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Abstract

In the following article the ideal band-pass filter is derived and ex-

plained in order to subsequently analyze the approximations by Baxter

and King (1999) and Christiano and Fitzgerald (2003). It can be shown

that the filters by Baxter and King and Christiano and Fitzgerald pri-

marily differ in two assumptions, namely in the assumption about the

spectral density of the analyzed variables as well as in the assumption

about the symmetry of the weights of the band-pass filter. In the article

at hand it is shown that the different assumptions lead to characteristics

for the two filters which distinguish in three points: in the accuracy of the

approximation with respect to the length of the cycles considered, in the

amount of calculable data points towards the ends of the data series, as

well as in the removal of the trend of the original time series.
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1 Introduction

If the gross domestic product of a country, a sector or an industry is analyzed

“with the naked eye”, clear business cycles are barely recognizable; visible is at

best the long-term trend, and maybe for some time series also the short-term

noise, but hardly ever the medium-term business cycles.

Therefore, mathematical methods have to be used, which divide a time series

into a long-term trend, medium-term business cycles and short-term noise. Such

methods are, out of obvious reasons, called filter methods or filter techniques,

as they filter certain characteristics out of a time series.

In the literature several techniques are known to filter business cycles out of

the gross domestic product. However, in the following only the band-pass filters

by Baxter and King (1999) and Christiano and Fitzgerald (2003) are discussed.

The band-pass filters by Baxter and King and Christiano and Fitzgerald are

very similar in their design; they solely differ in the approximation of the ideal

band-pass filter to a filter which can be applied in reality.

The article at hand firstly tries to theoretically derive the ideal band-pass

filter as comprehensible as possible to further - secondly - analyze the approxi-

mation by Baxter and King (1999) and Christiano and Fitzgerald (2003). More-

over, it is attempted to highlight the differences between the two filters.

For this purpose section 2 theoretically develops the band-pass filters to

subsequently discuss the approximation by Baxter and King (1999) in section 3

and the one by Christiano and Fitzgerald (2003) in section 4. Section 5 then

compares the two filters and concludes.

2 Ideal Band-Pass Filter

In the following sections the ideal band-pass filter, which constitutes the basis

for the approximations by Baxter and King (1999) in section 3 and the one by

Christiano and Fitzgerald (2003) in section 4, is derived.

For the construction of the ideal band-pass filter, the criteria which have to
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be met during the extraction of the data, are defined according to Baxter and

King (1999).

Table 1: Band-pass filter criteria

1. The application of an ideal band-pass should result in a stationary time series even
when applied to trending data.

2. The filter should extract a specified range of periodicities.

3. The filter should leave the properties of the extracted component unaffected.

4. The ideal band-pass filter should not introduce phase shifts, i.e. it should not alter the
timing relationships between series at any frequency.

These criteria apply to both, the ideal band-pass filter which will be de-

veloped in the following sections, and the approximations by Baxter and King

(1999) and Christiano and Fitzgerald (2003).1

2.1 Stationary Time Series

In this section it is shown that the first criteria from table 1 is fulfilled, whereby

a band-pass filter which is applied to data with a stochastic or a quadratic

deterministic trend results in a stationary time series.

The band-pass filter is a symmetric linear filter. The observed time series yt

is thereby transformed into a new series xt:

xt =

∞
∑

j=−∞

ψjyt−j

= ψ(L)yt (1)

whereas ψ(L) =
∑∞

−∞
ψjL

j and L is a lag operator of the form Ljyt = yt−j .

To construct a filter which eliminates stochastic and quadratic deterministic

trends, two assumptions for ψ(L) are made. Firstly, the weights of the filter

must add up to zero

∞
∑

j=−∞

ψj = 0

1The approximation according to Christiano and Fitzgerald (2003) does not assume a
symmetric filter and therefore does not meet the first criteria from table 1.
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and secondly, the weights of the filter must be symmetric

ψj = ψ−j .

Appendix A and B proof that symmetric linear filters as described in equation 1

with weights that add up to zero have characteristics which remove stochastic

and quadratic deterministic trends.

2.2 Extraction of Specific Periodicities

In a next step a filter is constructed which extracts a certain band of periodicities

and hence meets the second criteria from table 1.

