both positive and increasing. Therefore,

existing top-down methods that were intended for the portfolio loss process can be easily applied to construct

the Markov chain or the full dynamics process of Xt . This hybrid approach combines the best features of the

top-down and bottom-up models as it preserves all the single name information, and it admits very rich and

flexible systemic spread dynamics (i.e.: the JDDT and JDDT SF).

The copula functions in the Definition 3.4 also admit idiosyncratic spread dynamics. By “idiosyncratic”,

we mean factors that are only specific to a given issuer, which are independent from systemic factors as well

as idiosyncratic factors of other issuers. The pi(X0, t) term structure defines the default probability from

the idiosyncratic spread dynamics because there is no contribution from systemic factors if Xt remains

constant at its initial value X0. The idiosyncratic spread dynamics could affect the pricing of certain exotic

instruments, e.g., junior tranche options.

Figure 2 is a summary of the progressive calibration procedure made possible by Proposition 3.6. In

the progressive calibration procedure, each step only specify the necessary properties of the Xt process to

accommodate the corresponding market information. The earlier steps do not limit the generality of the later

steps; and the later steps always preserve all the model parameters and properties from the earlier steps. The

progressive calibration procedure in Figure 2 is very attractive in practice because it allows instruments to
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be priced from the most liquid and reliable market information. For example, if the model is calibrated to

the step 2 and is used to risk manage a book containing bespoke CDOs and loss triggered LSS, then we are

certain that the bespoke CDO prices are fully determined by the liquid index tranches and underlying CDS

curves; and they are not affected by the views or observations on the forward losses which may be used to

calibrate the step 2. Suppose there is new market information on the forward losses, then only step 2 of the

model calibration needs to be updated, which only affects the pricing of the loss triggered LSS.

4 A Non-parametric Implementation

Following the general principles of the modelling framework presented in previous sections, we discuss the

details of a non-parametric implementation of the model, and show how exotic instruments can be priced.

The marginal distributions of Xt in this non-parametric implementation are sampled discretely by a fixed

grid in {x j}.

4.1 Choosing the pi(x, t)

This section describes the details of a non-parametric implementation of this modelling framework, where

the pi(x, t) function in the Definition 3.4 is chosen to follow that of (Chapovsky, Rennie & Tavares 2006):

pi(x, t) = 1− ci(t)e
−βi(t)x (16)

The βi(t) ≥ 0 is a loading factor on the systemic process. For simplicity, βi(t) is chosen so that the systemic

process contributes a constant fraction to the cumulative hazard:

log(E[e−βi(t)x]) = γi log(1− pi(t)) (17)

The γi ∈ [0,1] denotes the constant systemic fraction, which directly affects the correlation between individ-

ual name’s spread movements. 1− ci(t) is the default probability from the idiosyncratic dynamics, which

has to make up the rest of the cumulative hazard according to (10):

log(ci(t)) = (1− γi) log(1− pi(t))

This pi(x, t) specification is convenient because (9) to (11) are automatically satisfied. (12) is satisfied as

long as the βi(t) is increasing in t. A constant γi in (17) implies that the βi(t) is not guaranteed to be

increasing for all possible F(x, t). Therefore, the choice of either F(x, t) or γi has to be constrained in order

to maintain the monotonicity of the βi(t).

Consider two time periods t1 < t2 and suppose f (x, t1) and βi(t1) are already calibrated to market prices

at time t1. With a constant γi, a βi(t2) ≥ βi(t1) can always be found when the f (x, t2) is very close to the

f (x, t1) since in the limiting case of f (x, t2) = f (x, t1), the βi(t2) cannot be less than the βi(t1) given the

default probability in (17) is increasing: pi(t2) ≥ pi(t1). Therefore, the monotonicity of βi(t) can always be

enforced by making the f (x, t2) close to the f (x, t1).

