
Munich Personal RePEc Archive

We model an economy that alternates

randomly between abundance and

scarcity episodes. We develop an original

method to characterize in detail the

structure of the Markovian competitive

equilibrium. Accumulation and drainage

of stocks are the main focuses.

Economically appealing comparative

statics results are proved. We also

characterize stationary distribution of

states. We extend the model to discuss

price stabilization policies, injection and

release costs, and limited storage

capacity. Overall, the analysis delineates

the notion of "flexible economy."

Creti, Anna and Villeneuve, Bertrand



Université Paris X - Nanterre, Università Commerciale L. Bocconi

Milano, Université Paris-Dauphine

11 January 2010

Online at https://mpra.ub.uni-muenchen.de/20520/

MPRA Paper No. 20520, posted 09 Feb 2010 04:37 UTC



Equilibrium Storage in a Markov Economy

Anna Cretì — Università Bocconi and Université Paris-Ouest

Bertrand Villeneuve — Université Paris-Dauphine and CREST∗

January 2010

Abstract
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episodes. We develop an original method to characterize in detail the structure of
the Markovian competitive equilibrium. Accumulation and drainage of stocks are the
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1 Introduction

Storage models are hard to tackle. Even the simplest specification of the production and
storage technologies leads to intractable equations. Most results involve proving existence
and uniqueness of the equilibrium, together with some qualitative properties (prices are
monotonic in stock and in storage cost, stockouts happen with positive probability and
stocks have an upper limit). As far as simulation based econometrics (GMM estimators
as in Deaton and Laroque, 1992, 1996) or the illustration of a theoretical possibility are
concerned (convenience yield,1 analysis of the Samuelson effect,2 backwardation3 as in
Routledge et al, 2000), this is a suitable approach. Our aim is not to extend the existing
models but rather to propose a simple case set in continuous time to facilitate the param-
eterization of shock persistence, and to characterize finely the behavior of the economy.

Our approach is innovative as it does not rely on fixed point methods, but directly
constructs the equilibrium, assuming that agents observe the random occurrence of one of
two states, the so-called abundance and scarcity periods. We focus on a Markov competitive
equilibrium in which prices only depend on the current state. The relationship between
the state of the economy (the endogenous stocks and the exogenous random variable) and
the price is informative about behavior of the economy. We fully describe the dynamics
of accumulation and drainage. Stocks are smoothly piled up in an abundance state and
smoothly drained in a crisis state. We can see that the upper bound of the stocks is never
reached in finite time and we can also evaluate the speed at which stocks are drained out.
Besides such qualitative results, we provide comparative statics on the upper bound of the
stocks and equilibrium price schedules with respect to all the parameters of the model.

Price, as functions of the state, give a logically complete picture of the equilibrium.
Nevertheless, the characterization of the stationary distribution of states has an intuitive
appeal as it directly informs as to where the economy is likely to be. The frequency of
stockouts as well as the propensity of the economy to adjust stocks can thus be assessed.
The stationary distribution is described by differential equations, which opens up the way
to qualitative analysis and comparative statics. The dependency of the shape of the state
density to the parameters is addressed.

Our model is motivated by two economic issues placed high on the European policy
agenda. Storage as determined in response to persistent shocks is instructive for the en-
ergy policy debate about the role of gas or petroleum strategic reserves to manage supply
disruptions, especially when dependency on foreign resources raises serious concerns. The
existing theoretical literature on energy supply security, mostly inspired by the theory of

1The notion of convenience yield was introduced by the economists Kaldor and Working who studied
the theory of storage. In the context of commodities, the convenience yield captures the benefit from
owning a commodity minus the cost of storing it. The flow of benefits from storage (the reduction in
production costs) drives a wedge between the price of a commodity today and its value in the future.

2The Samuelson effect arises when, for a given commodity, forward price volatility declines with the
contract horizon.

3Backwardation occurs when the price of a commodity for the actual period exceeds the price for future
periods.
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exhaustible resources, considers either the extraction rate of one country when foreign im-
port, though needed to complement national production, can suddenly default,4 or strategic
behavior of consuming countries confronting oligopolistic or cartelized supply.5 However
useful these analyses may be for the long run, they ignore the question of how to reach
any desired stock level and how to deal with uncertainty about the duration of supply
disruption.

We also shed some light on the banking of CO2 pollution permits, a financial mechanism
whose application is being discussed in the context of the European Trading Scheme,
i.e. a market-based approach to environmental control. A number of research works
have already analyzed the role of uncertainty in emission permit markets, studying in
particular the SO2 banking mechanism allowed by the American Clean Air Act. Most
results concern optimum individual strategy and not the equilibrium. This limitation
notwithstanding, several aspects of risk-averse utilities’ are studied.6 Our analysis is not
focused on financial phenomena, though the model could serve that purpose; this said,
we can illustrate the precautionary motive for banking emission rights, when the output
market alternates between booms and busts (namely, when electricity demand is influenced
by unexpected climate constraints) or there is a sudden but temporary increase in input
costs.

The economic relevance of our model and its practicality are illustrated by three ex-
tensions.

First, we study the impact of a constant price policy. This apparently extreme choice is
instructive for both gas and pollution permit markets because a regulatory authority could
be tempted to stabilize gas or permit prices around a particular target (or path) of prices.
Understanding the mechanisms of equilibrium and comparison with more interventionist
policy could serve as a modest guide (or a development thereof) for market design and
regulation. In contrast to the previous abundant literature on storage and price stabiliza-
tion,7 results are clear-cut: perfect price stabilization can be reached only if the economy is

4This trade-off has been analyzed by several authors (for example Stiglitz, 1977, Sweeney, 1977, Hillman
and Van Long, 1983, Hugues Hallet, 1984).

5See for instance Nichols and Zeckhauser (1977), Crawford et al (1984), Devarajan and Weiner (1987),
Hogan (1983).

6On the role of banking in smoothing permit prices, see Carlson and Sholtz (1994) and Godby et al

(1997), on its effect on control costs, see Montero (1997). The study of equilibrium in Schennach (2000)
assumes that risk-neutral firms minimize their expected discounted costs. When firms anticipate the possi-
bility of a permit stockout, the expected change in marginal abatement costs could be negative. Potential
permit stockout could partially explain normal backwardation in permit prices; the same mechanism is at
the core of the results in Routledge et al (2000).

7Massel (1969), generalizing previous results by Waugh (1944) and Oi (1961), considers stabilization at
exactly the mean price as a decision made to eliminate price fluctuations, presumably enhancing welfare. A
costless stock established by an authority achieves the objective and enhances welfare. Welfare analysis of
price stabilization has been extended to encompass alternative assumptions about price expectations, risk
attitudes (Newbery and Stiglitz, 1981), and nonlinearities (Turnovsky, 1974, 1976, among others). Storage
in this literature is made by a public authority, which is in charge of managing a buffer stock. Helmberger
and Weaver (1977) is the only model that questions the optimality of stabilization schemes. The private
storage industry and arbitrage opportunities are considered, instead, in modern dynamic stochastic models
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prepared to let stocks go to infinity. This simple prediction gives a partial answer to doubts
as to price stabilization models raised by Williams and Wright (1991), who affirm: “[...]
the possible permutations of demand curvature, disturbance structure, initial conditions,
supply elasticity and so forth seem nearly infinite. [...] That is the main point: few, if any,
general propositions are possible.”