The main part of a band-pass filter is a so-called low-pass filter. Ideal low-

pass filters pass frequencies of the band −ω ≤ ω ≤ ω, or |ω| ≤ ω respectively.2

For the creation of a low-pass filter the methodology of the spectral analysis is

applied. Thereby it is assumed that a time series can be described as a weighted

sum of strictly periodic processes. Moreover, the spectral representation the-

orem states that every time series within a broad class can be decomposed in

different frequency components. The equation by Fourier (1822, p. 250) shows

that an arbitrary function, which repeats itself after a certain period, consists of

harmonic oscillations; that is sines and cosines functions with different phases

and amplitudes and a well defined frequency. In other words: It is assumed that

time series can be represented as a combination of an infinite amount of sines

and cosines functions.

The equation by Fourier (1822) is often written as

f(ω) =

∞
∑

j=0

(αj cos(ωj) + βj sin(ωj)) (2)

2To construct and ideal band-pass filter, two low-pass filters are being subtracted, so that
frequencies of the band ω ≤ |ω| ≤ ω are let pass.
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whereas ω = 2π
T

. To transform equation 2 the Euler relations3

e±iω = cos(ω) ± i sin(ω) (3)

are required, whereas i =
√
−1. The equation by Fourier can then be written

as

f(ω) =

∞
∑

j=0

1

2
(αj − iβj)e

iωj +

0
∑

j=−∞

1

2
(α−j + iβ−j)e

−iωj .

If this notation is extended with complex coefficients by defining ψj as 1
2 (αj −

iβj) for j > 0, α0 for j = 0 and 1
2 (α−j + iβ−j) for j < 0, the Fourier equation

takes the following shape:

f(ω) =

∞
∑

j=−∞

ψje
iωj .

Hence, the ideal low-pass filter has the form

ψ(L) =

∞
∑

j=−∞

ψjL
j

with a frequency response function of

ψ(eiω) =

∞
∑

j=−∞

ψje
iωj (4)

whereas ψj = 1
2 (αj − iβj) for j 6= 0 and ψ0 = α0 for j = 0.4

2.3 No Influence

To fulfill the third criteria from table 1, whereby the time series must remain

unaffected, the gain is set to 1 for those frequencies that shall be filtered out

3The Euler (1793) relations are often mistakenly cited as de Moivre (1722) theorem. How-
ever, the Euler relations are a derivation of the de Moivre theorem (cos(x) + i sin(x))n =
cos(nx) + i sin(nx) and the exponential law (eix)n = einx.

4The condition of symmetry ψj = ψ−j leads to αj − iβj = α−j + iβ−j . The constraint
that the weights of the filter sum up to zero brings forth α0 + 2

P

∞

j=1
(αj − iβj) = 0.
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and to 0 for all other frequencies.

The definition of the gain and phase of a linear filter in complex form is

ψ(eiω) = |ψ(eiω)|e−iθ(eiω) (5)

whereas |ψ(eiω)| is denoted as the gain and θ(eiω) as the phase of the filter. The

gain |ψ(eiω)| of the filter indicates the size of the change in the amplitude of the

cyclical components. The phase θ(eiω) refers to the degree of the displacement

of the cyclical components.

If a time series shall remain unaffected, an ideal low-pass filter which lets

frequencies between −ω ≤ ω ≤ ω pass, must have a gain of 1 for |ω| ≤ ω and 0

for |ω| > ω. Thus, the third criteria from table 1 signifies that

|ψ(eiω)| =











1 for |ω| ≤ −ω

0 elsewhere











. (6)

2.4 No Phase Shifts

To fulfill the fourth criteria from table 1, whereby no phase shifts may occur, the

phase θ(eiω) of the filter must be set to 0. Hence, from equation 5 it becomes

apparent that ψ(eiω) is symmetric; it is necessary that

ψ(eiω) = ψ(e−iω) = |ψ(eiω)|.

If this result is combined with equation 6, it can be shown that

ψ(eiω) =











1 for |ω| ≤ −ω

0 elsewhere











.

2.5 Weights of the Low-Pass Filter

The individual weights ψn of the low-pass filter can now be calculated by means

of the Fourier transformation. The derivation of the Fourier transformation can
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be found in appendix C. The transformation of equation 4 results in

ψn =
1

2π

∫ π

−π

ψ(eiω)e−iωndω (7)

whereas ψ(eiω) =
∑∞

j=−∞
ψje

ijω .