In a diverse portfolio, the distressed names usually impose more constraints on the choice of f (x, t2)
since their default risk are concentrated in the front end before time t1, and their pi(t2) can be very close

to pi(t1). A constant γi may force f (x, t2) to be very close to f (x, t1) in order to satisfy the monotonicity

constraint of βi(t) for the most distressed names in the portfolio, which could undermine the model’s ability

to calibrate to the index tranches. Therefore for distressed names, it is better to have a time dependent γi(t)
which starts with a low value and increases over time, thus leaving more freedom in the choice of f (x, t2). It
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Figure 3: Stochastic Recovery
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also makes economic sense for very distressed names to have lower systemic dependencies in the short time

horizon.

The γi factors have to be high (> 80%) for the majority of the names in order to obtain good calibration

to the index tranches, which suggests that the main risk factor in current market is the systemic risk. For

simplicity, γi is chosen to be 90% for all names except for very distressed names in this implementation.

4.2 Stochastic Recovery

As discussed in section 2, only the µi(p, p) and σ2
i (p, p) of the recovery rate need to be specified in order

to price CDO tranches consistently. For simplicity, all credits are assumed to have the same functional form

of µ(p, p) and σ2(p, p). Figure 3 shows the mean and standard deviation of the recovery function used in

the non-parametric model implementation. The choice of µ(p, p) function is somewhat arbitrary, its overall

trend is chosen to be decreasing in p because it is desirable for the recovery to be lower in the bad states of

the market factor. A peak is created in µ(p, p) at 15% default probability just to show the ability to create

an arbitrary shape of the recovery term structure. The σ2(p, p) is assumed to be a fixed percentage of the

maximum variance for the given µ(p, p): σ2(p, p) = αµ(p, p)(1−µ(p, p)), where the α is chosen to be 25%

somewhat arbitrarily. If there are observations or views about the variance of a name’s recovery rate, the α

parameter can be changed to match those.

The µ(p, p) function in Figure 3 is multiplied by a name specific scaling factor to match the individual

credits’ CDS curve recovery at the 5Y tenor. Since the µ,σ2 are functions of the conditional default proba-

bility, the unconditional term recovery rate at time t for name i can be computed by integrating over all the

possible market factor values:

Ri(0, t) =
1

pi(t)

∫

µ(0, pi(x, t))pi(x, t) f (x, t)dx (18)

Even though µ(0, p) has a strong trend over p as shown in the Figure 3, the unconditional recovery rate

Ri(0, t) would exhibit a much milder trend over time due to the averaging effects through the integral in

(18). More results about the unconditional recovery rates are shown in the following sections.
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The pi(x, t), µ(p, p) and σ2(p, p) given in this section are just one example of possible model specifica-

tions. There could be many different specifications which are equally valid and effective under the general

principles of the Definition 3.4.

4.3 Calibration to Index Tranches

In this implementation, the F(x, t) is represented by a non-parametric distribution {q j} at the sampling grid

{x j}. We first discuss how to calibrate the {q j} to the expected tranche losses (ETL) at a given time horizon,

then we discuss the calibration to tranche prices across multiple maturities.

At a given time horizon t, the number of samples in {q j} is generally much greater than the number

of tranches, therefore the problem is under-determined: there can be infinitely many distributions that will

produce the same input ETL. Some exogenous assumptions on the marginal distribution {q j} are required

in order to find a unique solution. We chose to use the maximum entropy method which is well suited to

solve this type of under-determined problem in derivative pricing because the resulting distribution from the

maximum entropy method contains the least amount of information, thus is the least biased distribution for

the given market input. The readers are referred to (Vacca 2005) for a detailed discussion on the Maximum

Entropy method in CDO tranche calibration. (Vacca 2005) applied the maximum entropy method to the loss

distribution, the same method can be adopted for the Xt distribution.

The tranche ETLs as computed by (15) are linear constraints in the maximum entropy optimization.

All the conditional ETLs in (14) have to be computed first in order to apply the linear constraint of (15).

