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Abstract

We discuss the Heston [Heston-1993] model with stochastic interest rates driven
by Hull-White [Hull,White-1996] (HW) or Cox-Ingersoll-Ross [Cox, et al.-1985]
(CIR) processes. A so-called volatility compensator is defined which guarantees
that the Heston hybrid model with a non-zero correlation between the equity
and interest rate processes is properly defined. Two different approximations of
the hybrid models are presented in order to obtain the characteristic functions.
These approximations admit pricing basic derivative products with Fourier tech-
niques [Carr,Madan-1999; Fang,Oosterlee-2008], and can therefore be used for
fast calibration of the hybrid model. The effect of the approximations on the
instantaneous correlations and the influence of the correlation between stock and
interest rate on the implied volatilities are also discussed.

Key words: Heston-Hull-White; Heston-Cox-Ingersoll-Ross; equity-interest rate
hybrid products; stochastic volatility; affine jump diffusion processes.

1 Introduction

Modelling derivative products in Finance usually starts with the specification of a
system of Stochastic Differential Equations (SDEs), that correspond to state variables
like stock, interest rate and volatility. By correlating the SDEs from the different
asset classes one can define so-called hybrid models, and use them for pricing multi-
asset derivatives. Even if each of these SDEs yields a closed form solution, a non-zero
correlation structure between the processes may cause difficulties for modelling and
product pricing. Typically, a closed form solution of the hybrid models is not known, and
numerical approximation by means of Monte Carlo (MC) simulation or discretization of
the corresponding Partial Differential Equations (PDEs) has to be employed for model
evaluation and derivative pricing. The speed of pricing European products is however
crucial, especially for the calibration. Several theoretically attractive SDE models, that
cannot fulfill the speed requirements, are not used in practice.

The aim of this paper is to define hybrid SDE models that fit in the class of affine
diffusion processes (AD), as in Duffie, Pan and Singleton [Duffie, et al.-2000]. For
processes within this class a closed form solution of the characteristic function exists.
Suppose we have given a system of SDEs, i.e.,

dXt = µ(Xt)dt+ σ(Xt)dWt. (1.1)

∗Corresponding author. E-mail address: L.A.Grzelak@tudelft.nl.
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This system (1.1) is said to be of the affine form if:

µ(Xt) = a0 + a1Xt, for any (a0, a1) ∈ Rn × Rn×n, (1.2)

σ(Xt)σ(Xt)
T = (c0)ij + (c1)

T
ijXt, for arbitrary (c0, c1) ∈ Rn×n × Rn×n×n,(1.3)

r(Xt) = r0 + rT1 Xt, for (r0, r1) ∈ R × Rn, (1.4)

for i, j = 1, . . . , n, with r(Xt) being an interest rate component. Then, the discounted
characteristic function (ChF) is of the following form [Duffie, et al.-2000]:

φ(u,Xt, t, T ) = EQ

(
exp

(
−
∫ T

t

rsds+ iuTXT

)
∣∣Ft

)
= eA(u,τ)+B

T(u,τ)Xt ,

where the expectation is taken under the risk-neutral measure, Q. For a time lag,
τ := T − t, the coefficients A(u, τ) and BT(u, τ) have to satisfy the following complex-
valued ordinary differential equations (ODEs):





d

dτ
B(u, τ) = −r1 + aT

1 B+
1

2
BTc1B,

d

dτ
A(u, τ) = −r0 + BTa0+

1

2
BTc0B,

(1.5)

with ai, ci, ri, i = 0, 1, as in (1.2), (1.3) and (1.4).
In this article we focus our attention specifically on a hybrid model which combines

the equity and interest rate asset classes. Brigo and Mercurio [Brigo,Mercurio-2007]
have shown that the assumption of constant interest rates in the classical Black-Scholes
model [Black,Scholes-1973] can be generalized, and by including the stochastic interest
rate process of Hull and White [Hull,White-1996], one is still able to obtain a closed
form solution for European-style option prices. Originally, the Black-Scholes-Hull-White
model in [Brigo,Mercurio-2007] was not dedicated to pricing hybrid products, but to
increasing the accuracy for long-maturity options. The model is, however, not able to
describe any smile and skew shapes present in the equity markets.