As it was shown that ψ(eiω) = 1 for −ω ≤ ω ≤ ω, the individual weights

from equation 23 can now be exactly determined for n 6= 0:

ψn =
1

2π

∫ ω

−ω

e−iωndω

=
1

2πin

(

eiωn − e−iωn
)

.

If the Euler relations from equation 3 are again applied, it can be shown that

eiω − e−iω = 2i sin(ω) and hence, that for n 6= 0

ψn =
1

πn
sin(ωn).

For n = 0, the following result holds:

ψ0 =
1

2π

∫ ω

−ω

dω

=
ω

π
.

Recapitulating, it can be shown that the weights of a low-pass filter can be

written as

ψn =











1
πn

sin(ωn) for n 6= 0

ω

π
for n = 0











2.6 Weights of the Band-Pass Filter

As mentioned before, the band-pass filter is only a combination of two low-pass

filters. To construct an ideal band-pass filter which allows frequencies of the

band ω ≤ |ω| ≤ ω, a low-pass filter with the frequency ω is subtracted from a
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low-pass filter with the frequency ω.

Thus, if the frequency response functions of the two low-pass filters are

characterized as ψLP (eiω) and ψLP (eiω), the band-pass filter has a frequency

response function of

ψBP (eiω) = ψLP (eiω) − ψLP (eiω).

According to equation 7, the weights of the band-pass filter then take the form

ψn =
1

2π

∫ π

−π

ψBP (eiω)e−iωndω

=
1

2π

∫ π

−π

ψLP (eiω)e−iωndω − 1

2π

∫ π

−π

ψLP (eiω)e−iωndω.

It is now obvious that the weights of the band-pass filter can be written as

ψn =











1
πn

(sin(ωn) − sin(ωn)) for n 6= 0

ω−ω

π
for n = 0











with ω = 2π
Tmax

and ω = 2π
Tmin

, while Tmax is the maximum and Tmin the

minimum duration of the cycles to be extracted.

Consequently, the ideal band-pass filter is a symmetric linear filter of the

form

xt =

∞
∑

n=−∞

ψnyt−n (8)

with a frequency response function of

ψ(eiω) =
∞
∑

n=−∞

ψne
iωn (9)
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and weights of the form

ψn =











1
πn

(

sin( 2πn
Tmax

) − sin( 2πn
Tmin

)
)

for n 6= 0

2
Tmax

− 2
Tmin

for n = 0











. (10)

whereas Tmax denotes the maximum and Tmin the minimum duration of the

business cycles.

However, as already mentioned at the beginning of this section the filter in

equations 8 to 10 concerns an ideal band-pass filter. To calculate such a filter an

infinite-order moving average would be necessary, which requires a data series

of infinite lengths. As such data series do not exist in social sciences, the ideal

band-pass filter must be approximated for shorter data sets.

On this point, namely in the approximation of the ideal band-pass filter, the

filter by Baxter and King (1999) differs from the filter by Christiano and Fitzger-

ald (2003). Therefore, the approximation by Baxter and King is discussed in

the following to subsequently evaluate the approximation by Christiano and

Fitzgerald and ultimately to compare the two approximations.

3 Baxter-King Approximation

Baxter and King (1999) minimize the function

Q =

∫ π

−π

|ψ(eiω) − α(eiω)|2dω (11)

whereas ψ(eiω) =
∑∞

n=−∞
ψne

iωn is the frequency response of the ideal filter

from equation 8 and α(eiω) =
∑K

n=−K αne
iωn is the frequency response of the

approximated filter. Hence, ψ(eiω) − α(eiω) denotes the discrepancy of the

frequency response between the approximation and the ideal filter at frequency

ω. Thus, the loss function gives equal weight to the squared error terms of each

individual frequency.

In their article, Baxter and King (1999) refer to Koopmans (1974) who
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shows that a remarkably general result for this class of optimization problems

exists. The optimally approximated filter for a given maximum lag length K is

constructed by cutting off the weights of the ideal filter ψn at the lag K. This

result reflects the fact that every cut off term of a symmetric linear filter lies

orthogonal to the included terms. Thus, the optimal approximated filter sets

ψn = 0 for n > K whereas the weights ψn are given in equation 10.

