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In this paper we propose a pluralistic and multi-dimensional approach to 

cooperation. Specifically, we seek to show that, in certain settings, less 

unconditional forms of  cooperation may be combined with more gratuitous ones. 

Starting with the prisoner�’s dilemma game, the evolution of cooperation is analyzed 

in the presence of different strategies, which represent the heterogeneity of the forms 

of cooperation in civil life. 

There are many behaviour patterns, though not all of them are based on self-interest 

and conditionality. The dynamics of cooperation are studied through the use of 

evolutionary games applied in contexts that are either one-shot or repetitive. One of 

the most important results of the paper is the conclusion that cooperation is favoured 

by heterogeneity. 

 

JEL Classification: C72, C 73, D64 

 

Key-words: cooperation, Prisoner�’s Dilemma, reciprocity, heterogeneity, 

evolutionary game theory. 

 

 

1. Introduction 

 

Civil life is essentially cooperation. Neoclassical economics offers a highly 

parsimonious view of cooperation based on individual self-interests and 

instrumental rationality. In such a vision of cooperation an agent, for instance, 

would never cooperate in a non-iterated prisoner�’s dilemma game. If instead the 
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game is repeated, the traditional theory justifies the cooperation  by evoking self-

interest (this being the so-called �‘folk theorem�’) or enforcement. 

   In reaction to this excessively parsimonious view of cooperation, recent years have 

seen development of a body of literature, the so-called�‘social preferences�’ theories, 

which instead seeks to explain why even in a one-shot non-cooperative game (i.e. 

the �‘ultimatum�’ or �‘trust game�’) it may be rational to play �‘cooperatively�’. The 

explanation, of which there are several variants, is a redefinition of the utility 

function of the agents, by introducing non material payoffs associated to norms such 

as inequality aversion or reciprocity, . In this way it is possible to explain the 

emergence of cooperative behaviour in contexts where the standard theory would 

exclude it. 

   This is the explanation of cooperation advanced by behavioural economists (see 

Gintis (2004) and Bowles and Gintis (2004)), who base their analyses of cooperation 

on the theory of strong reciprocity (Fehr and Gächter (2000)). By �‘strong 

reciprocity�’ they mean a social norm which, in a manner costly to the individual, 

rewards those who behave well and punishes those who behave badly. This theory 

of cooperation stands in methodological and cultural opposition to the mainstream 

economic theory: whereas standard economics (i.e. that of Binmore, 2005) 

envisages nothing but self-interest and monetary incentives, strong reciprocity 

theory explains the emergence of cooperation on the basis of a form of altruism 

which does not even require the game�’s repetition. 

   In this paper we adopt a different perspective for explaining the emergence of 

cooperation. We propose a theory of cooperation which is less parsimonious than 

that of standard economics, but without embracing the strong reciprocity thesis. We 

put forward a pluralistic and multidimensional view of cooperation and 

consequently examine aspects hitherto insufficiently explored by economic and 

social theory. In particular, the intuition inspiring this essay is the multidimensional 

nature of cooperation, that is, at the same time, one and many; civil society 

flourishes if and when the different forms of cooperation are seen as complementary 

instead of competitive or substitute one another. In this sense,diversity fosters 
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cooperation, as it is well know in biology. Specifically, we seek to show on the one 

hand that, in certain settings, less �‘altruistic�’ or unconditional forms of  cooperation 

may combine with more gratuitous ones and so foster a culture of generalized 

cooperation. On the other, too many unconditional actions will end to promote the 

non-cooperation.  

   We accordingly construct dynamic models which will enable us to analyse diverse 

patterns of cooperation. There are many such patterns, not all of them based on self-

interest, but all of them important for understanding the dynamics of civil life. 

   We shall base our analysis on the Prisoner�’s Dilemma (PD) game, because it lends 

itself well to the modelling of �‘difficult�’ cooperation: the kind that occurs in 

situations where there is no enforcement and where there is always an incentive for 

non-cooperation. We believe that these situations are frequent and relevant �– 

although in civil society individuals play many games, not only the PD �– and that 

they are important in the real dynamics of cooperation in civil life. 

   In section 2 we analyse the evolution of cooperation in a �‘one-shot�’ context, while 

in section 3 we apply the evolutionary analysis to repeated games. In section 4 we 

concentrate on analysis of situations in which four strategies interact, also furnishing 

simulations. The paper concludes with a brief discussion on the results of our 

analysis. 

 

2. Evolution in a one-shot game 

2.1. The basic model: two strategies 

 

The pay-off matrix of the game is the following.
2
 

 

 C D 

C -  -  

D  0 

                                                 

2 The table represents a particular case which simplifies the analysis without compromising the 

results. As well known, for a game to be a Prisoner�’s Dilemma, the payoff order must be  >  > 0.    
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   It can be easily shown that both players will choose not to cooperate or defect (D) 

in a one-shot game, and that the outcome (0,0) will be a Nash equilibrium. In this 

kind of  non-iterated game cooperation cannot arise unless errors are committed or 

the players behave irrationally. 