In a second extension of the model, we consider the impact of non-negligible injection
and release costs. This better characterizes natural gas or oil storage. Starting from the
observation that the commodity is different depending on whether it lies outside or inside
the reservoir, we show that the results of our analysis are unaffected by this generalization.

Limited storage capacity is also a crucial issue. For instance, gas is often stored in spe-
cific natural facilities (such as salt caverns) that are scarce. Also, market rules for emission
programmes could impose the use of banking CO2 permits up to a given threshold only.
Consistently with the idea of scarcity rent, we show that in the accumulation phase, the
price for storage service suddenly jumps above marginal cost when the capacity saturates.
Interestingly, we find that, in contrast with the unconstrained case, the maximal stock is
attained in finite time if the state of abundance is sustained.

The paper is organized as follows. Section 2 sets up the model and section 3 describes
the methodology we follow to solve it. Section 4 characterizes the solution qualitatively
and quantitatively and proposes comparative statics. Section 5 exposes the statistical
properties of the model. Section 6 is devoted to applications and extensions of the model,
while Section 7 concludes on the notion of economic flexibility. Proofs are relegated to the
Appendix.

2 The model

2.1 Assumptions and parameters

The economy can be in two states, abundance (A) or scarcity (C, for crisis). A generic
state is denoted σ. Time is continuous and the state changes following Bernoulli processes:
the passage from A to C occurs with probability rate λC , and the passage from C to A
with probability rate λA. For example, the probability that the economy switches from A
to C in a time interval dt is λAdt, where λA is the publicly known parameter of this survival
process. This simple Markov structure captures the fact that regimes have uncertain nature
and duration that can be quantified statistically. The stationary probabilities of states A
and C are, respectively, Pr[A] = λA

λC+λA
and Pr[C] = λC

λC+λA
. The ratio λA/λC represents

the relative frequencies of the two states.
Consumers and producers observe the current price and the state σ(= A, C). Their

aggregate behavior is summarized by the “excess supply functions” ∆σ[·] defined over R
∗

+,
where ∆σ[p] is the difference in state σ and for price p between current primary produc-

with i.i.d disturbances (Williams and Wright, 1991).
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tion and current final consumption.8 For example, ∆C [·] incorporates a supply shock and
adaptation of demand to the crisis.

Excess supply function ∆σ[·] is increasing and has a unique finite positive zero in R∗

+,
denoted by p∗σ; this is the price at which the spot market would be balanced without
recourse to storage. Naturally, we assume that the abundance static equilibrium price p∗A
is strictly smaller than the crisis static equilibrium price p∗C .

∆σ[·] is a flow in the sense that if price p is sustained for the interval dt, then the
quantity that is stored or released is ∆σ[p]dt. Thus, if we denote the total inventories in
the economy by S ≥ 0, conservation of matter imposes the following conditions

{
dS
dt

= ∆σ[p] if S > 0 or ∆σ[p] > 0,
dS
dt

= 0 if S = 0 and ∆σ[p] ≤ 0.
(1)

Therefore, if the current price p is above p∗σ, then the economy stores (∆σ[p] > 0); if p is
below p∗σ, then the economy draws on inventories (∆σ[p] < 0).

Storers are assumed to be risk-neutral price-takers with rational expectations, so that
the price dynamics will be driven by arbitrage. Storage exhibits constant returns to scale.
Carrying costs consist of the opportunity cost of capital (r being the interest rate) and a
cost c (per unit of commodity and per unit of time).9,10 In equilibrium, the current price
at date t equals the expected price at t + dt net of the carrying costs.

2.2 Fundamental equations

We focus on Markovian equilibria where the commodity price only depend on the state
variables. We characterize differentiable functions pC [S] and pA[S] such that (1) is verified
as well as the arbitrage conditions: for all S > 0 and a time increment dt, the no-arbitrage
equations

pC[S] + cdt = (1 − rdt) ((1 − λAdt) · pC[S + dS] + λAdt · pA[S + dS]), (2)

pA[S] + cdt = (1 − rdt) ((1 − λCdt) · pA[S + dS] + λCdt · pC[S + dS]). (3)

This is a first-order approximation. We let dt converge to 0 and neglect second-order terms,
thus using (1), (2) and (3) become

∆C [pC ] · dpC

dS
= (r + λA)pC − λApA + c, (4)

∆A[pA] · dpA

dS
= (r + λC)pA − λCpC + c. (5)

8This modeling is rationalizable with agents maximizing intertemporal utility or profit, provided ob-
jectives are time separable and quasi-linear. See Chaton et al (2009).

9The assumption in Deaton and Laroque (1992, 1996) and Routledge et al (2000) is that a constant
fraction of the stock vanishes every period. This type of cost can be included, via a renaming of variables,
in r. Our variation is well suited to natural resources.

10A more general structure with injection and withdrawal costs and limited storage capacity is discussed
in Section 6.
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We search for the price functions that fully characterize the equilibrium. More precisely,
we search for pA[·] and pC [·] defined over an interval [0, S∗] where S∗, which is to be found,
is the maximum stock. Besides the differential equations above, we know that pC [0] = p∗C
(when stocks are empty in a crisis, consumers just consume what is produced at the same
time), and pA[S∗] = p∗A (when inventories are maximum, nobody stores more).

Mathematically, we have a boundary value problem. In a standard problem, two differ-
ential equations with two initial conditions are easily solved qualitatively and numerically,
if not in closed form.

However, here both initial conditions are on singular points:

• ∆C [pC [0]] = 0 meaning, if we look at equation (4), that dpC [0]
dS

is infinite;

• at S∗, both factors in the LHS of (5) are null; moreover S∗ is only implicitly defined,
its value being determined as the point where accumulation stops (pA[S∗] = p∗A
implies that ∆A[pA[S∗]] = 0).

2.3 Summary of the notation

t : time;

σ : generic exogenous state; C : Scarcity/Crisis; A : Abundance;

λC : probability rate that state passes from A to C ;

λA: probability rate that state passes from C to A ;

∆σ[p] : excess supply for price p in state σ (per unit of time);

p∗σ : zero of ∆σ;
S : stocks at a given date;
c : marginal storage cost (per unit of time);

r : riskfree interest rate.

3 The equilibrium

This section establishes that in a Markovian equilibrium, stocks are smoothly piled up in
state A and smoothly drained in state C. Moreover, stocks vary between 0 and the upper
bound S∗ to be determined, whereas the price is bounded below by p∗A and above by p∗C .

We analyze the system of equations in a phase diagram (pC , pA) in which S is the
underlying parameter. This representation facilitates the demonstration of existence and
uniqueness of the equilibrium. Most importantly for economic intuition, it enables quali-
tative results and comparative statics.

Readers most interested in the economic implications can skip this section.
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3.1 Phase diagram

Let us define xσ, a function of S, by differential equation x′

σ = ∆σ[pσ] · p′σ, with xC [0] = 0
and xA[S∗] = 0. Using this notation in equations (4) and (5), we obtain

x′

C = (r + λA)pC − λApA + c, (6)

x′

A = −λCpC + (r + λC)pA + c. (7)

We have an autonomous (S is not in the equations) system of separated variables. We draw
the two-dimensional phase diagram with pC ≤ p∗C on the horizontal axis and pA ≥ p∗A on
the vertical one. This quadrant is partitioned into three regions, separated by the isoclines
where x′

C = 0 and x′

A = 0 are null, i.e.