However, the conditional ETLs in (14) depend on the {q j} through the conditional default probability pi(x, t)
in (10); the µi(0, pi(x, t)) and σi(0, pi(x, t)) of the recovery rate also depends on {q j} through pi(x, t). To get

around this circular dependency between the conditional ETL and {q j}, we employed an iterative calibration

procedure where at each iteration, the conditional ETLs are first computed from the {q j} of the previous

iteration, then the maximum entropy method is used to obtain the {q j} for the next iteration. This iterative

procedure works quite well in practice, and usually only a few iterations are needed to converge to a unique

solution of {q j} that reproduces the input ETL.

Once we can calibrate the discretely sampled {q j} to the ETL at a given time, we can easily extend

the calibration to index tranche prices across multiple maturity by taking advantage of the “time locality”

property. The calibration at different maturities can be carried out as almost independently except that

additional linear constraints are needed in the maximum entropy optimization to ensure the (8) are met. One

technical issue is that the calibration at a single time grid requires the ETL as input, but we only observe the

index tranche prics but not the ETLs directly in the market4. There are two possible ways to address this:

1. use another model, e.g., base correlation, to extract the ETL surface at each quarterly date and cali-

brate the model to the full ETL surface. This ensures the maximum consistency to the existing base

correlation framework.

2. use an interpolation method on the distributions of the F(x, t) so that the distributions at all quarterly

dates can be interpolated from the distributions at the standard maturities of 5Y, 7Y and 10Y. Then

we can solve the {q j} and the ETLs at standard index maturities simultaneously during the iterative

calibration procedure. At the end of each iteration, we can compute the index tranche prices using

the interpolation method on F(x, t), then we can adjust the target ETLs according to the difference

between the tranche prices of the current iteration and the input market tranche prices. This adjust-

ment in ETL needs the ratio of change in tranche PV to the change in ETL (ie, ∂PV
∂ETL

), which can be

computed from the previous iteration.

4The PO contracts on index tranches are not yet liquid enough
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Figure 4: Model Calibration to CDX-IG9 on Jan. 15, 2009

Market Input ETL

Att Det 5Y 7Y 10Y

0.0% 2.6% 83.51% 87.23% 91.12%

2.6% 6.7% 57.22% 64.36% 71.28%

6.7% 9.8% 30.05% 41.47% 54.94%

9.8% 14.9% 18.02% 26.07% 36.49%

14.9% 30.3% 4.87% 7.20% 10.57%

30.3% 61.0% 4.05% 6.24% 8.54%

0.0% 100.0% 8.72% 10.96% 13.47%

ETL from Model Calibration

Att Det 5Y 7Y 10Y

0.0% 2.6% 83.54% 87.11% 90.62%

2.6% 6.7% 57.27% 64.10% 70.43%

6.7% 9.8% 30.16% 41.42% 54.52%

9.8% 14.9% 18.03% 25.83% 35.57%

14.9% 30.3% 5.02% 7.73% 11.01%

30.3% 61.0% 3.98% 5.74% 7.42%

0.0% 100.0% 8.72% 10.96% 13.47%

4.4 Spread Dynamics

Once we calibrated the discrete marginal distribution of {q j} for the common factor process cross the time

grid {t}, we can specify its JDDT by building a discrete Markov chain on Xt , and we can further define the

JDDT SF by fully specifying the underlying process of Xt .

Two different methods of building the Markov chain on Xt are implemented: co-monotonic and maxi-

mum entropy. A detailed description of these two methods can be found in (Epple, Morgan & Schloegl 2006)

where both of these methods were applied to the portfolio loss process following the typical top-down ap-

proach. The numerical methods in (Epple, Morgan & Schloegl 2006) can be applied to the discrete marginal

distribution {q j} without modification since the Xt and the loss process has the exact same properties.

Once we constructed the Markov chain, we can further introduce additional systematic factors to com-

plete the dynamics of Xt . Even though existing top-down models could be used, we instead propose a very

simple extension to the Markov chain of Xt . The advantage of this extension is its tractability and efficiency:

dynamic instruments whose payoff depends on future spreads can be efficiently priced using a lattice method

under this extension to the Markov chains. This extension is also very general, and it does not depends on

the details of the non-parametric implementation. We’ll discuss this dynamic extension in section 6 after

presenting some numerical results of the non-parametric model.