   The structure of our model is as follows. Time is continuous. We suppose that 

there is a continuum of agents belonging to a particular population, and that they 

must choose one of the J pure strategies J,...,1  whenever they interact with other 

subjects in the same population. The subjects are distributed among I sub-

populations I,...,1 , which are assigned exogenously in the sense that existing sub-

populations may disappear but new ones cannot be created. 

   The model�’s dynamic is described by standard �‘replication�’ equations. The 

replication dynamic is widely used in evolutionary models, which assume that the 

most profitable strategies proliferate in the population at the expense of others. 

Heckathorn (1996) describes this dynamic well: 

�“Based on the resulting payoffs, the actors with the most successful strategies 

proliferate at the expense of the less successful. This process is then repeated, 

generation after generation, until the system either approaches stable equilibrium or 

cyclical variation.�” (p. 261) 

 

   This dynamics is usually employed in biology to study the evolution of species on 

the basis of the relative fitness. However, in social sciences there is a different 

interpretation of such a selection process: it involves learning by observing and 

imitating the behaviour of others. In what follows, we adopt neither the biological 

analogy nor the memetic one (i.e. the extension of gene-based biological evolution 

to meme-based social evolution). Instead, we use the concept of �‘expected utility�’ as 

an indicator of the success (not necessarily material) of a strategy: a success which, 

over time, is imitated by less successful strategies (those with less expected utility).    

The dynamic of the model can be represented by the replication equations: 

 

NiYYpp iii ,...,1      )(   [1] 
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where p denotes the proportion of subjects for each subpopulation, Y the average 

payoff, and Yi the average payoff for a subject belonging to the subpopulation i. 

   The dynamic is defined on the invariant simplex: 

 

N

i

ii

N ppp
1

0,1,  

 

   We shall use this analytical structure to analyse the evolutionary process that 

arises in a situation where there are two pure strategies, C and D, and first two, then 

three, and finally four subpopulations. 

 

To begin, we assume that in a one-shot game there are only two types of agents: 

those who always defects (types N), and those who instead always cooperate (types 

G, where G means gratuitous). In each round, a player is randomly paired with 

another player (�‘random matching�’), with whom s/he plays once, after which there is 

another random encounter.
3
 In a situation such as this, it can be easily shown that G 

subjects will be invaded by the N, that is an evolutionary stable strategy.  

 

2.2. Three strategies with recognizability 

We now introduce a third type, which adds to the previous ones: the T type (from 

tit-for-tat
4
). �‘Cooperate�’ is not the T type�’s dominant strategy; but on encountering 

and recognizing a G type, s/he does not exploit G but prefers to cooperate. The T 

type�’s decision to cooperate is conditioned by the �‘assurance�’ (to use Sugden�’s 

[2003] term) that the adversary too will cooperate. 

   What does the dynamic analysis tell us in this situation? Two cases should be 

distinguished: if the T type recognizes the other players, s/he has a perfect signal 

                                                 

3 The game will always be non-repeated, because even if the players meet again in the future they 

will not recognize each other.  

4 See Axelrod (1984), Sugden (2004). 
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with which to discriminate between N and G types, so that the cooperative solution 

is sustainable in the long period. Instead, if T does not have a perfect signal, and 

may therefore commit errors, thereby being at risk of cooperating with N types and 

of not cooperating with other T types and with G types, the results are different: 

according to the value of the payoffs and to the probability of error, there may arise 

a non-cooperation equilibrium or the survival of only T types, with G types destined 

for �‘extinction�’. 

   We begin with the simpler case in which the T type is assumed to receive a perfect 

signal. 

   The hypotheses are therefore that: 

a. there exist three types: Ns (who always play D), Gs (who always play C), and Ts 

(who play C with those that they identify as Gs or Ts, and D with Ns); the payoffs 

are those set out in table 1; 

b. the probability of encountering a type i is pi, i = N,G,T, and pt = 1 �– pn �– pg; 

c. the expected utilities are therefore: 

Un = pn(0) +  pg( ) + pt(0) 

Ug = pn(- ) +  pg(  - ) + pt(  - ) 

Ut = pn(0) +  pg(  - ) + pt(  - ) 

 

The payoffs can be arranged in a matrix, which we call A: 

0

00

A  

The system�’s dynamic can be written as follows: 

App   

App

App

3

2

1

t

tt

t

gg

t

nn

Appp

Appp

Appp

  [2] 

where   tgn

t ppp ,,p  and 3,2,1 with  lAp
l

 is the l-th component of the vector 

Ap and therefore corresponds to the expected payoff (as in hypothesis e.), while 

t
pAp is the average payoff. 