To calculate this approximation the function from equation 11 is minimized

under the constraint that α(1) =
∑K

n=−K αn = 0.5 The Lagrange function then

takes the form L = Q− λα(1).

The derivation of L with respect to αj results in6

∂L

∂αj
= −2

∫ π

−π

(ψ(eiω) − α(eiω))(eiωj + e−iωj)dω − 2λ
!
= 0

as ∂(ψ(eiω)−α(eiω))
∂αj

= −(eiωj + e−iωj). If the equations for ψ(eiω) and α(eiω) are

inserted, one reaches the following result:

2
∞
∑

n=−∞

ψn

∫ π

−π

eiωn(eiωj + e−iωj)dω

= 2

K
∑

n=−K

αn

∫ π

−π

eiωn(eiωj + e−iωj)dω − 2λ.

In appendix C it was shown that
∫ π

−π
eiω(n−j)dω = 0 for n 6= j and that

∫ π

−π
eiω(n−j)dω = 2π for n = j, as well as that

∫ π

−π
eiω(n+j)dω = 0 for n 6= −j

and that
∫ π

−π
eiω(n+j)dω = 2π for n = −j. Thus, the derivation of L with

respect to αj can be written as

8πψj = 8παj − 2λ.

5Baxter and King (1999) omit the constraint in the main part of their article. However,
they mention it in the appendix and use a standardization in their computer program which
leads to the same result.

6If L is derived with respect to α0, the same result arises.
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The first order conditions then equal to

αj = ψj −
λ

4π
K

∑

j=−K

αj = 0

and λ can be denoted as

λ = −4π
ψ0 + 2

∑K

n=1 ψn

1 + 2K

whereas
∑K

n=−K ψn = ψ0 + 2
∑K

n=1 ψn.

This equation system can now be solved in order to distinctly determine αj .

Summarizing, the approximated band-pass filter by Baxter and King (1999) can

be written as

xt =

K
∑

j=−K

αjyt−j

with a frequency response function of

α(eiω) =
K

∑

j=−K

αje
iωj

and the weights

αj = ψj − Φ

while Φ =
ψ0+2

PK
n=1

ψn

1+2K is a standardization factor which ensures that the

weights of the approximated filter sum up to zero and hence that the approxi-

mated filter eliminates stochastic and quadratic deterministic trends. In equa-

tion 10 the weights ψj are defined as

ψj =











1
πj

(

sin( 2πj
Tmax

) − sin( 2πj
Tmin

)
)

for j 6= 0

2
Tmax

− 2
Tmin

for j = 0










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whereas Tmax denotes the maximum and Tmin the minimum duration of the

business cycles.

4 Christiano-Fitzgerald Approximation

Christiano and Fitzgerald (2003) consider the case that yt exists only for t =

1, . . . , T and minimize the function

Q =

∫ π

−π

∣

∣ψ(eiω) − β(eiω)
∣

∣

2
fy(ω)dω. (12)

While ψ(eiω) =
∑∞

n=−∞
ψne

iωn denotes the frequency response function of the

ideal band-pass filter from equation 8, β(eiω) =
∑t−1

n=t−T βne
iωn is the frequency

response function of the approximated filter, and fy(ω) denotes the spectral

density of yt. This formulation of the loss function stresses that the solution

to the problem depends on the characteristics of the time series of the filtered

data, that is the spectral density.

It becomes apparent that the loss function by Baxter and King (1999) is a

special case of the loss function by Christiano and Fitzgerald (2003). If it is

assumed that yt is independent and identically distributed, then fy(ω) = 1 and

if further, it is assumed that the weights are symmetric, the loss function by

Christiano and Fitzgerald equals the one by Baxter and King.

In contrast to the filter by Baxter and King (1999), the filter by Chris-

tiano and Fitzgerald (2003) does not assume that the weights βj are symmetric.

Therefore, according to appendix A and B, the Christiano and Fitzgerald filter

does not eliminate trends in the data series yt. Hence, before applying this filter,

the stochastic or deterministic trends of a data series must be removed.