(r + λA)pC − λApA + c = 0 and pC ≤ p∗C , pA ≥ p∗A, (CC ′)

−λCpC + (r + λC)pA + c = 0 and pC ≤ p∗C , pA ≥ p∗A. (AA′)

(CC ′) is never empty since by assumption p∗C > p∗A. (CC ′) is above (AA′) in the considered
quadrant (see Appendix A.1).

The phase diagram in Figure 1 indicates the shape and relative positions of the trajec-
tories satisfying the motion equations (6) and (7). We define the lowest region, I, as the
triangle having (AA′) as a side and (p∗C , p∗A) as a vertex; the intermediate region, II, lies
between the two lines, and the highest region III is above (CC ′). In I, p′C < 0 and p′A < 0;
in II, p′C > 0 and p′A > 0; in III, p′C > 0 and p′A > 0.11

The intersection between (AA′) and horizontal straight line pA = p∗A is especially re-
markable. We denote it as Ω = ( r+λC

λC
p∗A + c

λC
, p∗A).

3.2 Characterization

Proposition 1

1. In equilibrium, the support of S is an interval [0, S∗].

2. Stocks are drained during scarcity episodes and accumulated during abundance epis-
odes (∆C [pC [S]] ≤ 0 and ∆A[pA[S]] ≥ 0 over [0, S∗]).

3. The equilibrium trajectory {(pC [S], pA[S])|S ∈ [0, S∗]} is in region I. The trajectory
starts with pC [0] = p∗C and stops at (pC [S∗], pA[S∗]) = Ω.

4. There is storage in equilibrium (i.e. S∗ > 0) if and only if

(r + λC)p∗A + c < λCp∗C .

5. The equilibrium is unique.

11This comes from the facts that in I, x′
C > 0 and x′

A < 0; in II, x′
C > 0 and x′

A > 0; in III, x′
C < 0

and x′
A > 0.
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Figure 1: Phase diagram.

The overall behavior of the prices in equilibrium can be summarized as follows: the
unique equilibrium trajectory is necessarily in I, S varies in the interval [0, S∗) and pA[S] >
p∗A and pC [S] < p∗C for S > 0 and S < S∗, and pA[S] and pC [S] decrease with respect to
the level of the stock.

Figure 1 shows the shape of the equilibrium trajectory. The condition for positive
storage (r+λC)p∗A+c < λCp∗C has a precise economic meaning: crises have to be sufficiently
likely and/or sufficiently marked to justify storage. If this condition were not satisfied, there
would be no stocks in equilibrium: the price would alternate back and forth between p∗A in
state A and p∗C in state C. To avoid this uninteresting case, we assume that the condition
for positive storage is satisfied.

3.3 Computations

Numerically, the argument used in the proof of Proposition 1 (point 5) has an extremely
useful implication: any starting point close to Ω is on a trajectory that is closer to the
equilibrium as we go to the right (i.e. as S decreases) in the phase diagram. In other
terms, we can control the maximum error on prices at the starting point (close to Ω) given
that the system of equations is self-correcting as S decreases.

Moreover, the system of equations (6, 7) is autonomous, so leaving aside boundary
conditions, we know that if (pC[S], pA[S]) follows the equilibrium trajectory for S ∈ [S, S],
so does (pC[S + θ], xA[p + θ]) for S ∈ [S − θ, S − θ] where θ is an arbitrary real.

We can now suggest the following algorithm.
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Algorithm 1 (Trajectory)

1. Fix arbitrarily the upper bound at some arbitrary value S.

2. Choose ε > 0 as small as needed. Consider the trajectory through (pC [S] = r+λC

λC
p∗A +

c
λC

, pA[S] = p∗A + ε), a point above Ω.

3. Solve the differential equations numerically and find the stock S < S such that pC[S] =
p∗C .

4. Shift the calculated functions pC and pA to the left by an amount S; S∗

ε = S − S
approximates the upper bound S∗.

The error is controlled by ε (a uniform bound on the error). Remark that along a
trajectory,

dS

dpC

=
∆C [pC ]

(r + λA)pC − λApA + c
(8)

is well defined over the range of pC i.e. [ r+λC

λC
p∗A + c

λC
, p∗C ] (trajectory is bounded away from

(CC ′)). Thus we can calculate S∗ as accurately as desired by computing:

S∗

ε =

∫ p∗
C

r+λC

λC
p∗

A
+ c

λC

∆C [pC ]

(r + λA)pC − λApA + c
dpC . (9)

4 Behavior of the economy

4.1 Comparative statics

In the absence of an explicit expression of price functions and S∗, the comparative statics
relies on exploitation of the phase diagram.

Proposition 2 (Comparative statics) For all S in the support, and for all states σ =
C, A

∂p∗σ[S]

∂c
< 0;

∂p∗σ[S]

∂r
< 0;

∂p∗σ[S]

∂λA

< 0;
∂p∗σ[S]

∂λC

> 0. (10)

and consequently
∂S∗

∂c
< 0;

∂S∗

∂r
< 0;

∂S∗

∂λA

< 0;
∂S∗

∂λC

> 0. (11)

The interpretations are straightforward. An increase in the unit storage costs discour-
ages accumulation, thus at any level of the stocks, the value of the commodity is smaller.
Storers will tend to pile up stocks more slowly in abundance, and to run them down faster
during crisis. Also, rarer crises diminish the expected yield from storing, to the same ef-
fect. This logic has direct consequences on the comparative statics of the limit stock: the
value S∗, defined as the solution to equation p∗A[S] = p∗A, must decrease if function p∗A[S]
is diminished.
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Linear case. The effects of varying excess supply functions are intricate if we do not
restrict the analysis to a specific parametric family. For example, in the noteworthy case
of linear excess supply functions, precise results can be found.

Proposition 3 (Linear case) Assume that

∆σ[pσ] = βσ(pσ − p∗σ) with βσ > 0 and p∗σ > 0. (12)

1. For all S in the support and all states σ = C, A

∂p∗σ[S]

∂p∗C
> 0;

∂p∗σ[S]

∂p∗A
> 0;

∂p∗σ[S]

∂βC

> 0;
∂p∗σ[S]

∂βA

< 0. (13)

and consequently
∂S∗

∂p∗C
> 0;

∂S∗

∂βC

> 0;
∂S∗

∂βA

< 0. (14)

The sign of ∂S∗

∂p∗
A

is ambiguous.

2. As a function of βC and βA, p∗σ[S] and consequently S∗ are homogeneous of degree 1.

It is plain that a bigger p∗C should increase the value of storage, hence the effect on
prices and maximum stocks. In contrast, a bigger p∗A has two effects: on the one hand,
it increases the price at which stocks are built and thus prices in crisis have to increase
altogether to motivate positive holding; on the other hand, the range of prices tightens,
meaning that potential gains from the occurrence of a crisis could vanish at smaller values
of S. This explains the ambiguity of the impact of p∗A on S∗.

A higher parameter βC means that a given release has a less depressing effect on the
price. In other terms, the profitability of storing in view of releasing at high price when
state C arises is better warranted. This gives incentives to store more. A higher parameter
βA implies that building stocks is easier, since piling up has a lesser inflationary effect
on the price, hence the negative effect on the equilibrium price. The second point of the
proposition illustrates that the first effect dominates when βC and βA are increased in the
same proportion.