   The space of the dynamic is the simplex: 
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1  e  0p:p 3

tgn ppp   [3] 

   For the dynamic analysis we draw on Bomze (1983) on the replication dynamic: 

the analytical procedure is set out in the Appendix. 

   It is easy to show that only G types and T types will survive in time, while N types 

will become extinct: this is a well known result. Consider the simplex in Figure 1: 

the side on which pn=0 (i.e. only Gs and Ts exist) consists entirely of fixed points. 

The presence of T types therefore means that the equilibrium may settle at 

cooperation. The most interesting result is that the final proportion of G types will 

be greater, the smaller their proportion at the beginning of the game. On following 

the trajectories within the simplex, in fact, we find that those starting from a point 

where the proportion is high finish at a point where the final proportion is low. The 

explanation for this is straightforward: G types are �‘preyed upon�’ by the Ns, so that 

the larger their number at the beginning, the more nutritious the Ns�’ �‘diet�’ will be. 

Instead, if there are only a few G types at the beginning, the Ns will have scant prey 

and will succumb (because they cannot prevail over the T types).  

 

 

 

 

 

 

 

   

 

 

   G types �– the unconditional cooperators �– can survive and assert themselves over 

time is there exists a mechanism (in this case the perfect signal utilized by T types) 

with which N types can be recognized. 

   We shall now see what happens if the hypothesis of perfect recognizability is 

abandoned. 

N 

T 

G 

Figure 1  
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 2.3. Imperfect recognizability 

  If the T type does not have a perfect signal, the situation becomes more 

complicated. Let us assume a probability r that the T type is mistaken in identifying 

the type with which s/he is dealing. 

   Hence, if a T type is matched with an N type, s/he will play N with probability r 

and C with probability (l �– r); if instead s/he is matched with a G type s/he will play 

C with probability r and D with probability (1 �– r), and so on. 

   We therefore introduce a new hypothesis (d) in place of hypothesis c. 

 

Hypothesis d. The expected utilities of the three types are 

rrrrrprrprpU

rrpppU

rpppU

tgnt

tgng

tgnn

111))(1(

1)()(

)1()0(

   

   We alter matrix A for the dynamic analysis, while everything else remains the 

same as before. 

   As said, in a situation of this kind, N types or T types will survive over time if the 

probability that T types will recognize the other players is relatively high; whereas if 

this probability is low the T types will become extinct as well, so that nothing 

changes with respect to a situation in which only N types and G types are present. 

   As shown by figures 2a and 2b, G types are anyway destined for extinction, 

though matters are different for N types and T types. If the probability is low, all the 

trajectories simply converge on a situation in which only N types survive. If the 

probability is high, the final outcome depends on the initial situation. In other words, 

in the lower part of the figure (which, according to how the simplex is constructed, 

signifies relatively many Ns, many Gs and few Ts), Ns will prevail over both the Gs 

and the Ts. In the upper part, where there are initially more Ts and fewer Ns, Ts will 

prevail. The G types will always become extinct, even in a world where N types do 
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not exist, because of the possibility that the T types will fail to recognize them. For 

if T types do not recognize G types, they will not cooperate with them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proposition 1. If hypotheses a, b and d hold, and if the T types recognize with 

probability r the types with which they play, then only N types will survive over time 

if 
2

r . 

N types or T types are able to survive if 
2

r .   

 

   Probability r therefore depends on the ratio between the utility obtained by not 

cooperating at the expense of those who cooperate, and the utility of those who 

cooperate with those who do likewise. The threshold value of r (the minimum value 

for T types to be able to survive over time) is lower, the smaller the value of : that 

is, the smaller the �‘exploitation advantage�’ or the �‘cost of coherence�’. In the second 

example, 2b, the possible equilibrium depends, other conditions remaining equal, on 

Figure 2. Case 2a:
2

r , case 2b: 
2

r  

N 

T 

G N 

T 

G 

f 
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the position of the fixed point f.  It can be shown, in fact, that if r tends to its 

minimum value, i.e. 
2

r , the point tends to shift towards the vertex T.
5
 This 

means that as r diminishes, the equilibrium of only Ns becomes more likely (all the 

trajectories in the simplex starting from a point situated lower than f lead to N). 

   A similar result has been obtained by Bowles and Gintis (2004). In their model, 

however, three different types interact: the selfish type, the unconditional 

cooperator, and the reciprocator, who punishes the selfish type at his/her own 

expense if recognizing him/her. With the base version of their model Bowles and 

Gintis obtain the survival, at asymptotic level, of only selfish types. Then by varying 

the parameters and using simulations, they obtain high levels of cooperation. 