In [Zhu-2000] a hybrid model was presented which could provide a skew pattern
for the equity and included a stochastic (but uncorrelated) interest rate process.
Generalizations were presented in [Giese-2004] and [Andreasen-2007], where the He-
ston [Heston-1993] stochastic volatility model was used, and an indirectly correlated
interest rate process. Some form of correlation was indirectly modeled by including
additional terms in the SDEs (this approach is discussed in some detail in Section 3.1.1).

In [Grzelak, et al.-2008a; vanHaastrecht, et al.-2008] the Heston stochastic volatility
model was replaced by the Schöbel-Zhu [Schöbel,Zhu-1999] model, while the interest rate
was still driven by a Hull-White process (SZHW model). In this model a full matrix
of correlations can be directly imposed on the driving Brownian motions. The model
is well-defined under the class of AD processes, but since the SZHW model is based
on a Vašiček-type process [Vašiček-1977] for the stochastic volatility, the volatilities can
become negative.

A different approach to modelling equity-interest rate hybrids was presented by
Benhamou et al. [Benhamou, et al.-2008], extending the local volatility framework
of Dupire [Dupire-1994] and Derman, Kani [Derman,Kani-1998] and incorporating
stochastic interest rates.

Here, we investigate the Heston-Hull-White, and the Heston-Cox-Ingersoll-Ross
hybrid models and propose approximations so that we can obtain their characteristic
functions. The framework presented is relatively easy to understand and implement.
It does not require several preliminary calculations of expectations like in the case
of Markovian projection methods [Antonov-2007; Antonov, et al.-2008]. The resulting
option pricing method benefits greatly from the speed of characteristic function
evaluations.

The interest rate models studied here cannot generate implied volatility interest
rate smiles or skews. They can therefore mainly be used for long-term equity options,
and for ‘not too complicated’ equity-interest rates hybrid products. As described
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in [Hunter-2005], for accurate modelling of hybrid derivatives it is necessary to be able
to describe a non-zero correlation between equity and interest rate. This is possible in
the approximations presented here.

The paper is organized as follows. In Section 2 we discuss the full-scale Heston
hybrid models with stochastic interest rate processes. Section 3 presents a deterministic
approximation of the Heston-Hull-White hybrid model, together with the corresponding
characteristic function, and Section 4 gives the characteristic function based on another,
stochastic, approximation of that hybrid model. In Section 5 we deal with the Heston-
Cox-Ingersoll-Ross model. In Section 6 the calibration based on the approximations of
the full-scale hybrid models is applied. Section 7 concludes.

2 Heston Hybrid Models with Stochastic Interest

Rate

With state vector Xt = [St, σt]
T, under the risk-neutral pricing measure, the Heston

stochastic volatility model [Heston-1993], which is our point-of-departure, is specified
by the following system of SDEs:

{
dSt = rStdt+

√
σtStdW

x
t , S0 > 0,

dσt = κ(σ̄ − σt)dt+ γ
√
σtdW

σ
t , σ0 > 0,

(2.1)

with r > 0 a constant interest rate, correlation dW x
t dW σ

t = ρx,σdt, and |ρx,σ| < 1. The
variance process, σt, of the stock St is a mean reverting square root process, in which
κ > 0 determines the speed of adjustment of the volatility towards its theoretical mean,
σ̄ > 0, and γ > 0 is the second-order volatility, i.e., the variance of the volatility.

As already indicated in [Heston-1993], the model given in (2.1) is not in the class of
affine processes, whereas under the log transform for the stock, xt = logSt, it is. Then,
the discounted ChF is given by:

φH(u,Xt, τ) = exp (A(u, τ) +Bx(u, τ)xt +Bσ(u, τ)σt) , (2.2)

where the functions A(u, τ), Bx(u, τ) and Bσ(u, τ) are known in closed form
(see [Heston-1993]).