4.2 Approximate price functions

To better describe the behavior of the economy, we clarify the properties of the equilibrium
when stocks are almost empty or close to their maximum. We see in particular how stocks
are drained down and why the maximum stocks are not attained in finite time.
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Draining out the stock. At S = 0, x′

C is finite and different from 0 (see equation 6);
more precisely, xC[S] ∼

0
KCS with KC = (r + λA)p∗C + c − λApA[0] > 0. This implies (see

Appendix A.5) that

pC[S] − p∗C ∼
0
−
√

2KC

∆′

C [p∗C ]
S1/2 (15)

pC is vertically tangent at 0 (Figure 2). As a consequence, if the economy stays in crisis,
the complete drainage of the stocks happens in finite time. To show this, it suffices to
integrate in a neighborhood of 0 the differential equation

dS

dt
= ∆C [pC [S[t]]], (16)

where the RHS can be replaced by its approximation. As long as the economy stays in
crisis, starting—without loss of generality—with S0 at date 0, the integration of equation
(16) yields

S(t) ≃
(
√

S0 −
√

∆′

C [p∗C ]KC

2
t

)2

. (17)

Drainage exhibits smooth landing: the limit of the rate of withdrawal is zero; but drainage
time is finite. It is approximately

T0 ≃
√

2S0

∆′

C [p∗C ]KC

. (18)

This implies that the economy is protected only twice as long when stocks are quadrupled.
The comparative statics on KC is based on (10) in Proposition 2. We have ∂KC

∂λC
< 0,

meaning quite naturally, that a larger propensity to return to the scarcity state slows
down drainage (precaution). Also, ∂KC

∂c
> 0 and ∂KC

∂r
> 0, meaning that higher storage

costs accelerate drainage for given stocks. Remark that ∂KC

∂λA
= (p∗C −pA[0])−λA

∂p∗
A

[0]

∂λA
> 0 :

a higher propensity to return to abundance also accelerates drainage (preservation value
is diminished).

Replenishing. The upper bound S∗ corresponds, as we noticed in subsection 3.2, to a
singular point. The calculation of an approximate solution requires several steps. We show
in the Appendix A.5 that xA[S] − xA[S∗] ∼S∗ K2

A(S − S∗)2, where KA is a non-negative
real number. This implies that pA has a negative finite non-null derivative at S∗ (Figure
2):

pA[S] − p∗A ∼S∗ KA(S − S∗). (19)

Even if the economy stays in a state of abundance, the upper bound S∗ is never reached
in finite time. The reasoning reminds us of Zeno’s classical paradox, Achilles and the
Tortoise. As pA covers half its difference with the limit p∗A, the variation rate of the stock
per unit of time, namely ∆A, is approximately halved (linear approximation of excess
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demand at p∗A), meaning that the convergence speed dS/dt is approximately halved. This
implies that, whatever the proximity of the target, the duration to cover half the distance
to the target is approximately constant, thus the target is never attained.

Example. Using the algorithm of subsection 3.3, we solve numerically the system with
the parameters in Table 1. The time unit could be the year. We find approximately
S∗ ≃ 9.5. See Figure 2.

Table 1: Parameter values
Financial and physical costs r = .1 c = .1
Linear excess supply βC = 1 p∗C = 5 βC = 5 p∗A = 1
Rates of jumps λC = 1 λA = 1

*

C
p

C
p

44

C
3

AA
2

*

A
p

A
p

S*2 4 6 8

Figure 2: Price functions.

5 Stock statistics

A state is described by the stock S and the conjuncture (C or A). All states S ∈ [0, S ′]
with S ′ < S∗ are crossed in finite time with probability 1: starting from an arbitrary
state, it is easy to find a history (or a set of histories) that leads to another arbitrary
state in finite time, this history being associated with positive probability (it suffices to
have a long enough accumulation followed by a long enough drainage, or the other way
around). Since the equilibrium is Markovian, this property guarantees that there is a
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unique stationary distribution. This section is essentially devoted to the analysis of this
stationary distribution.

5.1 Dynamics

The statistical evolution of the system over time when we observe perfectly the state at a
given date is covered in Appendix A.6.

A feature of the model is that in the long run initial information loses relevance. Interior
states (i.e. values of S different from 0 and S∗) are just crossed as accumulation or drainage
goes on; boundary states, if reached, remain in force until a downward or upward jump
occurs. Thus, in the long run, S = 0 and S = S∗ are associated with probabilities whereas
values in between are associated with densities.

Densities. Assume that, for interior values of the stock S ∈ (0, S∗), a density fσ[S, t]
(with σ = C, A) represents the information we have on the system. Take σ = C to fix
ideas. Choose S1 and S2 (0 < S1 < S2 < S∗) two levels of the stocks. By definition

Pr[C, S ∈ [S1, S2], t] =

∫ S2

S1

fC [S, t]dS. (20)

This gives

d Pr[C, S ∈ [S1, S2], t]

dt
= fC [S1, t] · ∆C [pC [S1]] − fC [S2, t] · ∆C [pC [S2]]

+λC

∫ S2

S1

fA[S, t]dS − λA

∫ S2

S1

fC [S, t]dS, (21)

where the first two terms represent the endogenous evolution of the stocks if the economy
remains in crisis, and the third and fourth terms represent the exogenous jumps in and out
of the segment due to state changes. Figure 3 illustrates this probability balance.

To find the dynamics of the density, we make S2 converge toward S1 to get

dfC [S, t]

dt
= − d

dS
(fC [S, t] · ∆C [pC [S]]) + λCfA[S, t] − λAfC [S, t]. (22)

Similarly

dfA[S, t]

dt
= − d

dS
(fA[S, t] · ∆A[pA[S]]) + λAfC [S, t] − λCfA[S, t]. (23)

Probabilities. States S = 0 or S∗ are associated with probabilities. We have12

d Pr[C, 0, t]

dt
= −λA Pr[C, 0] − lim

S→0
(fC [S, t] · ∆C [pC [S]]) , (24)

12This expression can be derived from (21) with S1 = 0 and by letting S2 converge to 0.
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C C

JumpsJumps
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A A

0 S*S S0 S*S1 S2

Figure 3: Probability balance between t and t + dt.

where the first-term represents jumps out (jumps in are negligible since Pr[A, 0, t] = 0 :
due to accumulation, this state is left as soon as attained), and the second term represents
the depletion of the last remaining stock.

Similarly,

d Pr[A, S∗, t]

dt
= −λC Pr[A, S∗] + lim

S→S∗

(fA[S, t] · ∆A[pA[S]]) . (25)

5.2 Stationary distribution

The study of stationary distribution can use directly the preceding analysis. We denote
the stationary densities by f ∗

σ [S] for all S ∈ (0, S∗). Define φC[S] ≡ f ∗

C[S] · ∆C[pC [S]]
and φA[S] ≡ f ∗

A[S] · ∆A[pA[S]] (density flows). Dropping the time-dependency factor, and
replacing the rates of variation of the stocks by their equilibrium values, equations (22,23)
become the system of ordinary differential equations

dφA

dS
= λAf ∗

C − λCf ∗

A, (26)

−dφC

dS
= λAf ∗

C − λCf ∗

A. (27)

We also have from (24,25)

Pr[0] =
1

λA

lim
S→0

φC , (28)

Pr[S∗] =
1

λC

lim
S→S∗

φA. (29)
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Remark that
−φC[S] = φA[S]. (30)

Indeed, consider the open system {(C, s), (A, s)|s ∈ [0, S]} , this equation states that, in a
stationary distribution, density flows in (at S for state C) equal flows out (at S for state
A). Jumps do not matter since they happen within the system.