 

3. The dynamic game 

 

   We saw in the previous section that G types had little hope of surviving in the 

evolutionary context described. 

   We now see what happens if the game is repeated. We assume, that is to say, that 

associated with every random encounter is a repeated interaction with the same 

person. This interaction may be of greater or lesser duration according to a 

parameter, , which denotes the probability that the game will continue for another 

round
6
. After a series of interactions with the same person, another random 

encounter occurs, and the (repeated) game resumes with another (randomly 

matched
7
) partner.  

                                                 

5 The coordinates of point f are 
rrr

r

rr

rr
f

22

)1(
,0,

22

2
, and as r tends to 

its minimum value, the former coordinate (pn) tends to 0. 

6 We are hence in a context of indefinitely repeated game. 

7 We adopt the simplifying hypotheses that the repeated game finishes for all players at the same 

moment, but the results do not change if the game finishes earlier for one of them, because s/he is re-

assigned to another game. 
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   We are well aware that if the game is repeated, the possible strategies are infinite. 

We consequently restrict our analysis to four strategies, differentiating the T strategy 

(of the previous section) into two strategies, which we shall call (following Sugden 

2004) B (= Brave) and C (= Cautious). B and C strategies are a kind of trigger 

strategies: they stop to cooperate if they see the other player defecting. 

    The strategies considered are therefore the following: 

1. N: never cooperate. N is a highly important strategy because analysis of 

cooperation dynamics becomes non-banal precisely when non-cooperation scenarios 

are possible. 

2. G: always cooperate. 

3. C: cooperate with a player who cooperated in the previous round; do not 

cooperate with a player who did not cooperate in the previous round, and begin by 

not cooperating. If these cautious types are to cooperate, they must have obtained 

cooperation in the previous round. When Cs encounter other Cs or Ns, they never 

cooperate. An immediate consequence ensues: in a world with only Cs and Ns, 

cooperation will never be possible, and it will not be possible to distinguish Cs from 

Ns because they behave in exactly the same way.  

4. B: this strategy has the same structure as C, the only difference being that B 

begins by cooperating. B stands for �‘Brave�’, in fact. Bs are players who begin by 

cooperating (and therefore risk being �‘exploited�’ by Ns or Cs in the first round). But 

if in the second round they do not receive cooperation, nor will they cooperate. 

 

   If we use cgbn pppp ,,,  to denote the probabilities of encountering, respectively, 

an N, B, G or C type, the expected utilities in a world with these four possible 

strategies are: 

 

)0(
1

)0( cgbnn ppppU   [3]  

 



12 

   An N type will never cooperate with other N types and with C types who begin by 

not cooperating and do not cooperate if the other player did not cooperate in the first 

round, whence )0(np , )0(cp . If  the N type encounters a B type, s/he will obtain  

in the first round because B began with an act of cooperation, but the subsequent 

payoffs will be equal to 0 because B will stop cooperating from the second round 

onwards. Finally, if N encounters a G, s/he will obtain  in every round
8
 because G 

will always cooperate. 

cgbnb ppppU
1

)(

1

)(
)(   [4] 

   The B type begins with an act of cooperation and continues to cooperate if the 

adversary in the first round has responded by cooperating. Cooperation is assured 

with other B types and with G types, but not with N types, or even with C types.
9
  

 

11

)(

1

)(

1
cgbng ppppU   [5] 

  A G type will therefore always cooperate with Bs and with Gs, and with Cs from 

the second round onwards, while Gs will let themselves be �‘exploited�’ by Ns. 

)0(
1

)0( cgbnc ppppU   [6] 

   Finally, a C type will not cooperate with Ns and Cs, and s/he will cooperate with 

Gs from the second round onwards. With Bs, C types will receive  in the first 

round, given that Bs begins with an act of cooperation, and (- ) in the second round. 

From the third round onwards Cs will obtain 0.  

 

       

                                                 

8 The expected utility associated to this interaction is hence ...2 , and then 
1

. 

9 The payoff 
cp depends on the fact that B cooperates the first time and C responds by 

not cooperating; B will therefore have (- ), but C will cooperate in the second round, because B has 

cooperated in the first. From the third round onwards the payoff will be 0. 
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3.1. Evolutionary analysis 

 

In order to analyse the evolution in dynamic terms, we consider three strategies at a 

time (so that we can use simplexes). 

   After the first game, it is likely that the proportion of players adopting the winning 

strategy will increase in future pairings: that is, the winning strategy will be imitated 

by others. This will be the basis for our both repeated and evolutionary analysis.     

   It will be assumed in the analysis that .
10

 

 

3.1.1. First case: N, C, G 

 

   We begin the analysis with B types omitted. 