The ChF is explicit, but also its inverse has to be found for pricing purposes. Because
of the form of the ChF, we cannot get its inverse analytically and a numerical method
for integration has to be used, see, for example, [Carr,Madan-1999; Fang,Oosterlee-2008;
Lee-2004; Lewis-2001] for Fourier methods.

2.1 Full-Scale Hybrid Models

A constant interest rate, r, may be insufficient for pricing interest rate sensitive
products. Therefore, we extend our state vector with an additional stochastic quantity,
i.e.: Xt = [St, σt, rt]

T. This model corresponds to a hybrid stochastic volatility equity
model with a stochastic interest rate process, rt. In particular, we add to the Heston
model the Hull-White (HW) interest rate [Hull,White-1996], or the square root Cox-
Ingersoll-Ross [Cox, et al.-1985] (CIR) process. The extended model can be presented
in the following way:





dSt = rtStdt+
√
σtStdW

x
t , S0 > 0,

dσt = κ(σ̄ − σt)dt+ γ
√
σtdW

σ
t , σ0 > 0,

drt = λ(θt − rt)dt+ ηrp
t dW r

t , r0 > 0,

(2.3)

where exponent p = 0 in (2.3) represents the Heston-Hull-White (HHW) model and for
p = 1

2 it becomes the Heston-Cox-Ingersoll-Ross (HCIR) model. For both models the
correlations are given by dW x

t dW σ
t = ρx,σdt, dW x

t dW r
t = ρx,rdt, dW σ

t dW r
t = ρσ,rdt,

and κ, γ and σ̄ are as in (2.1), λ > 0 determines the speed of mean reversion for the
interest rate process; θt is the interest rate term-structure and η controls the volatility
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of the interest rate. We note that the interest rate process in (2.3) for p = 1
2 is of the

same form as the volatility process σt.
System (2.3) is not in the affine form, not even with xt = logSt. In particular, the

symmetric instantaneous covariance matrix is given by:

σ(Xt)σ(Xt)
T =



σt ρx,σγσt ρx,rηr

p
t

√
σt

∗ γ2σt ρr,σγηr
p
t

√
σt

∗ ∗ η2r2p
t




(3×3)

. (2.4)

Setting the correlation ρr,σ to zero would still not make the system affine. Matrix (2.4)
is of the linear form w.r.t. state vector [xt = logSt, σt, rt]

T, if two correlations, ρr,σ

and ρx,r, are set to zero1. Models with two correlations equal to zero are covered
in [Muskulus, et al.-2007].

Since for pricing equity-interest rate products a non-zero correlation between stock
and interest rate is crucial (see, for example, [Hunter-2005] ), alternative approximations
to the Heston hybrid models need to be formulated, so that correlations can be imposed.
Variants are discussed in the sections to follow. These approximate models are evaluated
with the help of the Cholesky decomposition of a correlation matrix.

We can decompose a given general symmetric correlation matrix, C, denoted by

C =




1 ρ1 ρ2

∗ 1 ρ3

∗ ∗ 1


 , (2.5)

as C = LLT, where L is a lower triangular matrix with strictly positive entries:

L =




1 0 0

ρ1

√
1 − ρ2

1 0

ρ2
ρ3−ρ2ρ1√

1−ρ2

1

√
1 − ρ2

2 −
(

ρ3−ρ2ρ1√
1−ρ2

1

)2


 . (2.6)

We can rewrite a system of SDEs in terms of the independent Brownian motions,

dW̃t, with the help of the lower triangular matrix L.
Since our main objective is to derive a closed form ChF while assuming a non-zero

correlation between the equity process, St, and the interest rate, rt, we first assume that
the Brownian motions for the interest rate rt and the volatility σt are not correlated.