Equations (26) and (27) collapse to:

dφA

dS
= −

(
λA

∆C [pC [S]]
+

λC

∆A[pA[S]]

)

φA. (31)

This first order ordinary differential equation is well defined for S ∈ ]0, S∗[ and can be
solved numerically. The Cauchy-Lipschitz theorem is applicable.

Algorithm 2 (Stationary distribution)

1. Calculate equilibrium prices pC [S] and pA[S].

2. Fix arbitrarily φ[S] as an initial condition for some S ∈ (0, S∗).

3. Solve numerically the differential equation (31) over ]0, S∗[.

4. Calculate conditional densities f ∗

A and f ∗

C .

5. Calculate the integrals over ]0, S∗[ of f ∗

A and f ∗

C.

6. Remark that Pr[S∗] = 0. Use step 5 to calculate the residual Pr[0] using the facts that
Pr[C] = λA/(λC + λA) and Pr[A] = λC/(λC + λA).

7. Normalize f ∗

A and f ∗

C so that the total probability mass equals 1.

Step 3 must be analyzed in detail. Indeed, ∆C [pC [0]] = ∆C [p∗C ] = 0 and ∆A[pA[S
∗]] =

∆A[p∗A] = 0, meaning that φ might diverge in such a way that normalization is impossible
(integrals at step 5 could diverge). In fact, we check in Appendix A.7, that

∫ S∗

0

f ∗

C[S]dS < ∞ and

∫ S∗

0

f ∗

A[S]dS < ∞. (32)

Remark also that the integrals in step 5 can be calculated as accurately as needed,
implying that the residual for Pr[0] in step 6 can be computed with the same accuracy.13

The numerical analysis gives instructive results on the overall behavior of the economy.
How frequent are stockouts, i.e. how much is Pr[S = 0] compared to Pr[C](= λC

λC+λA
)? Is

the economy often close to having maximum stocks or is S∗ a practically unapproachable
limit? The last question can be addressed theoretically by characterizing the shape of the

13The alternative method would be to use property (28); however, the numerical accuracy of the limit
of φC at 0 is not sufficient to recommend this procedure.
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density of the stationary equilibrium around S∗. Here we can identify which are the critical
parameters that determine the regime of the economy.

Figure 4 shows the stationary densities for the parameters in Table 1. We find Pr[0] =
.1, Pr[S∗] = 0. In fact limS→0 fC = +∞, but fC is approximately proportional at 0 to
1/
√

S, meaning that the probability of C remains finite (see equation 28). This high
density around 0 comes from the fact that the rate of consumption of the stocks decreases
steeply as S approaches zero. The high density on the left of S∗ is explained by the fact that
accumulation slows down as the stock approaches S∗(see equations (17,18) about drainage
speed and time).

In contrast to 0, S∗ is never attained, as we mentioned in Subsection 4.2. Nevertheless,
as Proposition 4 shows, the probability mass can be quite concentrated, under precise
circumstances, in the neighborhood of the maximum.

0.2

0.15

A0.1

C

A0.1

0.05

S*2 4 6 8

Figure 4: Densities.

Proposition 4 Let

KS∗ = 2λC√
(r+λC)2+4∆′

A
[p∗

A
]λCM−r−λC

(33)

with M =
[(r+λA)(r+λC)−λAλC ]p∗

A
+(r+λA+λC)c

−λC∆C [
r+λC

λC
p∗

A
+ c

λC
]

> 0. (34)

At S∗, fC is of the order of (S∗ − S)KS∗ and fA is of the order of (S∗ − S)KS∗−1.

Consequently,
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1. If KS∗ < 1 : fA increases and diverges as S → S∗. Though the maximum is never
attained, any neighborhood of S∗ has a positive probability.

2. If 1 < KS∗ < 2 : fA converges to 0 at S∗ with vertical negative slope. The system is
close to the maximum with a positive probability.

3. If KS∗ > 2 : fA converges to 0 at S∗ with a null slope. The economy is almost surely
far from the upper bound.

Given the discontinuous nature of the comparative statics, singular cases with either
KS∗ = 1 or KS∗ = 2 would require higher order approximations than the one used in
Appendix A.8 to be described.

The understanding of the conditions above is relatively complex since all the funda-
mental parameters play a role. In particular, no simple comparative statics with respect
to r or λC emerge. In contrast, the effects of c, λA are obvious

∂KS∗

∂c
< 0;

∂KS∗

∂λA

< 0. (35)

In the linear case, where in particular ∆′

A[p∗A] = βA, we have

∂KS∗

∂βC

> 0;
∂KS∗

∂βA

< 0;
∂KS∗

∂p∗C
< 0;

∂KS∗

∂p∗A
< 0. (36)

The comparative statics on KS∗ , together with the ones on S∗ exposed in the comments
of Proposition 2, outline a notion of flexibility: the higher KS∗ , the less flexible the economy
is. Excess supply functions measure the response of prices to given variations in stocks.
Small maximum stocks correspond to flexible economies for which large storage would
be useless, and accordingly the economy has, statistically, enough time to approach this
modest target during abundance period. On the contrary, large maximum stocks mean
that the economy with seize (almost) any opportunity to accumulate, which happens in
economies where building stocks is a costly process. Accordingly, it is very likely that the
random alternation between abundance and scarcity episodes will keep the economy far
from the bliss point.

6 Applications and extensions

In this Section, we extend the model by assessing the impact of three kinds of constraints:
politically imposed bounds on prices, non-negligible injection and release costs and limited
storage capacity.

Analyzing the impact of a constant price on the dynamic system allows a comparison of
the results with those proposed by the abundant literature on stabilization. Following on
from this, we show that non-negligible injection and release fees can be modelled as parallel
shifts in the functions pA[S] and pC [S]. The main results of our analysis are unaffected by
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this generalization. Finally, assuming that storage capacity is exogenously constrained,
we show that in the accumulation phase, the maximal stock is attained in finite time.
Moreover, the price for storage service suddenly jumps above marginal cost when capacity
saturates.

6.1 Stabilization, storage and persistent crises

Assume that a central authority imposes a constant price p∗. A price below p∗A would
not be sustainable in the long run (stock will be drained out shortly). A price above p∗C
would cause never ending accumulation, which would be uneconomical. So, the relevant
policies consider p∗A < p∗ < p∗C . Remark that if we preclude rationing, the policy is not
strictly applicable since the price must turn to p∗C when stocks are empty in state C. With
rationing, the price may remain formally at p∗, but the marginal shadow value of the
commodity would be p∗C anyway.

To summarize the effect of the policy, the simplest approach is to search for stationary
distribution. We can solve (31), i.e.

dφA

dS
= −

(
λA

∆C

+
λC

∆A

)

φA for all S > 0, (37)

where λA

∆C
+ λC

∆A
here is a constant (with a constant price, ∆C < 0 and ∆A > 0 are constant).

Define p∗ as the solution to the equation λA∆A[p] + λC∆C [p] = 0.
If p∗ < p∗, then λA

∆C
+ λC

∆A
> 0 ⇔ λA∆A +λC∆C < 0 : on average, the economy draws on

the stocks. This implies that φA is decreasing and the density is a decreasing exponential:
lower stocks are more likely. The distribution has an unbounded support, empty stocks in
crisis is an event of positive probability during which the price is p∗C .