The main difference between the two filters consists in the fact that Chris-

tiano and Fitzgerald (2003) do not examine independent and identically dis-

tributed variables but an ARMA(1, q) representation of the time series. In

their article Christiano and Fitzgerald show that a random walk, that is an
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AR(1) representation of the form

yt = yt−1 + εt

is most suitable. In the following, the approximation by Christiano and Fitzger-

ald is only calculated for this optimal case of a random walk. The spectral

density of a random walk amounts to

fy(ω) =
1

(1 − e−iω)(1 − eiω)
.

Similar to Baxter and King (1999), Christiano and Fitzgerald (2003) solve

the optimization problem under the condition that β(1) =
∑t−1

n=t−T βn = 0. This

condition implies that β̂(eiω) is a finite-ordered polynomial, whereas β̂(eiω) is

defined as

β̂(eiω) =
β(eiω)

1 − eiω

and β̂(eiω) =
∑t−2

j=t−T βje
iωj . The connection between β̂j and βj can then be

described as β̂j = −
∑t−1
k=j+1 βk or in matrix form as



























β̂t−2

β̂t−3

β̂t−4

...

β̂t−T



























=



























−1 0 0 · · · 0 0

−1 −1 0 · · · 0 0

−1 −1 −1 · · · 0 0

...
...

...
. . . 0 0

−1 −1 −1 · · · −1 0





















































βt−1

βt−2

βt−3

...

βt−T



























(13)

whereas β̂ is a (T − 1) vector and β a (T ) vector. Hence, the matrix is of size

(T − 1) × (T ).

The optimization problem from function 12 can be written as

Q =

∫ π

−π

∣

∣

∣ψ̂(eiω) − β̂(eiω)
∣

∣

∣

2

dω

13



whereas ψ̂(eiω) = ψ(eiω)
1−eiω and β̂(eiω) = β(eiω)

1−eiω . Similar to section 3 the derivation

of Q with respect to βj can be denoted as

∂Q

∂βj
= 2

∫ π

−π

(

ψ̂(eiω) − β̂(eiω)
)

eiωjdω = 0

for j = t− 2, . . . , t− T , or respectively

∫ π

−π

ψ̂(eiω)eiωjdω =

∫ π

−π

β̂(eiω)eiωjdω. (14)

As already shown in section 3 the right hand side of equation 14 can be written

as 2πβ̂j where again, the results from appendix C that
∫ π

−π
eiωjdω = 0 for j 6= 0

and
∫ π

−π
eiωjdω = 2π for j = 0, are utilized. Hence, equation 14 takes the form

∫ π

−π

ψ̂(eiω)eiωjdω = 2πβ̂j . (15)

Equation 15 together with the constraint that
∑t−1

n=t−T βn = 0 produces a sys-

tem of equations with T equations and T unknowns, which, by means of equa-

tion 13, can be written in matrix form as



























∫ π

−π
ψ̂(eiω)eiω(t−2)dω

∫ π

−π
ψ̂(eiω)eiω(t−3)dω

...
∫ π

−π
ψ̂(eiω)eiω(t−T )dω

0



























= 2π



























−1 0 · · · 0 0

−1 −1 · · · 0 0

...
...

. . .
...

...

−1 −1 · · · −1 0

1 1 . . . 1 1





















































βt−1

βt−2

...

βt−T−1

βt−T


























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or solved for βj as

































βt−1

βt−2

βt−3

...

βt−T−1

βt−T

































=
1

2π

































−
∫ π

−π
ψ̂(eiω)eiω(t−2)dω

∫ π

−π
ψ̂(eiω)eiω(t−2)dω −

∫ π

−π
ψ̂(eiω)eiω(t−3)dω

∫ π

−π
ψ̂(eiω)eiω(t−3)dω −

∫ π

−π
ψ̂(eiω)eiω(t−4)dω

...
∫ π

−π
ψ̂(eiω)eiω(t−T−1)dω −

∫ π

−π
ψ̂(eiω)eiω(t−T )dω

∫ π

−π
ψ̂(eiω)eiω(t−T )dω

































. (16)