By exchanging the order of the state variables Xt = [St, σt, rt]
T to X∗

t = [rt, σt, St]
T,

the HHW and HCIR models in (2.3) then have ρ1 ≡ ρr,σ = 0, ρ2 ≡ ρx,r 6= 0 and
ρ3 ≡ ρx,σ 6= 0 in (2.5) and read:

dX∗

t =



λ(θt − rt)
κ(σ̄ − σt)
rtSt


dt+




ηrp
t 0 0

0 γ
√
σt 0

ρx,r
√
σtSt ρx,σ

√
σtSt

√
σtSt

√
1 − ρ2

x,σ − ρ2
x,r







dW̃ r
t

dW̃ σ
t

dW̃ x
t


 .

(2.7)

2.2 Reformulated Heston Hybrid Models

In the previous section we have seen that for the HHW and HCIR models with a full
matrix of correlations given in (2.3), the affinity relations [Duffie, et al.-2000] are not
satisfied, so that the ChF cannot be obtained by standard techniques.

In order to obtain a well-defined Heston hybrid model with an indirectly imposed
correlation, ρx,r, we propose the following system of SDEs:





dSt = rtStdt+
√
σtStdW

x
t + Ωtr

p
t StdW

r
t + ∆

√
σtStdW

σ
t , S0 > 0,

dσt = κ(σ̄ − σt)dt+ γ
√
σtdW

σ
t , σ0 > 0,

drt = λ(θt − rt)dt+ ηrp
t dW r

t , r0 > 0,

(2.8)

1where we assume positive parameters
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with 



dW x
t dW σ

t = ρ̂x,σdt,
dW x

t dW r
t = 0,

dW σ
t dW r

t = 0,
(2.9)

where p = 0 for HHW and p = 1
2 for HCIR. We have included a function2, Ωt,

and a constant parameter, ∆. Note that we still assume independence between the
instantaneous short rate, rt, and the volatility process σt, i.e., ρ̂r,σ = 0.

By exchanging the order of the state variables, to X∗
t = [rt, σt, St]

T, system (2.8) is
given, in terms of the independent Brownian motions, by:

dX∗

t =



λ(θt − rt)
κ(σ̄ − σt)
rtSt


dt+




ηrp
t 0 0

0 γ
√
σt 0

Ωtr
p
t St

√
σtSt (ρ̂x,σ + ∆)

√
σtSt

√
1 − ρ̂2

x,σ







dW̃ r
t

dW̃ σ
t

dW̃ x
t


 ,

(2.10)
In the lemma below we show that the model (2.8) is equivalent to the full-scale HHW

model in (2.3), with a non-zero correlation ρx,r.

Lemma 2.1. Model (2.8) is a well-defined Heston hybrid model in the sense of
Equation (2.3) with non-zero correlation, ρx,r, for:

Ωt = ρx,rr
−p
t

√
σt, ρ̂2

x,σ = ρ2
x,σ + ρ2

x,r, ∆ = ρx,σ − ρ̂x,σ, (2.11)

where correlation ρ̂x,σ is as in model (2.8) and ρx,σ as in model (2.3).

Proof. We presented the two models (2.3) and (2.8) in terms of the independent
Brownian motions, (2.7) and (2.10), respectively. By matching the appropriate
coefficients in (2.7) and (2.10), we find that the following relations should hold:





Ωtr
p
t St = ρx,r

√
σtSt,√

1 − ρ̂2
x,σ

√
σtSt =

√
1 − ρ2

x,σ − ρ2
x,r

√
σtSt,

(ρ̂x,σ + ∆)
√
σtSt = ρx,σ

√
σtSt.

(2.12)

By simplifying (2.12) the proof is finished.

When including the results (2.11) directly in the main system (2.8) the affinity
property of the system would be lost. So, in order to satisfy the affinity constraints,
appropriate approximations need to be introduced.