If p∗ > p∗, then λA

∆C
+ λC

∆A
< 0 ⇔ λA∆A + λC∆C > 0 : on average, the economy piles up

stocks. This implies that φA is increasing unboundedly with respect to S. Higher stocks
being increasingly likely, normalization is impossible; in other words there is no well defined
stationary distribution. Stocks diverge to infinity with probability one and stabilization,
in this sense, succeeds.

The case p∗ = p∗ is intriguing. The economy has no tendency to pile up nor to drain
out stocks. All positive levels of the stocks are equally likely (the stationary density is
flat), meaning that the behavior of the system in the long run is unpredictable.

Stabilization should not be understood in the narrow sense of averaging the price that
would be observed in the absence of storage capabilities. Remark indeed that p∗, which is
the critical threshold, could be higher or lower than the average no-storage price λA

λA+λC
p∗A+

λC

λA+λC
p∗C . This depends on the sensitivity of excess supply functions to price variations.

The conclusion is straightforward: perfect price stabilization can be reached only if the
economy is prepared to let stocks go to infinity. The analysis above is easily extended to
the case of limited storage capacity. Any upper bound on stocks leaves positive probability
on empty stocks. In that case, the probabilities of full storages and stockouts depends on
the policy p∗ chosen.
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6.2 Injection and release costs

Denote unit injection cost by i and unit release cost by s. Assume that in each state
σ = A, C, and for any stocks level S, there are markets for the gas outside and inside
the reservoir, the prices being respectively pσ[S] and pI

σ[S]. The (competitive) market
equilibrium between outside and inside gases implies that, whenever S > 0,

pA[S] + i = pI
A[S] and pC [S] = pI

C [S] + s. (38)

The structure of the system of equations is preserved, with pI
σ replacing pσ. No arbitrage

conditions read

∆C [pI
C + s] · dpI

C

dS
= (r + λA)pI

C − λApI
A + c, (39)

∆A[pI
A − i] · dpI

A

dS
= (r + λC)pI

A − λCpI
C + c. (40)

Remark that the excess supply functions are shifted, thus boundary conditions are

pI
C [0] = p∗C − s, (41)

pI
A [S∗] = p∗A + i. (42)

The range of pI
σ is narrower than that of pσ : the minimum is higher, the maximum is lower.

As a result, the condition ensuring that there is storage in equilibrium is more restrictive
than the one in Proposition 1 (Point 4), i.e. in the linear case

p∗C − s >

(
r + λ

λC

)

(p∗A + i) +
c

λC

. (43)

The phase diagram enables us to show that S∗ is decreasing with respect to the cost
parameters s and i. The rest of the comparative statics is identical.

6.3 Limited storage capacity

If the total storage capacity S exceeds S∗, then the unconstrained trajectory remains
sustainable; else, rational storers anticipate that boundary conditions are modified.

As long as some capacity is vacant, then storage price per unit of gas (per unit of time)
remains equal to marginal cost c; the system of equations is exactly the same as the one
without any constraint, so the equilibrium is described by a trajectory in region I of the
phase diagram. Trajectories below the unconstrained equilibrium start on the vertical axis
at a given price for S = 0 and stop on the horizontal axis on the right of Ω for a maximum
stock which is smaller than S∗. There is a unique trajectory such that this maximum stock
equals exactly S. It describes the unique equilibrium with limited storage capacity. See for
example the dashed trajectory below the bold one in Figure 1.
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In the accumulation phase, the price for storage service suddenly jumps above marginal
cost when capacity is saturated. We denote it by πA.14 Given that pA[S] = p∗A, the no-
arbitrage argument in state (A, S = S) can be expressed

λC(pC [S] − p∗A) = rp∗A + πA. (44)

The LHS measures the potential profit from holding stocks and the RHS the cost. Given
that pC [S] > r+λC

λC
p∗A + c

λC
(the terminal point is on the right of Ω in Figure 1), we have

πA > c.
In contrast to the unconstrained case, the maximal stock is attained in finite time if

abundance lasts long enough. This explains that the jump in the price of storage services (a
discontinuity) is consistent with a continuous price function pA[S] (continuity is necessary
for no-arbitrage): before the capacity is full, the price pA[S] decrease steadily; storers incur
non-negligible capital losses if the state does not change; this depreciation term does not
converge to zero as the maximal stocks are reached; this term is relayed by cost πA > 0
when the constraint becomes binding.

7 Conclusion

Our model has fully described the behavior of a Markov economy in which storage dynamics
are determined by random occurrence of crises. Overall, we have proposed the quite
appealing notion of “flexible economy”. We have proved that in equilibrium, a more flexible
economy (i.e. better able to absorb shocks via production and consumption changes), is
less keen to build up large stocks and is much more likely (in terms of probability) to
hold maximum stocks. If the reluctance to build large stocks is intuitive, since overall, the
value of stocks (or the convenience yield) decreases when an economy can promptly react
to a shock, release dynamics are less intuitive. We show that flexible economies go fast
towards maximum stocks and just stay there until a shock leads to fast drainage, while
inflexible economies incur permanent movement of their stocks, and over a wider interval.
This relationship between flexibility and maximum stocks is a result of interest. On this
ground, it could be argued that security of supply policies for energy or banking rules for
emission rights, which are never neutral with respect to the market equilibrium, should not
be set equally across European states, inasmuch as their capabilities to respond to shocks
is heterogeneous.
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A Appendix

A.1 Phase diagram

Compared to (AA′), (CC ′) cuts the horizontal axis with a smaller value of pC . It suffices to inject pA = p∗A
in both equations and to check that

λA

r + λA
p∗A − c

r + λA
<

r + λC

λC
p∗A +

c

λC
. (45)

This is obvious.
To show that (CC ′) cuts the vertical axis with a larger value of pA than (AA′), we inject pC = p∗C

into both equations and check that the following equation remains true (obvious)

r + λA

λA
p∗C +

c

λA
>

λC

r + λC
p∗C − c

r + λC
. (46)

A.2 Proof of Proposition 1

1. and 2. Price functions are continuous and the stocks vary continuously with respect to time, thus the
support of stocks is necessarily an interval.

Assume that over some interval J of stocks, ∆C [pC [S]] ≥ 0 and ∆A[pA[S]] ≥ 0 (accumulation only) or
∆C [pC [S]] ≤ 0 and ∆A[pA[S]] ≤ 0 (drainage only). Clearly, interval J can be traversed once at most in
history. Consequently, interval J cannot be part of the equilibrium support of the stocks.

If over some interval, ∆C [pC [S]] ≥ 0 (i.e. pC [S] ≥ p∗C) and ∆A[pA[S]] ≤ 0 (i.e. pA[S] ≤ p∗A),
accumulation during crises is motivated only by the fact that the price is expected to rise if the economy
stays in crisis (an episode of abundance causes a negative shock on the price). This means that dp∗C [S]/dS >
0. In consequence, the price in state C is unbounded as well as the support of S, since any length for
an episode of scarcity has positive probability to be exceeded. Such a bubble is unreasonable since it
would imply unbounded storage capacity (a transversality condition would translate this common sense
remark into mathematical language). These arguments show that ∆C [pC [S]] ≤ 0 (i.e. pC [S] ≤ p∗C) and
∆A[pA[S]] ≥ 0 (i.e. pA[S] ≥ p∗A).