For j = t− 2, . . . , t− T the integral
∫ π

−π
ψ̂(eiω)eiωjdω corresponds to

∫ π

−π

ψ̂(eiω)eiωjdω =

∫ π

0

(

ψ̂(eiω)eiωj + ψ̂(e−iω)e−iωj
)

dω

=

∫ ω

ω

(

eiωj

1 − eiω
+

e−iωj

1 − e−iω

)

dω

as ψ̂(eiω) = ψ(eiω)
1−eiω and ψ(eiω) = 1 for ω ≤ |ω| ≤ ω. For j = 0

∫ π

−π

ψ̂(eiω)dω =

∫ ω

ω

(

1

1 − eiω
+

1

1 − e−iω

)

dω

=

∫ π

−π

ψ(eiω)dω

= 2πψ0 (17)

applies, as 1
1−eiω + 1

1−e−iω = 1, ψ(eiω) =
∑∞

n=−∞
ψne

iωn, as well as
∫ π

−π
eiωndω =

0 for n 6= 0 and
∫ π

−π
eiωndω = 2π for n = 0. For j 6= 0 it is noted that

∫ π

−π

ψ̂(eiω)eiωjdω −
∫ π

−π

ψ̂(eiω)eiω(j+1)dω

=

∫ ω

ω

((

e−iωj

1 − e−iω
+

eiωj

1 − eiω

)

−
(

e−iω(j+1)

1 − e−iω
+
eiω(j+1)

1 − eiω

))

dω

=

∫ ω

ω

(

e−iωj + eiωj
)

dω

=

∫ π

−π

ψ(eiω)eiωjdω

= 2πψj (18)
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as again
∫ π

−π
eiω(j+n)dω = 0 for j 6= −n and

∫ π

−π
eiω(j+n)dω = 2π for j = −n.

By means of equations 17 and 18 the vector from equation 16 can be solved.

Thus, the individual values for βj are explicitly determined.

Recapitulating, the approximated band-pass filter according to Christiano

and Fitzgerald (2003) can be written as

xt =

t−1
∑

j=t−T

βjyt−j

with a frequency response function of

β(eiω) =
t−1
∑

j=t−T

βje
iωj

and the weights

βj =























1
2ψ0 −

∑j−1
k=0 ψk for j = t− 1

ψj for j = t− 2, . . . , t− T − 1

1
2ψ0 −

∑0
k=j+1 ψk for j = t− T























for t = 1, . . . , T . The weights ψk are defined in equation 10 as

ψj =











1
πj

(

sin( 2πj
Tmax

) − sin( 2πj
Tmin

)
)

for j 6= 0

2
Tmax

− 2
Tmin

for j = 0











.

whereas Tmax denotes the maximum and Tmin the minimum duration of the

cycles.

5 Conclusions

The filters by Baxter and King (1999) and Christiano and Fitzgerald (2003) are

based on the same ideal band-pass filter. Hence, the differences between the two

filters are merely due to the type of approximation of the ideal band-pass filter.

An approximation of the ideal filter is necessary as the ideal filter requires an

16



infinite-order moving average which implies a data series of infinite length.

The approximations by Baxter and King (1999) and Christiano and Fitzger-

ald (2003) differ in two assumptions. The first assumption concerns the spec-

tral density of the variables. Baxter and King assume that the variables are

independent and identically distributed; Christiano and Fitzgerald presume the

distribution of a random walk. The second assumption regards the symmetry

of the weights of the filter. Baxter and King assume symmetric weights whereas

Christiano and Fitzgerald omit this assumption.

These two dissimilarities in the assumptions of the filters by Baxter and King

(1999) and Christiano and Fitzgerald (2003) lead to three divergent characteris-

tics. The first assumption has an influence on the accuracy of the approximation

with respect to the duration of the analyzed cycle. The second assumption af-

fects on one hand the amount of output data towards the ends of the data series

and on the other hand the removal of trends in the original data series.

With respect to the assumption regarding the spectral density, Baxter and

King (1999) deduce independent and identically distributed variables, but Chris-

tiano and Fitzgerald (2003) assume a random walk. If the spectral density of a

random walk is examined, it becomes apparent that a random walk puts more

weight on lower frequencies; independent and identically distributed variables

on the other hand weight all frequencies equally. Thus, it can be inferred that

the filter by Christiano and Fitzgerald approximates the ideal band-pass filter

for data sets with low frequencies (long durations) better than the filter by Bax-

ter and King. However, this happens partly on costs of a worse performance

in the area of high frequencies (short durations). In other words: The filter

by Christiano and Fitzgerald produces more accurate results for long business

cycles than the one by Baxter and King, while the filter by Baxter and King

approximates the ideal band-pass filter for shorter business cycles with higher

accuracy than the filter by Christiano and Fitzgerald.