5 Numerical Results

In this section, some numerical results are presented from the non-parametric implementation of the general

framework described in section 4. The numerical results presented here uses the market data of CDX-IG9

on the close of Jan. 15, 2009, when the CDX-IG9 index spread is near its historical high. For simplicity of

the presentation, we only show the numerical results in ETLs at the standard 5Y, 7Y and 10Y maturuties; it

is not difficult to cover the full ETL surface of all quarterly date using either of the two methods described

in section 4.3. Since the ETL at the maturity is the main driving factor of the tranche prices, the numerical

results from the ETLs at the standard maturities can give us great insight to the model properties.
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Figure 5: Calibrated F(x, t)
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5.1 Calibration to Index Tranches

Following the method desribed in section 4.3, the non-parametric implementation is calibrated to the ETLs

of CDX-IG9 index as of the close of Jan. 15, 2009. Figure 4 shows the input ETLs from the tranche market

and the model calibration results. The market ETL inputs are extracted from a standard base correlation

model. The non-parametric model is able to calibrate quite closely to the input ETL across the three ma-

turities. Figure 5 showed the calibrated cumulative distribution function F(x, t) at 5Y, 7Y and 10Y. The

constraint (8) is built into the bootstrap process so that the resulting marginal distributions are compatible

with an increasing process. It is visually obvious that the calibrated F(x, t) indeed satisfy (8) since the three

CDF curves never cross each other. The iterative calibration procedure described in 4.3 is very fast, it only

takes a few seconds on a regular PC to calibrate the model to the 5Y, 7Y and 10Y ETLs.

Since the model expected recovery matches the CDS curve recovery at only the 5Y maturity, the single

name default probabilities at the 7Y and 10Y tenors are adjusted accordingly to preserve the expected loss5

of the input CDS curves. The calibration results showed that the expected portfolio losses of the 0-100%

tranche are exactly preserved at all the maturities.

5.2 Implied Recovery Rate Term Structure

As the most common practice, traders only mark a single recovery value for a CDS curve, which we refer

to as the “curve recovery”. The calibrated model matches the CDS curve recovery exactly at the 5Y tenor,

but not at the 7Y and 10Y. Figure 6 showed the scatter plots of the difference between the 7Y and 10Y

model implied recoveries from the curve recoveries for all the 122 names in the CDX-IG9 portfolio. The

horizontal axis is the default probability at the corresponding tenor. Figure 6 showed that the model expected

recoveries at 7Y and 10Y only differ by a few percentage points at most from the curve recoveries. Given

that the recovery locks are only traded for distressed names at very short maturity with wide bid/offer, the

small deviation from curve recovery is not a problem in practice.

5We can also choose to match the CDS spread or upfront instead of the expected loss. We choose to match the expected loss

because the inputs to calibration are expected tranche losses, and we want to preserve the portfolio expected loss. Matching CDS

expected loss results in very similar CDS spreads or upfronts as the inputs since the PV01 differences due to recovery changes are

normally very limited.
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Figure 6: Expected Recovery Change
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Figure 7: Monte Carlo Simulation of Tranche Loss

Co-monotonic Markov Chain

Att Det 5Y 7Y 10Y

0.0% 2.6% 83.59% 87.15% 90.64%

2.6% 6.7% 57.18% 64.10% 70.46%

6.7% 9.8% 30.12% 41.35% 54.48%

9.8% 14.9% 18.02% 25.81% 35.49%

14.9% 30.3% 5.02% 7.73% 11.01%

30.3% 61.0% 3.97% 5.73% 7.40%

0.0% 100.0% 8.71% 10.95% 13.46%

Maximum Entropy Markov Chain

Att Det 5Y 7Y 10Y

0.0% 2.6% 83.54% 87.08% 90.62%

2.6% 6.7% 57.18% 64.08% 70.46%

6.7% 9.8% 30.16% 41.36% 54.47%

9.8% 14.9% 18.00% 25.84% 35.52%

14.9% 30.3% 4.97% 7.70% 11.00%

30.3% 61.0% 3.93% 5.72% 7.39%

0.0% 100.0% 8.68% 10.94% 13.45%

5.3 Monte Carlo Simulation

A simple Monte Carlo simulation of default time is implemented in this section to verify the consistency

and correctness of the proposed modelling framework. A Monte Carlo simulation of default times can also

be used to price exotic instruments that only depends on the JDDT but not the JDDT SF . According to