Remark now that if the lower bound of the support were strictly positive, this would mean that a
certain quantity of the commodity would be permanently frozen. Denote this level by Smin. Necessarily,
pC [Smin] = p∗C , meaning that if the economy stays in crisis for a long time (a possible event), storers
have to pay storage costs without compensation in potential price movements. Consequently, support is
bounded below by 0 (Smin = 0).

3. If pC [0] < p∗C , final demand would exceed production for S = 0, which is impossible with empty
storages. This proves that the trajectory starts on the vertical axis (pC [0] = p∗C).

Assume that there is an ε > 0 such that pA stays larger than p∗A + ε as S increases. Given the phase
diagram, pA reaches its minimum on the straight line (AA′), if the trajectory starts in I. In any case, as S
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increases, the trajectory enters in II, then in III, implying that pA overshoots r+λA

λA
p∗C + c

λA
(intersection

between (CC ′) and vertical axis). In other terms, for any large enough S, pA overshoots p∗C while pC

remains below p∗C . Thus, as S continues to grow, x′
A/x′

C remains finite whether or not pA tends towards
infinity. We conclude that any trajectory in III reaches the vertical axis pC = p∗C for a finite value of the
stock. At this point, drainage stops in state C, but accumulation continues in state A (xA > 0)), meaning
that the stock is never going to be used in the future, which is uneconomical (see point 1 in this proof).

We conclude from the contradiction that accumulation must stop in state A for some stocks S∗; thus
necessarily pA[S∗] = p∗A. Remark that this can only happen in I on the horizontal axis at point Ω.

4. From (AA′), we have
(r + λC)pA[S∗] − λCpC[S∗] + c = 0 (47)

i.e.

pC[S∗] =
r + λC

λC
p∗A +

c

λC
(48)

This corresponds to Ω = ( r+λC

λC
p∗A + c

λC
, p∗A). For this intersection to exist, i.e. for I not to be empty, a

sufficient and necessary condition is
(r + λC)p∗A + c ≤ λCp∗C . (49)

5. We show that there is a unique trajectory passing through Ω. The Cauchy-Lipschitz Theorem cannot
be applied since the system is singular at Ω. We use the following argument: choose any starting point
in the interior of I, denoted by (p0

C , p0
A); it is necessarily nonsingular. The trajectory passing through

this point is unique (Cauchy-Lipschitz). Consider the point (p0
C , p0

A + ε) where ε is some small real.
Straightforward calculations show that the slope of the trajectory passing through (p0

C , p0
A + ε), which is

positive, decreases as ε increases. One can directly reason on

dpA/dpC =
∆C [pC ]

∆A[pA]
· (r + λC)pA − λCpC + c

(r + λA)pC − λApA + c
. (50)

This means that trajectories move apart as S increases, i.e. as they approach Ω. The consequence is that
there cannot be multiple trajectories through Ω. This proves existence and uniqueness.

A.3 Proof of Proposition 2

We first determine how trajectories move in the phase diagram as parameters change. Rewrite the system
of ODE in compact for as

p′C = PC(pC , pA, c, r, λA, λC) or simply PC ( > 0 in region I), (51)

p′A = PA(pC , pA, c, r, λA, λC) or simply PA ( < 0 in region I). (52)

Note that ∂PC

∂c = 1/∆C [pC ] < 0 and ∂PA

∂c = 1/∆A[pA] > 0, thus p′A/p′C = PA/PC decreases as c increases
(all trajectories in I are flatter). Similar observations prove that all trajectories in I are also flatter when
r increases, when λA increases and when λC decreases.

We can now position equilibrium trajectories as parameters change. Increasing c or r, or decreasing
λC , move Ω to the right; increasing λA has not effect on Ω. In all cases, the equilibrium trajectory moves
below the former one: to each pC is associated a smaller pA.

Remark that dS
dpC

= 1/PC < 0, thus

S = −
∫ p∗

C

pC [S]

dpC

PC
(summation along the equilibrium trajectory). (53)

Since Ω goes to the right as c increases, the range of pC becomes smaller; it remains to be verified that
1/PC , as a function of pC , is also smaller. For example, along the equilibrium trajectories, for a fixed pC

dPC

dc
=

1

∆C [pC ]
︸ ︷︷ ︸

−

+
∂pA

∂c
︸︷︷︸

−

× ∂PC

∂pA
︸ ︷︷ ︸

+

< 0. (54)
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(PC grows in absolute value and thus 1/PC decreases in absolute value.) This proves that as c increases,
a given price is associated with a smaller S. Similar reasonings can be applied to the other parameters to
prove the claims.

A.4 Proof of Proposition 3

We have

PC =
(r + λA)pC − λApA + c

βC(pC − p∗C)
, (55)

PA =
(r + λC)pA − λCpC + c

βA(pA − p∗A)
. (56)

Clearly, trajectories in I are steeper with a higher βC or a smaller βA. Remark that the frontier of I
(Ω in particular) is unchanged in this comparative statics. Remark also (this concerns point 2) that a
proportional increase of βC and βA does not change the trajectories (but a given point corresponds to a
different S). The type of reasoning used in the proof of Proposition 2 can now be applied to show the
claims.

The comparative statics with respect to p∗C and p∗A require further precautions. In the former, remark
that trajectories are steeper with a higher p∗C (pC < p∗C) and that I is extended to the right (trajectories
are simply going further to the right). These two effects concur to increase the price for given stocks. In
the latter, trajectories are flatter with a (say) smaller p∗A but Ω moves along down (AA′). The first effect
decreases prices, hence point 1, but the second could lead to a higher S∗ (a smaller function is integrated
over a longer interval, since the range of pC increases, see equation 53).

A.5 Equivalent expressions for prices

On the right of 0. We have

xC [S] =

∫ pC [S]

p∗

C

∆C [p]dp, (57)

thus, writing first-order approximation on both sides we get

KCS + o(S) =
1

2
∆′

C [p∗C ](pC [S] − p∗C)2 + o(pC [S] − p∗C)2, (58)

which yields

pC[S] − p∗C ∼
0
−
√

2KC

∆′
C [p∗C ]

S1/2. (59)

On the left of S∗. Given that, according to (6), p′C [S∗] 6= 0, we can approximate pC [S] around S∗

with pC [S∗] + p′C [S∗](S − S∗) + o(S − S∗). We denote p′C [S∗] by −M , with

M = − [(r+λA)(r+λC)−λAλC ]p∗

A+(r+λA+λC)c

λC∆C [
r+λC

λC
p∗

A
+ c

λC
]

> 0. (60)

Given that

xA[S] =

∫ p∗

A

pA[S]

∆A[p]dp, (61)

we can calculate that pA[S] − p∗A + o(pA[S] − p∗A) =
√

2
∆′

A
[p∗

A
]x

1/2
A [S], or equivalently pA[S] − p∗A =

√
2

∆′

A
[p∗

A
]x

1/2
A [S] + o(x

1/2
A [S]).
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We plug these two equivalent expressions into (7), which yields

x′
A = (r + λC)

√

2

∆′
A[p∗A]

x
1/2
A + λCM(S − S∗) + o(S − S∗) + o(x

1/2
A ), (62)

Consider now the ODE

y′ = (r + λC)

√

2

∆′
A[p∗A]

y1/2 + λCM(S − S∗) with y[S∗] = 0. (63)

The unique solution to (63) is K2
A(S∗ − S)2 with

KA =

√
(r+λC)2+4∆′

A
[p∗

A
]λCM−r−λC

2∆′

A
[p∗

A
] . (64)

We show now that this exact solution of approximate ODE (63) is an approximation of the solution to
ODE (62).