   The replication dynamic can be represented with the following simplex: 

 

 

 

 

 

 

 

    

 

                                                 

10 We imagine, in fact, that two players agree to cooperate in each round. If they abide by the 

agreement, the expected utility of each player is 
1

. However, if one of the players breaks the 

agreement, the other will no longer cooperate. Thus a player who breaks the agreement in the first 

round will receive , but from the second round onwards s(/he will always receive 0. The condition 

for cooperation agreements (without enforcement) to come about is: 
1

, and hence . 

On this see also Sugden (2004)   

N C 

G 

g 

 
Figure 3 
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When strategies N, C and G are present, the outcome may be one of the multiple 

fixed points along the line NC, which signifies non-cooperation. If only strategies G 

and C are present, the outcome may be a unique combination of C and G that 

depends on the position of the point (in this case a saddle point), g, i.e.: 

)()(

)1(
,0g . 

   Other conditions remaining equal, if 1  �– so that the likelihood of continuing 

with the same person initially encountered is very high �– the point shifts towards 

vertex G. 

   This result strikes us as important: only G types are able somehow to activate Cs, 

who without Gs would always be confined to a world of non-cooperation. 

   The following proposition therefore holds: 

 

Proposition 2. In a world in which the types or strategies N, G, C are present, the 

replication dynamic has two different outcomes: a combination of C and G (fixed 

point g) only if pn is equal to 0, or a combination along the line of fixed points N, C 

(and consequently non-cooperation). 

   Without the presence of B types �– who always begin with an act of cooperation �– 

it is unlikely that virtuous cooperation mechanisms will be triggered. 

 

3.1.2. Second case: N, B, C 

 

   Another interesting case is that in which G types are absent. Here too, non-

cooperation is a probable equilibrium. The other equilibrium is the one where only B 

strategies survive. In a three-strategy world in which only Ns, Cs and Bs are present, 

in fact, Ns and Cs will never cooperate, and moreover the Ns will have no Gs to 

exploit. Instead, the Bs will cooperate only and exclusively with each other, 

obtaining a greater payoff �–  if the game lasts for a long time �– than that received by 

the Ns and the Cs. 
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   Here too, as shown by figure 4, the possible long-period equilibrium depends on 

the coordinates of the fixed point f.  

 

 

 

   

 

 

 

 

 

 

 

 All the points of departure in the simplex lying below the trajectory from C to f will 

evolve towards a non-cooperative equilibrium if N and C are present. 

 

Proposition 3.  In a world in which the types or strategies N, C, B are present, the 

replication dynamic has two different outcomes: the survival of B strategies alone, 

or a combination along the line of fixed points N, C (and consequently non-

cooperation). 

   The coordinates of point f are now: 

)(

)1(
0

)(
f  

   It is evident that if 1 , the point tends to shift towards the N vertex, so that 

that greater the probability of the game continuing, the more likely it becomes that 

Bs will prevail and that the cooperative outcome will occur. In a world without G 

types, Cs do not begin to cooperate. We may say that the sacrifice of the Gs 

somehow restores cooperation potential to Cs, for without their presence the only 

possible form of cooperation is that between B types. To be noted is that B types 

N C 

B 

f

Figure 4 
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begin with an act of cooperation. In their absence, a non-cooperative equilibrium 

would arise. 

 

3.1.3. Third case: N, B, G 

 

   The simplex relative to this third and final case shows that, depending on the point 

of departure and the position of fixed point f on the side NB, there will be a different 

final equilibrium, which may be a combination of G and B, or a world consisting 

only of Ns. Matters are different when the three types instead coexist in the 

population at time 1 (when the dynamic begins). In this case, non-reciprocity, i.e. an 

equilibrium consisting of only N types, may prevail. 

 

 

 

 

 

 

 

 

 

 

 

Proposition 4. In a world in which the strategies N, B, G are present, two equilibria 

are possible: the survival of only types N and a coexistence of B types and G types 

along the line of fixed points on the B-G side. Which of the two equilibria will come 

about depends on the position of the fixed point f along the N-B side. 

 

   As the simplex is constructed here, considering that the position of N in terms of 

fraction of the population is (1.0.0) and the position of B is (0,1,0), the fixed point f 

has the following coordinates: 

N B 

G 

f 

Figure 5 
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0,
)(

)1(
,

)(
f     

The position of point f therefore depends on  and , and on the value of . In 

particular, for , point f will approach B. If instead 1 , point f will shift 

towards N. With a small value of , ceteris paribus, the likelihood that only N types 

will prevail is very high; instead, with a very high , it very likely that the final 

equilibrium will be the one in which B types and G types coexist. 