2.3 Log-Transform

Before going into the details of the approximations of the HHW and HCIR models
let us first find the dynamics for the log-transform for the reformulated Heston hybrid
models. By applying Itô’s lemma, model (2.8) in log-equity space, xt = logSt, with a
constant parameter, ∆, and a function Ωt, is given by:

dxt =

[
rt −

1

2

(
Ω2

t r
2p
t + σt

(
1 + ∆2 + 2ρ̂x,σ∆

))]
dt+

√
σtdW

x
t + Ωtr

p
t dW r

t + ∆
√
σtdW

σ
t

=

(
rt −

1

2
σt

)
dt+

√
σtdW

x
t + Ωtr

p
t dW r

t + ∆
√
σtdW

σ
t , (2.13)

because of (2.11).
For a given state vector X∗

t = [rt, σt, xt]
T, the symmetric instantaneous covariance

matrix (1.3) is given by:

Σ := σ(X∗

t )σ(X∗

t )
T =



η2r2p

t 0 ηΩtr
2p
t

∗ γ2σt γρ̂x,σσt + γ∆σt

∗ ∗ σt + Ω2
t r

2p
t + ∆2σt + 2ρ̂x,σ∆σt


 . (2.14)

2which under certain conditions can also be stochastic
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As we consider two cases for parameter p = {0, 1/2}, the affinity issue appears in only
one term of matrix (2.14), namely, in element (1, 3) :

Σ(1,3) = ηΩtr
2p
t = ηρx,r

√
σtr

p
t =

{
ηρx,r

√
σt, for HHW,

ηρx,r
√
σt
√
rt, for HCIR.

(2.15)

Although term Σ(3,3) does not seems to be of the affine form, by (2.11), it equals
Σ(3,3) = σt, and therefore it is linear in the state variables.

Remark. In order to make either the HHW or the HCIR model affine, however, one
does not necessary need to approximate function Ωt, but only the non-affine terms in
the corresponding instantaneous covariance matrix3. By approximation of the non-affine
covariance term, Σ(1,3), the corresponding pricing PDE also changes. The Kolmogorov
backward equation for the log-stock price (see, for example, [Øksendal-2000]) is now
given by:

0 =
∂φ

∂t
+

(
r − 1

2
σ

)
∂φ

∂x
+ κ(σ̄ − σ)

∂φ

∂σ
+ λ(θt − r)

∂φ

∂r
+

1

2
σ
∂2φ

∂x2

+
1

2
γ2σ

∂2φ

∂σ2
+

1

2
η2r2p ∂

2φ

∂r2
+ ρx,σγσ

∂2φ

∂x∂σ
+ Σ(1,3)

∂2φ

∂x∂r
− rφ, (2.16)

subject to terminal condition φ(u,XT , T, T ) = exp (iuxT ). In the sections to follow we
discuss two possible approximations for Σ(1,3).

3 Deterministic Approximation for Hybrid Models

In order to make the Heston hybrid model affine we provide a first approximation
for the expressions in (2.15) in Section 3.1. The corresponding ChF is derived in
Subsection 3.2.

3.1 Deterministic Approach, the H1-HW Model

The first approach to finding an approximation for the term Σ(1,3) = ηρx,r
√
σtr

p
t in

matrix (2.14) is to replace it by its expectation, i.e.:

Σ(1,3) ≈ ηρx,rE (rp
t

√
σt)

⊥⊥
= ηρx,rE(rp

t )E(
√
σt), (3.1)

assuming independence between rt and σt.
The approximation for Σ(1,3) in (3.1) consists of two expectations: one with respect

to
√
σt and another with respect to rp

t . E (rp
t ) = 1 for p = 0, and it is E

(√
rt
)

for p = 1
2 .

Since the processes for σt and rt are then of the same type, the approximations are
analogous. By taking the expectations of the stochastic variables the model becomes of
the affine form, so that we can obtain the corresponding characteristic function.

In Lemma 3.1 the closed form expressions for the expectation and the variance of√
σt (a CIR-type process) are presented.