Proposition 3.6, a Markov chain of Xt is needed in order to simulate the default times according to the

JDDT .

Figure 7 showed the simulated ETLs at the three maturities from drawing 1,000,000 independent default

time and recovery paths from both of the co-monotonic and maximum entropy Markov chains. The default

time and recovery paths are drawn using the following steps:

1. Draw a full path of Xt over time from the Markov chain.

2. Use the pi(x, t) function to compute the conditional default probability term structures of all the un-

derlying names for the given path of Xt .

3. For each name, draw an independent uniform random number di which represents the conditional de-

fault probability. di is then used to determine the default period of the corresponding name according
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Figure 8: Temporal Correlation of Incremental Portfolio Losses

Co-monotonic Markov Chain

- 0-5Y 5Y-7Y 7Y-10Y

0-5Y 1 .5027 .4887

5-7Y .5027 1 .2109

7-10Y .4887 .2109 1

Maximum Entropy Markov Chain

- 0-5Y 5Y-7Y 7Y-10Y

0-5Y 1 .4199 .3936

5-7Y .4199 1 .1227

7-10Y .3936 .1227 1

to the conditional default probability term structure.

4. For each name defaulted before the final maturity (10Y), compute its spot recovery mean and variance

µi(di,di), σ2
i (di,di).

5. Draw an independent recovery rate for any defaulted name from a two point distribution whose mean

and variance are given by the µi(di,di), σ2
i (di,di).

After drawing the default time and recovery path, the tranche losses at all tenors are computed from the

same default time and recovery path to ensure full consistency across all maturities. Then the tranche losses

from these independent default time and recovery paths are averaged to produce the ETL.

The simulated ETLs from the two Markov chains are very close to each other, which is expected since

they have identical {JDDI(t)} by construction. Both of the simulated ETLs are very close to the semi-

analytical calibration results shown in Figure 4, where the normal approximation is used to build the condi-

tional loss distribution. The maximum difference in the ETL between the Monte Carlo simulation and the

semi-analytical pricing with normal approximation is less than 0.1%. The ETL difference of this magnitude

is clearly negligible for practical purposes. It is also verified that a different spot recovery rate distribution,

such as the beta distribution, produces very similar results to those in Figure 7, as long as the µ(p, p) and

σ2(p, p) of the recovery rate are matched.

However, the two Markov chains lead to very different JDDT s. Figure 8 showed the correlation matrix

between the simulated incremental portfolio losses in the three periods (0-5Y, 5Y-7Y and 7Y-10Y), con-

ditioned on the portfolio loss before 5Y is less than 10%. It is evident that the temporal loss correlation

from the co-monotonic Markov chain is much stronger than that of the maximum entropy Markov chain.

The temporal loss correlation is a critical factor in pricing exotic correlation instruments such as forward-

starting tranche and loss-triggered LSS. This example showed that top-down methods can be applied to

change the JDDT while preserving the calibrated {JDDI(t)} due to Proposition 3.6.

Figure 9 showed two scatter plots of the simulated vs. the CDS curve expected losses for all 122

underlying names over the three maturities. All the dots in Figure 9 are perfectly aligned along the diagonal

line in this scatter plot, which showed that the Monte Carlo simulation correctly preserves all the single

names’ expected losses across all three maturities.

