Grzelak, Lech and Oosterlee, Kees (2009): On The Heston Model with Stochastic Interest Rates.
There is a more recent version of this item available. 

PDF
MPRA_paper_20620.pdf Download (505kB)  Preview 
Abstract
We discuss the Heston [Heston1993] model with stochastic interest rates driven by HullWhite [Hull,White1996] (HW) or CoxIngersollRoss [Cox, et al.1985] (CIR) processes. A socalled volatility compensator is defined which guarantees that the Heston hybrid model with a nonzero correlation between the equity and interest rate processes is properly defined. Two different approximations of the hybrid models are presented in order to obtain the characteristic functions. These approximations admit pricing basic derivative products with Fourier techniques [Carr,Madan1999; Fang,Oosterlee2008], and can therefore be used for fast calibration of the hybrid model. The effect of the approximations on the instantaneous correlations and the influence of the correlation between stock and interest rate on the implied volatilities are also discussed.
Item Type:  MPRA Paper 

Original Title:  On The Heston Model with Stochastic Interest Rates 
English Title:  On The Heston Model with Stochastic Interest Rates 
Language:  English 
Keywords:  HestonHullWhite; HestonCoxIngersollRoss; equityinterest rate hybrid products; stochastic volatility; affine jump diffusion processes. 
Subjects:  G  Financial Economics > G1  General Financial Markets F  International Economics > F3  International Finance G  Financial Economics > G1  General Financial Markets > G13  Contingent Pricing; Futures Pricing 
Item ID:  20620 
Depositing User:  Lech A. Grzelak 
Date Deposited:  12. Feb 2010 03:48 
Last Modified:  14. Feb 2013 17:22 
References:  [Amstrup, et al.2006] S. Amstrup, L. MacDonald, B. Manly, Handbook of Capture Recapture Analysis. Princeton University Press, 2006. [Andersen2008] L. Andersen, Simple and Efficient Simulation of the Heston Stochastic Volatility Model. J. of Comp. Finance, 11:1422008. [Andreasen2007] J. Andreasen, Closed Form Pricing of FX Options Under Stochastic Rates and Volatility, Presentation at Global Derivatives Conference 2006, Paris, 911 May 2006. [Antonov2007] A. Antonov, Effective Approximation of FX/EQ Options for the Hybrid models: Heston and Correlated Gaussian Interest Rates. Presentation at MathFinance 2007, available at: http://conference.mathfinance.com/2008/papers/antonov/slides. [Antonov, et al.2008] A. Antonov, M. Arneguy,N. Audet, Markovian Projection to a Displaced Volatility Heston Model. SSRN working paper, 2008. Available at SSRN: http://ssrn.com/abstract=1106223. [Benhamou, et al.2008] E. Benhamou, A. Rivoira, A. Gruz, Stochastic Interest Rates for Local Volatility Hybrid Models. Working Paper, March 2008. Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1107711. [Black,Scholes1973] F. Black, M. Scholes, The Pricing of Options and Corporate Liabilities. J. Political Economy, 81: 637–654, 1973. [Broadie,Yamamoto2003] M. Broadie, Y. Yamamoto, Application of the Fast Gauss Transform to Option Pricing. Management Science, 49: 10711088, 2003. [Brigo,Mercurio2007] D. Brigo, F. Mercurio, Interest Rate Models Theory and Practice: With Smile, Inflation and Credit. Springer Finance, second edition, 2007. [Carr,Madan1999] P.P. Carr, D.B. Madan, Option Valuation Using the Fast Fourier Transform. J. Comp. Finance, 2:61–73, 1999. [Cox, et al.1985] J.C. Cox, J.E. Ingersoll, S.A. Ross, A Theory of the Term Structure of Interest Rates. Econometrica 53: 385–407, 1985. [Derman,Kani1998] E. Derman, I. Kani, Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility. Int. J. Theoretical Appl. Finance, 1: 