Lemma 3.1 (Expectation and variance for CIR-type process). For a given time t > 0
the expectation and variance of

√
σt, where σt is a CIR-type process (2.1), are given by:

E(
√
σt) =

√
2c(t)e−λ(t)/2

∞∑

k=0

1

k!
(λ(t)/2)

k Γ
(

1+d
2 + k

)

Γ(d
2 + k)

, (3.2)

and

Var (
√
σt) = c(t)(d+ λ(t)) − 2c(t)e−λ(t)

(
∞∑

k=0

1

k!
(λ(t)/2)

k Γ
(

1+d
2 + k

)

Γ
(

d
2 + k

)
)2

, (3.3)

3The drifts and the interest rate are already in the affine form, presented in (1.2) and (1.4).
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where

c(t) =
1

4κ
γ2(1 − e−κt), d =

4κσ̄

γ2
, λ(t) =

4κσ0e
−κt

γ2(1 − e−κt)
, (3.4)

with Γ(k) being the gamma function defined by:

Γ(k) =

∫ ∞

0

tk−1e−tdt.

Proof. By [Dufresne-2001] one can find the closed form expression for the expectation
E(

√
σt), which by the principle of Kummer [Kummer-1936] can be simplified.

The analytic expression for the expectation, either of
√
σt or

√
rt in (3.1) is involved

and requires rather expensive numerical operations.
In order to find a first order approximation we can apply the so-called delta method,

see for example [Amstrup, et al.-2006; Oehlert-1992], which states that a function ϕ(X)
can be approximated by a first order Taylor expansion at E(X), for a given random
variable, X, with expectation, E(X), and variance, Var(X), assuming that for ϕ(X) its
first derivative with respect to X exists and is sufficiently smooth.

The lemma below provides details of the approximation.

Lemma 3.2. The expectation, E(
√
σt), with stochastic process σt given by Equa-

tion (2.8), can be approximated by:

E(
√
σt) ≈

√
c(t)(λ(t) − 1) + c(t)d+

c(t)d

2(d+ λ(t))
=: Λ(t), (3.5)

with c(t), d and λ(t) given in Lemma 3.1, and κ, σ̄, γ and σ0 are the parameters given
in (2.3).

Proof. Assuming the function ϕ to be sufficiently smooth, and the first two moments of
X to exist, we obtain by first order Taylor expansion:

ϕ(X) ≈ ϕ(EX) + (X − EX)
∂ϕ

∂X
(EX). (3.6)

Since the variance of ϕ(X) can be approximated by the variance of the right-hand side
of (3.6) we have:

Var(ϕ(X)) ≈ Var

(
ϕ(EX) + (X − EX)

∂ϕ

∂X
(EX)

)

=

(
∂ϕ

∂X
(EX)

)2

VarX. (3.7)

Now, by using this result for function ϕ(σt) =
√
σt, we find

Var(
√
σt) ≈

(
1

2

1√
E(σt)

)2

Var(σt) =
1

4

Var(σt)

E(σt)
. (3.8)

However, from the definition of the variance we also have:

Var(
√
σt) = E(σt) − (E

√
σt)

2
. (3.9)

and by combining Equations (3.8) and (3.9) we obtain the following approximation:

E(
√
σt) ≈

√
E(σt) −

1

4

Var(σt)

E(σt)
. (3.10)

Since σt is a square root process, as in (2.8), we have

σt = σ0e
−κt + σ̄(1 − e−κt) + γ

∫ t

0

eκ(s−t)√σsdW
σ
s . (3.11)

The expectation of E(σt) equals E(σt) = c(t)(d + λ(t)), and for the variance we get,
Var(σt) = c2(t)(2d+ 4λ(t)), with c(t), d and λ(t) given in (3.4).

Now, by substituting these expressions in (3.10), the lemma is proved.
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Since Lemma 3.2 provides an explicit approximation for Σ(1,3) in (3.1) in terms of a
deterministic function for E(

√
σt), we are, in principle, able to derive the corresponding

ChF.