6 Conditional Markov Chain

Exotic instruments whose payoff depends on future spreads, such as tranche options, can be priced from

the JDDT SF and the idiosyncratic dynamics. The idiosyncratic dynamics is easy to handle because it

is independent from other factors by definition. Therefore, we can price these spread-dependent exotic

instruments if we can fully specify the dynamics of Xt and the JDDT SF . Since the Markov chain of Xt is

specified in the 2nd step of the progressive calibration procedure in Table 2, it would be the most convenient
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Figure 9: Simulated Single Name Expected Loss
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numerically if we can specify the Xt dynamics in the 3rd step to be consistent with the Markov chain from the

2nd step. In this section, we propose a conditional Markov chain method that fully specifies the dynamics of

Xt while maintaining consistency with its Markov chain, thus allowing the JDDT FS to be changed without

changing the JDDT and {JDDI(t)}.

Suppose the time is discretely sampled by {t} and the market factor process Xt is discretely sampled by

a fixed grid of {x j}; we denote the discrete Markov Chain of Xt as P{Xt+1 ≤ x|Xt}, which is the probability

of Xt+1 ≤ x for any x conditioned on the value of Xt . We assume a simple Ornstein-Uhlenbeck driver process

ys exists for the Markov chain:

dys = κ(ys − ȳ)ds+ vdWs

The OU process is parameterized by its long run mean ȳ, mean reversion coefficient κ and volatility v. We’ve

chosen the simple OU process because its yt distribution is Gaussian, and its mean and variance are easy to

compute:

µt = E[yt ] = y0e−κt + ȳ(1− e−κt)

σ2
t = Var[yt ] =

v2

2κ
(1− e−2κt)

where y0 is the initial value of ys. We then define a zt process from the driver process:

zt+1 = β
yt −µt

σt

+
√

1−β2et+1

where et+1 is an independent standard normal random variable; therefore zt+1 is also standard normal. The

zt+1 determines the outcome of the transition from Xt to Xt+1. Similar to a Gaussian Copula, we can define

a threshold c j(Xt) for each possible outcome of Xt+1 = x j:

P{zt+1 < c j(Xt)|Xt} = P{Xt+1 ≤ x j|Xt}

Similar to the conditional default probability in the standard Gaussian Copula, we can then compute the

transition probability conditioned on the value of yt and Xt :

P{Xt+1 ≤ x|Xt ,yt} = P{zt+1 < c j(Xt)|Xt ,yt} = Φ(
c j(Xt)−β yt−µt

σt
√

1−β2
) (19)
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Note that even though yt is standard normal unconditionally, its distribution is generally not standard normal

conditioned on Xt , therefore, the threshold c j(Xt) has to be determined by the following relationship:

P{Xt+1 ≤ x|Xt} = E[P{Xt+1 ≤ x|Xt ,yt}|Xt ] =
∫

Φ(
c j(Xt)−β yt−µt

σt
√

1−β2
) f (yt |Xt)dy (20)

where f (yt |Xt) is the distribution of yt conditioned on the value of Xt .

The Xt is the common economic factor that encapsulates the overall health of the economy. In this

simple specification, the zt+1 determines the outcome of the Xt+1 from Xt ; the zt process can be viewed as

the underlying economic factors that drives the trend of overall economic movements. The zt+1 consists of

two parts, a time-persisting yt−µt

σt
that affects multiple periods, and a random shock et+1 that only affect a

single period from t to t +1. The β parameter controls the mixture of these two contributing factors. The yt

can be viewed as the slow-moving market wide economic forces such as overall production and consumption

etc., and et are random shocks such as natural disaster or unpredictable geopolitical events. The yt process

is mean-reverting to capture the overall economic cycles. Under the conditional Markov chain, the market

filtration Ft includes Xt ,yt and the realized defaults.

The β parameter is very important in this specification. The higher the β, the more information we can

infer about the future distribution of Xt by observing yt . In the limiting case of β = 0, yt process gives

no additional information. Everything else equal, a higher β will cause the tranche prices at t to be more

volatile because they are more sensitive to the value of yt , which leads to higher value of tranche options.