The second dissimilarity - the amount of output data - results from the dif-

ferent assumptions with respect to the symmetry of the weights. As Baxter and

17



King (1999) assume symmetric weights, they are not able to make a statement

about the characteristics of the K data points at the beginning and at the end

of a data series, since they need these 2K data points for their approximation.

Hence, in contrast to Christiano and Fitzgerald, Baxter and King loose K data

points at the beginning and at the end of the data series. Thus, if the character-

istics of the cycles towards the ends of the data series are of particular interest,

it is advisable to employ the filter by Christiano and Fitzgerald.

The third difference, namely the unequal treatment of trends, can also be

attributed to the assumption about the symmetry of the weights. As shown

in the appendix A and B, the trend in the original time series is automatically

removed if the weights of the moving average are symmetric. As Christiano and

Fitzgerald (2003) make no assumption about the symmetry of the weights, the

trend must be removed before applying their filter. If it is unclear whether a

stochastic or a deterministic trend is at hand, it is suggested that the filter by

Baxter and King (1999) is applied, as this filter assumes symmetric weights and

hence automatically removes stochastic as well as deterministic trends.

Recapitulating, no clear conclusion can be drawn as for which filter should

preferably be applied. However, it could be shown that the decision should

depend on whether short or long business cycles are analyzed, whether the

characteristics of the cycles at the beginning and at the end of the data series

are of interest, and whether the trend of the original data series can be removed

trouble-free.
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A Removing Stochastic Trends

To demonstrate that a symmetric filter with weights which sum up to zero can

eliminate stochastic trends, the filter must be rewritten as follows (whereas L0

is defined as identity operator):

ψ(L) =

∞
∑

j=−∞

ψjL
j

=

∞
∑

j=−∞

ψjL
j −

∞
∑

j=−∞

ψj

=

∞
∑

j=−∞

ψj
(

Lj − 1
)

=

∞
∑

j=1

ψ−j

(

L−j − 1
)

+

∞
∑

j=1

ψj
(

Lj − 1
)

.

Moreover, if the assumption of symmetric weights ψj = ψ−j is applied, the filter

simplifies to

ψ(L) =
∞
∑

j=1

ψj
(

Lj + L−j − 2
)

. (19)

Now it can be shown that

Lj + L−j − 2 = −(1 − Lj)(1 − L−j)

and that

1 − Lj = (1 − L)(1 + L+ · · · + Lj−1)

1 − L−j = (1 − L−1)(1 + L−1 + · · · + L−j+1).

Thus, equation 19 can be denoted as

ψ(L) = −(1 − L)(1 − L−1)

∞
∑

j=1

ψj(1 + L+ · · · + Lj−1)(1 + L−1 + · · · + L−j+1).
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Furthermore, it can be shown that

(1 + L+ · · · + Lj−1)(1 + L−1 + · · · + L−j+1)

= j + (j − 1)(L+ L−1) + · · · + 2(Lj−2 + L−j+1) + (Lj−1 + L−j+1)

=

j−1
∑

h=−j+1

(j − |h|)Lh.

Therefore the filter can be written as

ψ(L) = −(1 + L)(1 + L−1)

∞
∑

j=1

ψj





j−1
∑

h=−j+1

(j − |h|)Lh




= −(1 + L)(1 + L−1)Ψn(L)

whereas Ψn(L) =
∑∞

j=1 ψj

(

∑j−1
h=−j+1(j − |h|)Lh

)

.

If this symmetric filter is applied

xt = ψ(L)yt

= −(yt + yt+1)(yt + yt−1)

∞
∑

j=1

ψj





j−1
∑

h=1−j

(j − |h|)yt+h





arises. Hence, each symmetric filter ψ(L) with weights that sum up to zero

contains the factor (1−L)(1−L−1). In other words: The filter ψ(L) contains at

least two differences. Thus, such a filter produces stationary stochastic processes

of order 2 (I(2)).