61–110, 1998. [Dupire1994] B. Dupire, Pricing with a Smile. Risk, 7: 1820, 1994. [Duffie, et al.2000] D. Duffie, J. Pan, K. Singleton, Transform Analysis and Asset Pricing for Affine JumpDiffusions. Econometrica, 68: 1343–1376, 2000. [Dufresne2001] D. Dufresne, The Integrated SquareRoot Process. Working paper, University of Montreal, 2001. [Fang,Oosterlee2008] F. Fang, C.W. Oosterlee, A Novel Pricing Method for European Options Based on FourierCosine Series Expansions. SIAM J. Sci. Comput., 31: 826848, 2008. [Fisher1922] R. A. Fisher, On the Interpretation of _2 from Contingency Tables and Calculations of P. J. R. Statist. Soc., 85: 8794, 1922. [Forsythe, et al.] G. Forsythe, M. Malcolm, C. Moler, Computer Methods for Mathematical Computations. PrenticeHall, New Jersey, 1977. [Giese2004] A. Giese, On the Pricing of AutoCallable Equity Securities in the Presence of Stochastic Volatility and Stochastic Interest Rates. Presentation 2004. [Grzelak, et al.2008a] L. A. Grzelak, C. W. Oosterlee, S. v. Weeren, Extension of Stochastic Volatility Equity Models with HullWhite Interest Rate Process. Quant. Fin., 14697696, 2009. [vanHaastrecht, et al.2008] A. van. Haastrecht, R. Lord,A. Pelser,D. Schrager, Pricing LongMaturity Equity And FX Derivatives With Stochastic Interest Rates And Stochastic Volatility. Forthcoming in: Insurance Mathematics and Economics, available at: http://ssrn.com/abstract=1125590. [Heston1993] S. Heston, A Closedform Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. Rev. Fin. Studies, 6: 327343, 1993. [Hull,White1996] J. Hull, A. White, Using HullWhite Interest Rate Trees, J. Derivatives, 4: 26–36, 1996. [Hunter2005] C. Hunter, Hybrid Derivatives. The Euromoney Derivatives and Risk Management Handbook, 2005. [J¨ackel2004] P. J¨ackel, Stochastic Volatility Models: Past, Present and Future. The Best of Wilmott I: Incorporating the Quantitative Finance Rewiev, 379390, 2004. [Johnson, et al.1994] N. L. Johnson, N. L. Kotz, N. Balakrishnan, Continuous Univariate Distributions, Volume 2, Second Edition, Wiley, New York, 1994. [Lee2004] R. Lee, Option Pricing by Transform Methods: Extensions, Unification, and Error Control. J. Comp. Finance, 7(3): 51–86, 2004. [Lewis2001] A. Lewis, Option Valuation Under Stochastic Volatility. Finance Press, Newport Beach, 2001. [Muskulus, et al.2007] M. Muskulus, K. in’t Hout,J. Bierkens,A.P.C. van der Ploeg,J. in’t Panhuis, F. Fang, B. Janssens, C.W. Oosterlee, The ING Problem A problem from Financial Industry; Three papers on the HestonHullWhite model. Proc. Math. with Industry, Utrecht, Netherlands, 2007. [Kahaner1989] D. Kahaner, C. Moler, S. Nash, Numerical Methods and Software. PrenticeHall, New Jersey, 1989. [Kummer1936] E. E. Kummer, ¨Uber die Hypergeometrische Reihe F(a; b; x). J. reine angew. Math., 15: 39–83, 1936. [Oehlert1992] G. W. Oehlert, A Note on the Delta Method. Amer. Statistician, 46: 27–29, 1992. [Øksendal2000] B. Øksendal, Stochastic Differential Equations, Fifth Ed., Springer Verlag, 2000. [Patnaik1949] P. B. Patnaik, The NonCentral _2 and FDistributions and Their Applications. Biometrika, 36: 202232, 1949. [Sch¨obel,Zhu1999] R. Sch¨obel, J. Zhu, Stochasic Volatility with an OrnsteinUhlenbeck Process: An extension.Europ. Fin. Review, 3:23–46, 1999. [Vaˇsiˇcek1977] O.A. Vaˇsiˇcek, An Equilibrium Characterization of the Term Structure. J. Financial Econ., 5: 177–188, 1977. [Zhu2000] J. Zhu, Modular Pricing of Options. Springer Verlag, Berlin, 2000. 
URI:  http://mpra.ub.unimuenchen.de/id/eprint/20620 
Available Versions of this Item
 On The Heston Model with Stochastic Interest Rates. (deposited 12. Feb 2010 03:48) [Currently Displayed]