Thus we can use the β parameter to calibrate the model to tranche options if their prices become observable.

The β parameter can also be made time- and Xt-dependent to match option prices across time and capital

structure. Therefore, this simple conditional Markov chain extension allows straight-forward calibration to

tranche option prices cross time and capital structure.

In this simple specification, the transition outcomes from all the values of Xt are controlled by the same

yt process. We could use different yt processes for different value of Xt , but there is no obvious economic

justification or practical benefits of that; therefore we choose to use same yt for all Xt for simplicity.

The advantage of this simple specification is its tractability and flexibility. The conditional transition

probability for a single time period is explicitly given by (19); and the conditional transition probability

is fully consistent with the unconditional transition probability of the Markov Chain by construction. A

two-dimensional lattice of (Xt ,yt) can be built numerically for multiple time periods, and various dynamic

payoffs can be priced via backwards induction on the (Xt ,yt) lattice. Since the 2-D lattice accurately tracks

the conditional distribution f (yt |Xt), the threshold c j(Xt) can be easily computed from (20) at each time

step.

The lattice pricing technique suggested here has some similarity to the lattice method in (Chapovsky,

Rennie & Tavares 2006). The numerical methods to build the 2-dimensional lattice here is much simpler

than those in (Chapovsky, Rennie & Tavares 2006) since the full 2-D lattice can be built using the exact

formulas in (19) and (20); while the 2-D lattice in (Chapovsky, Rennie & Tavares 2006) is constructed

via an approximation to a partial integral differential equation (PIDE), which is non-trivial numerically.

The root searching in (20) is the only time-consuming part of building the 2-D lattice, which has a similar

order of complexity as a single CDO pricing in the Random Factor Loading model described in (Andersen

& Sidenius 2004). Therefore, the numerical construction of the 2-dimensional lattice and the subsequent

pricing of dynamic payoff should take similar amount of time as the pricing of a single CDO tranche under

the RFL model, which is fast enough for practical pricing and risk management purposes.

To illustrate the lattice pricing method, we constructed the 2-D (Xt ,yt) lattice on the maximum entropy

Markov chain built from section 5.3 with the follow parameters κ = .05, ȳ = y0 = v = 1. The 2-D lattice
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Figure 10: CDX-IG9 5Y to 10Y Tranche Option Prices

IG9 Tranches β Values

Att Det 0% 25% 50% 75% 100%

0.0% 2.6% 6.80% 6.80% 6.82% 6.86% 6.92%

2.6% 6.7% 17.76% 17.75% 17.75% 17.79% 17.91%

6.7% 9.8% 18.92% 19.05% 19.32% 19.63% 20.05%

9.8% 14.9% 15.97% 16.30% 16.80% 17.34% 17.85%

14.9% 30.3% 8.13% 8.13% 8.13% 8.13% 8.13%

30.3% 61.0% 6.73% 6.73% 6.73% 6.75% 6.81%

60.0% 100.0% 1.73% 1.73% 1.73% 1.74% 1.77%

is then used to price the 5Y to 10Y European tranche options6, where the holder has the right (not the

obligation) to buy protection on a 10Y zero-coupon CDX-IG9 tranches at 5Y with fixed strike prices equal

to the 10Y ETL. For simplicity, we ignored all the discounting factors7. It only takes a few seconds to build

the 2-D lattice and price all the tranche options in Figure 10 on a regular PC. As expected, the higher β

values result in higher tranche option prices in this example. The choice of Markov chain also have a strong

impact on the tranche option values, for example, the co-monotonic Markov chain would results in higher

tranche option valuation because the future Market factor distribution is more predictable from its current

value under a co-monotonic Markov chain.