Remark. We assume that the first-order linear terms around the parameter values in
the Taylor expansion give an accurate representation. However, this may not work
satisfactory for ’flat’ density functions, like those from a uniform distribution. In
order to increase the accuracy, higher order terms can be included in the expan-
sion [Amstrup, et al.-2006]. More discussion on the conditions for the delta method
to perform well can be found in [Oehlert-1992].

The approximation for E(
√
σt) in (3.5) is still non-trivial, and may cause difficulties

when deriving the corresponding characteristic functions. In order to find the coefficients
of the ChF, a routine for numerically solving the corresponding ODEs has to be
incorporated. Numerical integration, however, slows down the option pricing engine, and
would make the SDE model less attractive. As we aim to find a closed form expression
for the ChF, we simplify Λ(t) in (3.5). Expectation E(

√
σt) can be further approximated

by a function of the following form:

E(
√
σt) ≈ a+ be−ct =: Λ̃(t), (3.12)

with a, b and c constant. Appropriate values for a, b and c in (3.12) can be obtained

via an optimization problem of the form, mina,b,c ||Λ(t)− Λ̃(t)||n, where || · ||n is any nth

norm.
We propose here, instead of a numerical approximation for these coefficients, a simple

analytic expression in Result 3.3:

Result 3.3. By matching functions Λ(t) and Λ̃(t) for t → +∞, t → 0 and t = 1, we
find:

lim
t→+∞

Λ(t) =

√
σ̄ − γ2

8κ
= a = lim

t→+∞
Λ̃(t),

lim
t→0

Λ(t) =
√
σ0 = a+ b = lim

t→0
Λ̃(t),

lim
t→1

Λ(t) = Λ(1) = a+ be−c = lim
t→1

Λ̃(t).

(3.13)

The values a, b and c can now be estimated by:

a =

√
σ̄ − γ2

8κ
, b =

√
σ0 − a, c = − log

(
b−1(Λ(1) − a)

)
, (3.14)

where Λ(t) is given by (3.5).

The approximation given in Result 3.3 may give difficulties for σ̄ < γ2/8κ in
Equation (3.14) (the expression under the square root then becomes negative). The
variance process σt is always positive and cannot reach zero if 2κσ̄ > γ2 (the Feller
condition), which, rewritten, equals σ̄ > γ2/2κ. With all the parameters assumed to be
positive, this means that, if the Feller condition is satisfied, the approximation in (3.14)
is also well-defined. However, if the Feller condition does not hold our experience shows
that one can safely use the exact formula for the expectation given in Lemma 3.1.

In order to measure the quality of approximation (3.14) to E(
√
σt) in (3.2), we

perform a numerical experiment (see the results in Figure 3.1). For randomly chosen
sets of parameters the approximation (3.14) resembles E(

√
σt) in (3.2) very well.

We call the resulting model the H1-HW model (Heston-Hull-White model-1).

3.1.1 The Case ∆ = 0 and Ωt ≡ const.

With ∆ = 0 in the Systems (2.8) and (2.10), the model resembles the one
in [Giese-2004; Andreasen-2007]. There, a constant parameter Ω̄ = Ωt was prescribed,
and an instantaneous correlation was indirectly imposed.

The following lemma, however, shows that this model with ∆ = 0 resembles the
full-scale HHW and HCIR models only for correlation ρx,r = 0.
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Figure 3.1: The quality of the approximation E(
√
σt) ≈ a + be−ct (continuous line)

versus exact solution given in Equation (3.5) (squares) for 5 random κ, γ, σ̄ and σ0.

Lemma 3.4. The hybrid models (2.8) with ∆ = 0 are full-scale HHW and HCIR models,
in the sense of System (2.3), only if the instantaneous correlation between the stock and
the interest rate processes in System (2.3) equals zero, i.e., ρx,r = 0.

Proof. The proof is analogous to the proof of Lemma 2.1. We see from the equalities
in (2.11) that System (2.7) resembles System (2.10) with ∆ = 0, only if:

Ω̄ = ρx,rr
−p
t

√
σt, ρ̂x,σ = ρx,σ, ρ̂2

x,σ = ρ2
x,σ + ρ2

x,r. (3.15)

The equations (3.15) only hold for ρx,r = 0. So, the models with ∆ = 0 are not full-scale
HHW and HCIR models with a non-zero correlation ρx,r.