   For every intermediate value between the two extremes, the final equilibrium will 

depend on the point of departure: if this is a point to the left of the trajectory leading 

from side B-G to point f, then the tendency is an equilibrium of only Ns; vice versa, 

if the point of departure is to the right of the trajectory, the outcome will be a 

coexistence of Bs and Gs. Note that points to the left are characterized, amongst 

other things, by a lower percentage of Bs than of Gs. It is therefore important that B 

types be relatively more than Gs and Ns for the B-G equilibrium to come about. In 

short, evident here is the delicate role of G strategies: if there are too many of them, 

they foster the emergence of N types over Bs. Metaphors aside, in a population 

where non-cooperation is possible, if there are too many unconditional acts, not only 

are they likely to become extinct, but they will also extinguish the possibility of 

cooperation, for an equilibrium consisting of non-generalized cooperation. 

   At the same time, the coordinates of point f also depend on  and . The value of  

is the one which most clearly tells us what the social rewards structure is. A high  

denotes a culture which penalizes reciprocity, while a high ( - ) denotes a culture 

which rewards it. In fact, if the first coordinate is high, point f tends to N (the same 

happens if the second coordinate is low), while if it is low f tends to B.  

This is because the coordinate of N is directly proportional to : while both 

coordinates depend on ( - ), the sign of  is negative in the coordinate of N and 

positive in the coordinate of B. This tells us that the more a society, ceteris paribus, 

makes reciprocity of G and B type costly, the more likely the prevalence of non-

cooperation becomes. 
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4. In a four-dimensional world 

 

Thus far we have compared three strategies at a time, and we have analysed their 

dynamic evolution. The question now is what changes if the four strategies N, B, G, 

C interact simultaneously.  

In the four-strategies case, the replication dynamic can be depicted by a three-

dimensional simplex.: 

 

1  e   0p:p 4

cgbn pppp  

In this case matrix A becomes: 

 

A = 

0
1

0

1111

11

0
1

0

 [7]  

 

The vector 
t
p ),,,( cwbm pppp , so that the system of equations becomes: 

 

App   

App

App)(

App

4

3

2

1

t

cc

t

gg

t

bb

t

nn

Appp

Appp

Appp

Appp

    [8] 

 

   Given that analysis of the system of differential equations [8] would be highly 

complex, here we only report the frontier conditions (those in which at least one 

strategy is extinct). Following the examples of Hirshleifer and Martinez Coll (1991), 
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and of Antoci, Sacco and Zarri (2004), we may represent the surface (or frontier) of 

 on the plane. The simplex  can be imagined as having a triangular base N,C,B, 

and G as its upper vertex (if the simplex in figure 6 were drawn three-dimensionally, 

the three vertices G would become a single upper vertex). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 shows that there are four possible equilibrium combinations: 

- a combination of G and B, i.e. cooperation 
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- a combination of N and C, i.e. non-cooperation 

- the extinction of all the strategies except N 

- the extinction of all the strategies except B. 

 

4.1. Some simulations 

 

   Which of these equilibria are more likely depends on the initial conditions. To 

furnish a clearer idea of the dynamic, we now report some simulations. They have 

been obtained by setting various initial conditions for the system. We assigned the 

following values to the parameters: 

 = 2,  = 1,  = 4/5 

   The first graph shows the evolution over time of the strategies when the initial 

conditions state: pn = pb = pg = pc = 0.25.  

   In this case the final equilibrium is of the B-G type where the proportion of G is 

very small. What happens if we change the initial conditions? The next graph 

illustrates a situation where the initial proportions are pn = 0.25, pb = 0.25,  pg = 0.1  

5 10 15 20

0.2

0.4

0.6

0.8

1

 

G 

Figure 7  

B 

N 

C 

t 

p 



21 

pc = 0.4. We have left the proportions of B and G unaltered, but we have increased 

Cs with respect to Gs. 
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   Interestingly, a greater proportion of Cs, although it does not improve their 

chances of �‘survival�’, helps the development of Gs, which in this case remain 

constant over time. We saw in section 3.1.1 that only G types are able to activate Cs; 

we may now state that Cs are essential for the survival of Gs. The importance of the 

role performed by Cs (which in the three-strategy world seemed almost irrelevant) 

also emerges from the following graph, which has been constructed with the 

following initial proportions: pn = 0.4, pb = 0.3,  pg = 0.1  pc = 0.2.  In this case the 

Ns are initially in a greater proportion than Bs, and there are more Cs than Gs. 
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Hence, cooperation may prevail even if there are initially more Ns than Bs, provided 

that there is a sufficient number of Cs.   