Similar to (Chapovsky, Rennie & Tavares 2006), the 2-D lattice does not keep track of realized defaults

or idiosyncratic default factors for numerical tractability. Ignoring these information generally leads to

sub-optimal exercise of the option, therefore the tranche option prices from the lattice method is actually a

lower bound rather than the exact price in the strict sense. However, since the realized defaults and the Xt

process are highly correlated in this model setup, and the idiosyncratic dynamics generally has very small

contribution as discussed in section 3.2; the resulting prices from the lattice method should be a very close

lower bound as very little new information can be added by the realized loss and idiosyncratic factors. The

exact pricing rather than a close lower bound can be obtained by a least-square Monte Carlo simulation as

described in (Longstaff & Schwartz 2001). Both the realized loss and idiosyncratic dynamics can be tracked

accurately within the Monte Carlo simulation. The Monte Carlo simulation is very useful for checking the

accuracy of the lattice implementation, and for quick turn around of exotic structures. However, in most

practical situations, the lattice method is preferred since it is much faster and allows easy computation of

deltas and risks.

In (Chapovsky, Rennie & Tavares 2006), the yt process determines both the unconditional transition

probability and conditional transition probability of the Xt . In this setup, the yt process only controls the

conditional transition probability of the Xt , and the unconditional transition probability of Xt can be either

calibrated to relevant market information, or can be specified exogenously as in the example of the Max-

imum Entropy Markov Chain. Our approach is more flexible because it allows the users to choose the

unconditional transition rate of Xt and JDDT directly. The model implied tranche price and loss distribu-

tion are not affected by the choice of the Markov chain because the JDDI(t) remains invariant. Whereas

in (Chapovsky, Rennie & Tavares 2006), there is no easy way to adjust the unconditional Markov chain

or the JDDT directly since the the yt process itself is calibrated to index tranche market, and changing its

parameter would change the loss distribution and tranche prices. Also, the Xt process in (Chapovsky, Ren-

6The 5Y and 10Y standard maturity for IG9 are Dec 20, 2012 and Dec 20, 2017
7The effects of discounting is roughly a constant multiplying factor on all the option prices
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nie & Tavares 2006) is always continuous because it is an integration of the yt process, while the Xt in our

specification admits large jumps. Therefore, our specification is more general than (Chapovsky, Rennie &

Tavares 2006), and it can capture a wider variety of possible market spread dynamics.

The affine jump diffusion (AJD) process is a very popular choice recently in building the bottom-up

dynamic correlation models. In AJD models, the jump is usually modelled as independent Poisson jumps

with a deterministic hazard rate for tractability, as in (Chapovsky, Rennie & Tavares 2006). In such an

AJD model, the senior tranches only suffer losses once a large jump arrives. Since a Poisson process is

memoryless, the probability of large jumps does not depends on any systemic state variables in the market

filtration. Therefore the senior tranche’s expected loss and spreads tend to exhibit very low volatility in such

an AJD dynamic model. In the proposed conditional Markov chain, the Xt process can have large jumps, and

the probability of large jump arrivals depends on the current value of yt , therefore this modelling framework

can produce high senior tranche volatility as observed in recent market.

Even though it is quite easy to construct other alternative specifications of the Xt process following the

general framework described in this paper, the conditional Markov Chain method described here has the

advantage of being very simple, tractable and fast. Therefore it could be a practical solution to price and

manage exotic correlation products.

7 Conclusion

This paper proposed a tractable and consistent stochastic recovery specification, and a very generic dynamic

correlation modelling framework that combines the best features of the top-down and bottom-up approaches:

it is fully consistent with all single name information and admits very rich and flexible spread dynamics.

The modelling framework is equipped with the important “time locality” property, which allows easy and

accurate calibration to the index tranche prices across multiple maturities. Calibration to the index tranches

across multiple maturities in a consistent model has been a very difficult modelling problem, and the “time

locality” property is the key to address it.

The Property 3.6 of the proposed modelling framework allows us to calibrate the model progressively

(as in table 2) to different types of market instruments. Vanilla instruments, such as CDO tranches, can be

efficiently priced using the semi-analytical method with normal approximation. The conditional Markov

chain in section 6 is a very simple and fast method to price dynamic instruments, such as tranche options.

Therefore, this modelling framework can cover a wide variety of credit instruments and can be very useful

in practice.
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