Consider the residual o(S−S∗)+o(x
1/2
A [S]) in the ODE (62). For all ε > 0, there is a left neighborhood

of S∗, denoted Vε, in which the absolute value of the residual is smaller than ε× (S∗−S) and ε× (x
1/2
A [S]).

Consider the ODE

y′ =

[

(r + λC)

√

2

∆′
A[p∗A]

+ ε

]

y1/2 + (λCM − ε)(S − S∗) with y[S∗] = 0. (65)

The solution to this equation is smaller than xA on Vε : indeed, both x′
A and y′ are negative, but if y > xA

for some S in Vε, it remains so for any larger stock because y′ > x′
A. This is in contradiction with the fact

that y[S∗] = xA[S∗]. In other terms,

xA[S] ≥





√

(r+λC+

√
βA
2

ε)2+4βA(λCM−ε)−r−λC−
√

βA
2

ε

2βA





2

(S∗ − S)2. (66)

A similar reasoning shows that

xA[S] ≤





√

(r+λC−
√

βA
2

ε)2+4βA(λCM+ε)−r−λC+

√
βA
2

ε

2βA





2

(S∗ − S)2. (67)

These two inequalities give the approximation of xA at S∗.

A.6 Statistical evolution from a known state

To fix ideas, denote the observed state at, say, date t = 0, by conjuncture A and stocks S0. Conditionally
on staying in state A, the probability mass (initially 1) is attached to a unique level of the stocks; but this
mass itself is eroded by potential jumps. Other states (except 0 and S∗) are associated with a density, as
we shall develop now.

The mass point Smax[t] (where the index max recalls that the support of the distribution is bounded
above by this time dependent value) evolves following

dSmax

dt
= ∆A[pA[Smax]] > 0 with Smax[0] = S0, (68)

whereas the lower bound of the distribution follows

dSmin

dt
= ∆C [pC [Smin]] < 0 until 0 is reached, with Smax[0] = S0. (69)
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Both values move deterministically. Clearly,

Pr[A, Smax[t], t] = e−λCt, (70)

which is the probability that no crisis has ever happened since date 0.
States inside the interval [Smin[t], Smax[t]] are associated with a positive density; outside the interval,

density is null. States (C, 0, t) and (A, Smax[t], t) are mass points (the former only after some time has
elapsed, so that Smin has reached 0).

To fully characterize the statistical evolution from a known state, we prove the following preliminary
lemma that explains how a pointwise probability becomes a density.

Lemma 1

lim
S→Smax[t]

fC [S, t] = − λCe−λCt

∆C [pC [Smax[t]]] + ∆A[pA[Smax[t]]]
, (71)

Proof. Consider states {(C, S)|S ∈ [Smax[t] − dS, Smax[t]]} with dS small. To calculate the probability
of this event at date t, we have to trace back histories that lead to these states.

Denote dt and dSA the unique time interval and stock variation such that a jump from (A, Smax[t] −
dSA) to (C, Smax[t] − dSA) at date t − dt followed by drainage between date t − dt and t has led to state
(C, Smax[t] − dS).

Clearly, all the jumps happening from the current mass point between dates t − dt and t (and only
these), give states in [Smax[t] − dS, Smax[t]] at date t.15 So a first-order approximation of the probability
we seek is the probability that a jump from {(A, S)|S ∈ [Smax[t] − dSA, Smax[t]]} to C has taken place
between date t − dt and t. This probability is λCe−λCtdt, thus

Pr[{(C, S)|S ∈ [Smax[t] − dS, Smax[t]]}] =
λC exp[−λCt]dt

dS
. (72)

We have to calculate the relationship between dSC , dSA, and dt. From the stock dynamics we have

dt =
dS − dSA

∆C [pC [Smax[t]]]
=

dSA

∆A[pA[Smax[t]]]
. (73)

The middle term is the time needed, given drainage speed, to pass from stocks Smax[t] − dSA to stocks
Smax[t]−dS. The RHS is the time needed, given accumulation speed, to pass from Smax[t]−dSA to Smax[t].
After straightforward substitutions, we let dS go to 0 and prove the result.

We are now equipped with a complete set of equations to describe the dynamics. Indeed, (71) and
(22,23) can be used to describe statistically the system over time. The exercise is numerically demanding.

A.7 Proof of convergence of Algorithm 2

Remark that the ODE commanding φA can be written

φ′
A

φA
= −

(
λA

∆C
+

λC

∆A

)

. (74)

On the right of S = 0, ∆C → 0 so the RHS of (74) is equivalent to − λA

∆C
, i.e., using (15), to K0√

S
where K0

is a nonnegative real

K0 =
λA

∆′
C [p∗C ]

√
KC

. (75)

15Given the small size of the interval, we can neglect histories involving two jumps, so relevant
histories can only consist of one jump from state A and some drainage.
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Thus limS→0 φA is finite and strictly positive. Indeed, for all ε > 0, there exists η such that for all S ≤ η,

(1 − ε)
K0√

S
≤ φ′

A

φA
≤ (1 + ε)

K0√
S

. (76)

Take S1 and S2 both smaller than η with S1 ≤ S2 and integrate the inequality above between these two
reals. We find

2(1 − ε)K0(
√

S2 −
√

S1) ≤ ln
φA[S2]

φA[S1]
≤ 2(1 + ε)K0(

√

S2 −
√

S1). (77)

This proves that φA is bounded away from 0 (fix S2 and let S1 converge to 0). Given that φA is also
monotonic (increasing) in a neighborhood of 0, the limit that we denote by φA[0] exists and is nonnegative.

So, at 0, fA is finite and nonnegative whereas fC ∼0
KfC√

S
where KfC

is some nonnegative real. This

implies that, though the density fC diverges at 0, its integral is well defined.

A.8 Proof of Proposition 4

On the left of S∗,∆A → 0 so the RHS of (74) is equivalent to − λC

∆A
, i.e. KS∗

S−S∗
where KS∗ is a nonnegative

real with

KS∗ =
λC

βAKA
. (78)

For all ε > 0, there exists η such that for all S ≥ S∗ − η,

(1 − ε)
KS∗

S∗ − S
≤ −φ′

A

φA
≤ (1 + ε)

KS∗

S∗ − S
. (79)

Take S1 and S2 both larger than S∗ − η with S1 ≤ S2 and integrate the inequality between these two real
numbers. We find

−(1 − ε)KS∗ ln
S∗ − S2

S∗ − S1
≤ − ln

φA[S2]

φA[S1]
≤ −(1 + ε)KS∗ ln

S∗ − S2

S∗ − S1
, (80)

i.e.
[
S∗ − S2

S∗ − S1

](1+ε)KS∗

≤ φA[S2]

φA[S1]
≤
[
S∗ − S2

S∗ − S1

](1−ε)KS∗

. (81)

This implies that limS→S∗ φA = 0, from which we can conclude that Pr[S∗] = 0.
We can now derive a tight condition on the shape of the density function fA around the upper bound

S∗. Indeed, given that φA = fA · ∆A,

fA[S] is proportional to (S∗ − S)KS∗−1. (82)

Equation (82) together with φC = −φA proves Proposition 4.
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