 

5. Conclusions 

 

We may now draw some conclusions. We started from the hypothesis that there are 

only two strategies �– N and G �– and we saw, in line with the literature, that in this 

case cooperation has no chance of surviving. We also saw that in random encounters 

where the game lasts for only one round, cooperation is possible in the presence of 

three strategies (N, G, T) but only if T types have a high probability of recognizing 

the types with which they interact. But cooperation often involves repeated 

encounters between the same people, and who recognize each other. Our analysis in 

this case showed that strategy T is entirely ineffectual unless recognizability is 

presumed. Recognizability is important in civil life because it underpins the 

reputation games in which we cooperate because we recognize the others and they 

recognize us. But recognition is not always possible, especially in the great societies 
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of the globalized world. For this reason we extended our analysis by abandoning the 

recognizability hypothesis and advancing other reasons for the emergence of 

spontaneous (or without enforcement) cooperation. 

   We summarize our results as follows: 

(a) The �‘crucial�’ role of G types. We have seen at various points in our analysis that 

G types should not be too numerous, because if they are they compromise 

themselves and also the survival, for example, of Bs. In populations where non-

cooperation is possible (which is the case of all real ones), unconditional acts are 

essential, but when too numerous, they become counter-productive. 

(b) G types perform a vital role, for only they can activate the cooperation of Cs. 

Without the presence of G types, Cs would never experience cooperation and 

therefore would never respond with an act of cooperation. G types are 

consequently valuable, but they should be protected. The success of numerous 

forms of cooperation �– from firms to families �– depends also, and sometimes 

above all, on the presence of a small number of unconditional reciprocators able 

to activate people who would never be so activated if they only interacted with 

conditional cooperators. 

(c) Alliances: C types. These are �‘activated�’ by Gs, but at the same time their 

presence is highly beneficial to Gs because it increases their expected utility. Gs, 

in fact, cooperate with Bs and with Cs, but they are exploited by Ns. In a four-

strategy world, Cs protect the Gs against extinction. 

Cooperation is therefore favoured by heterogeneity or diversity. 

   From a mathematical point of view, it might be objected that G types are not 

necessary. The onset of cooperation would only require slightly more sophisticated 

Bs. But this was not the purpose (i.e. to study which strategies favour cooperation) 

for which the model was conceived. Our analysis started from the assumption that 

behaviours like G exist in civil society. (And who could deny the presence in the 

real world of unconditional actions? Even Binmore (2006) with his orthodoxy and 

anthropological parsimony admits their existence). Our model has sought to analysis 
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the conditions under which unconditional actions can not only survive but also 

perform a virtuous civil role.      
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Appendix 

 

Proof of proposition 1:  

The expected utilities are: 

rrrrrprrprpU

rrpppU

rpppU

tgnt

tgng

tgnn

111))(1(

1)()(

)1()0(

 

 

The matrix of payoffs is: 

A = 

rrrr

r

r0

 

 

Adding a constant to each column of A does not change the dynamics, so we subtract the first row: 

    

rrrr

r

2

2

000

 

 

We know that::  
0  

 

 

Following  Bomze (1983), proposition 1 (p. 210)  : 

1. the eigenvalue of the corner N in direction N-G is proportional to ( ) , then is <0 

2. the eigenvalue of the corner N in direction N-T is proportional to ( r ),  then is <0 

3. the eigenvalue of the corner G in direction G-N is proportional to )( , then is >0 

4. the eigenvalue of the corner G in direction G-T is proportional to ( r ), then is >0 

5. the eigenvalue of the corner T in direction T-G is proportional to )(r , then is <0 

6. the eigenvalue of the corner T in direction T-N is proportional to ( rr 2 ). This value 

could be positive or negative, depending on the value of r, and then we must distinguish between 

two cases:  

First case: 
2

r , eigenvalue >0 

Second case: 
2

r , eigenvalue <0. 

 

FIRST CASE 

Proposition  2 (Bomze, p. 210) shows that there aren�’t any fixed point on the N-G side and on the N-

T side.  

Proposition 5 (pag. 211) shows that there aren�’t any fixed point on the side G-T, and proposition 6 

shows that internal fixed points do not exist. 

 

 

SECOND CASE 
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Proposition 2 (p. 210) tells us that there exists a fixed point f on the side N-T, in fact the quantity 

)2)(( rrr  is negative. The eigenvalues associated to the fixed point are proportional to  

(positive) in direction NT, and to the quantity 

f

cdaf
, that is 

rr

rrrr

2

))(2()2(
in the other direction, then is negative. 

 

 

Proof of proposition 2:  

The expected utilities are: 
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1
)0()0(
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The matrices are: 

 

 

111

1
00

1
00

and: 

111

1
00

000

 

 

Following proposition 1 (p. 210)  we may say: 

1. the eigenvalue of the corner N in direction N-C is equal to 0 

2. the eigenvalue of the corner N in direction N-G is proportional to 
1

, and then is negative 

3. the eigenvalue of the corner C in direction C-N is equal to 0 

4. the eigenvalue of the corner C in direction C-G is proportional to 
1

, then is positive (we 

have supposed that ) 

5. the eigenvalue of the corner G in direction G-C is proportional to 
1

and then is positive 

6. the eigenvalue of the corner G in direction G-N is proportional to 
1

, and then is positive. 