B Removing Deterministic Trends

Hereafter, it is established that a symmetric linear filter with weights that sum

up to zero does not only eliminate stochastic, but also quadratic deterministic

trends. Thereto a quadratic trend

yt = β0 + β1t+ β2t
2,
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is specified and deployed to the symmetric filter from equation 1

xt =

∞
∑

j=−∞

ψjyt−j

= β0

∞
∑

j=−∞

ψj + β1

∞
∑

j=−∞

ψj(t− j) + β2

∞
∑

j=−∞

ψj(t− j)2

= β0

∞
∑

j=−∞

ψj − β1

∞
∑

j=−∞

ψjj + β2

∞
∑

j=−∞

ψjj
2

+



β1

∞
∑

j=−∞

ψj − 2β2

∞
∑

j=−∞

ψjj



 t+



β2

∞
∑

j=−∞

ψj



 t2.

As the weights of the filter must sum up to zero (
∑∞

j=−∞
ψj = 0) it follows that

xt =



−β1

∞
∑

j=−∞

ψjj + β2

∞
∑

j=−∞

ψjj
2



 −



2β2

∞
∑

j=−∞

ψjj



 t.

Under the constraint that the weights of the filter are symmetric (ψj = ψ−j) it

can be shown that

∞
∑

j=−∞

ψjj =

∞
∑

j=1

(ψj − ψ−j)j = 0

and hence that

xt = β2

∞
∑

j=−∞

ψjj
2.

Equation 20 shows that xt is independent from t. Consequently, the filter re-

duces data series with a quadratic deterministic trend to series without influence

on time.7

7It can also be shown that after the application of a symmetric filter with weights that
sum up to zero, the trend specifications of the form yt = β0 + β1t + β2t

2 + β3t
3 takes, the

form xt = β2

P

∞

j=−∞
ψjj

2 + 3β3

P

∞

j=−∞
ψjj

2t, which is not independent of t.
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C Fourier Transformation

In order to find the Fourier transformation of the filter

ψ(eiω) =

∞
∑

j=−∞

ψje
iωj (20)

the two sides of the equation are multiplied with e−inω and integrated over the

interval [−π, π]. Thus, equation 20 can be restated as

∫ π

−π

ψ(eiω)e−inωdω =

∫ π

−π





∞
∑

j=−∞

ψje
ijω



 e−inωdω

=

∞
∑

j=−∞

ψj

∫ π

−π

eiω(j−n)dω. (21)

The integral on the right hand side of the equation 21 can be solved as follows:

∫ π

−π

eiω(j−n)dω =

[

1

i(j − n)
eiω(j−n)

]π

−π

=
1

i(j − n)

(

eiπ(j−n) − e−iπ(j−n)
)

. (22)

Applying the Euler relations eiπ(j−n) = cos(π(j − n)) + i sin(π(j − n)) and

e−iπ(j−n) = cos(π(j − n)) − i sin(π(j − n)) equation 22 can be written as

∫ π

π
eiω(j−n)dω = 1

i(j−n)2i sin(π(j − n))

= 0 for j 6= n.
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This follows as sin(π(j−n)) = 0. For j = n equation 22 can be solved by means

of the Hôpital rule.

∫ π

π

eiω(j−n)dω = lim
j→n

1

i(j − n)

(

eiπ(j−n) − e−iπ(j−n)
)

= lim
j→n

1
d
dj
i(j − n)

d

dj

(

eiπ(j−n) − e−iπ(j−n)
)

= lim
j→n

1

i

(

iπeiπ(j−n) + iπe−iπ(j−n)
)

= lim
j→n

π
(

eiπ(j−n) + e−iπ(j−n)
)

.

If the Euler relations are applied, it becomes apparent that

∫ π

π
eiω(j−n)dω = limj→n 2π cos(π(j − n))

= 2π for j = n

as cos(π(j − n)) = 1.

Hence, the integral equals to 0 for j 6= n and 2π for j = n. Subsequently,

equation 21 can be simplified to

∫ π

−π

ψ(eiω)e−inωdω =

∞
∑

j=−∞

ψj

∫ π

−π

eiω(j−n)dω

= 2ψnπ.

This equation can now be solved for ψn so that

ψn =
1

2π

∫ π

−π

ψ(eiω)e−iωndω (23)

whereas ψ(eiω) =
∑∞

j=−∞
ψje

ijω .
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