 

Following proposition 2 (pag. 210) we know that N-C is pointwise fixed. 

 

Proposition 5 (p. 211) tells us that there exists a fixed point g (saddle point) on the side G-C, 

in fact the quantity (e �– b)(f �– c) is negative, and the eingenvalues associated to the fixed point are 

proportional to: 

1. 
fcbe

fcbe ))((
, that means 

1

11
: this quantity is negative; 
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2. 
fcbe

cebf
, that is positive. 

 

Proof of proposition 3:  

 

Expected utilities: 

)()0()0( bcnn pppU  

)()0()0( bcnc pppU  

1
)()( bcnb pppU  

 

Matrices: 

 

1

00

00

 and: 

1

00

000

 

 

1. the eigenvalue of the corner N in direction N-C is equal to 0 

2. the eigenvalue of the corner N in direction N-B is proportional to ,  and then is negative 

3. the eigenvalue of the corner C in direction C-N is equal to 0 

4. the eigenvalue of the corner C in direction C-G is proportional to , and then is positive  

5. the eigenvalue of the corner B in direction B-C is proportional to 
1

2

and then 

is negative 

6. the eigenvalue of the corner B in direction B-N is proportional to 
1

, and then is negative 

 

Following proposition 2 (p. 210) we may say: 

- the side N-C is pointwise fixed 

- On the side N-B there exists an unique fixed point f; the eigenvalues of f are positively 

proportional to:  

 

 (positive) 

 

1

))((0
(negative). 

 

The fixed point has coordinates(Bomze 1983, pag. 204): 
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)(

)1(
bp  

 

We know that do not exist fixed points on the side C-B (prop. 5) and that do not exist internal fixed 

points (prop.6). 

 

Proof of proposition 4:  

Expected utilities: 
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11
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pppU
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pppU

 

 

Matrices: 

 

111

11

1
0

, and: 

111

11

000

 

 

 

1. the eigenvalue of the corner N in direction N-B is proportional to and then is negative 

2. the eigenvalue of the corner N in direction N-G is proportional to 
1

 and then is negative 

3. the eigenvalue of the corner B in direction B-N is proportional to 
1

and then is negative 

4. the eigenvalue of the corner B in direction B-G is equal to zero 

 

5. the eigenvalue of the corner G in direction G-B is equal to zero 

6. the eigenvalue of the corner G in direction G-N is equal to 
1

, and then is positive 

 

We know that there esists a fixed point on the side N-B (prop.2) , and that the eigenvalues of the 

fixed point are positively proportional to :  

 

, then positive 

1

111
, that becomes: 

1
 and then is negative. 

The fixed point has coordinates (Bomze 1983, pag. 204): 
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1

1

1
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0wp  

We also know that the side B-G is pointwise fixed. 

 

 

 

 

 

 

 

REFERENCES 

 

Antoci A., Sacco P. e Zarri L. (2004) �“Coexistence of Strategies and Culturally-

Specific Common Knowledge: An Evolutionary Analysis�”, Journal of 

Bioeconomics, vol. 6, pp. 165-194 

Binmore K. (2006) Natural Justice, Oxford University Press, USA 

Binmore K. (2006) �“Why do people cooperate?�”, Politics, Philosophy and 

Economics, vol. 5 (1), pp. 81-96. 

Bomze I. (1983) �“Lotka-Volterra Equation and Replicator Dynamics: A Two-

Dimensional Classification�”, Biological Cybernetics, vol. 48, pp. 201-211. 

Bowles S. e Gintis H. (2004) "The evolution of strong reciprocity: cooperation in a 

heterogeneous population." Theoretical Population Biology, vol. 65, pp. 17-

28. 

Fehr E. and Gachter S. (2000) �“Fairness and Retaliation: The Economics of 

Reciprocity�”, Journal of Economic Perspectives, 14, pp. 159-181. 

Gintis H (2004) �“Modeling Cooperation Among Self-Interested Agents: A 

Critique�”, The Journal of Socio-Economics, 33, pp. 311-322. 

Heckathorn D. (1996) �“The dynamics and dilemmas of collective action�”, American 

Sociological Review, vol. 61, pp. 250-277. 

Hirshleifer J., Martinez Coll J. (1991) �“The limits of reciprocity�”, Rationality and 

Society, vol. 3, pp. 35-64. 

Sugden R. (2003) �“The logic of team reasoning�”, Philosophical explorations, vol. 6, 

pp. 165-181. 

Sugden R. (2004) The economics of rights, cooperation and welfare, second edition, 

Palgrave Macmillian, London. 

 