Although the model with ∆ = 0 is not a properly defined Heston hybrid model, one
can still proceed with the analysis. Parameter Ω̄ was derived based on the following
equality, see [Giese-2004], using the definition of the instantaneous correlation,

ρ̂x,r =
E (dStdrt) − E(dSt)E(drt)√

σtS2
t dt+ Ω̄2r2p

t S2
t dt

√
η2r2p

t dt
=

Ω̄rp
t√

σt + Ω̄2r2p
t

. (3.16)

To deal with the affinity issue a constant approximation for Ω̄ was proposed, given by:

Ω̄ ≈ ρ̂x,r√
1 − ρ̂2

x,r

E

(
1

T

∫ T

0

σtdt

) 1

2 /
E

(
1

T

∫ T

0

rtdt

)p

. (3.17)

By choosing Ω̄ = 0 the model collapses to the well-known Heston-Hull-White model
(p = 0) or Heston-CIR model (p = 1

2 ) with zero correlation ρx,r.
It is worth mentioning that alternative approximations for parameter Ω̄ are also

available. In [Antonov-2007; Antonov, et al.-2008] the Markovian projection method
was used for obtaining an approximation.

In Figure 3.2 we present the behavior of the instantaneous correlation between the
equity and the interest rates. We see that for time-dependent Ωt the instantaneous
correlations are stable and oscillate around the exact value, chosen to be ρx,r = 0.6,
whereas for the model with Ωt = Ω̄ a different correlation pattern is observed. For the
latter model, initially the correlation is significantly higher than 0.6, and it decreases
in time. These results show that a constant Ω̄ in the model with ∆ = 0 may give an
average correlation close to the exact value, although the instantaneous correlation is
not stable in time.
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Figure 3.2: The instantaneous correlations for different models. The blue line represents
the model with ∆ = 0 with constant Ω̄, the dotted-red line corresponds to the full-scale
HHW model, and the green line to the model with time-dependent Ωt. The parameters
are θ = 0.03, κ = 1.2, σ̄ = 0.08, γ = 0.05, λ = 1.1, η = 0.05, ρx,σ = −0.5, ρx,r = 0.6,
S0 = 1, r0 = 0.08, σ0 = 0.0625 and maturity τ = 2.

The assumptions of constant Ω̄ and ∆ = 0 also have an impact on the corresponding
pricing PDE. With the Feynman-Kac theorem the corresponding PDE is given by:

0 =
∂φ

∂t
+

[
r − 1

2

(
σ + r2pΩ̄2

)] ∂φ
∂x

+ κ(σ̄ − σ)
∂φ

∂σ
+ λ(θt − r)

∂φ

∂r
+

1

2

(
σ + r2pΩ̄2

) ∂2φ

∂x2

+
1

2
γ2σ

∂2φ

∂σ2
+

1

2
η2r2p ∂

2φ

∂r2
+ ρ̂x,σγσ

∂2φ

∂x∂σ
+ ηΩ̄r2p ∂2φ

∂x∂r
− rφ, (3.18)

with the boundary condition the same as for (2.16). The assumption of constant Ω̄ and
∆ = 0 gives rise to unfavorable additional terms in the convection and diffusion parts
of PDE (3.18).

3.2 Characteristic Function for the H1-HW Model

We derive a ChF for the Heston-Hull-White hybrid model. For p = 0, the non-affine
term, Σ(1,3), in matrix (2.14) equals Σ(1,3) = ηΩt = ηρx,r

√
σt. We assume here that

the term-structure for the interest rate θt is constant, θt = θ. A generalization can be
found in [Brigo,Mercurio-2007].

According to [Duffie, et al.-2000], the discounted ChF for the H1-HW model is of
the following form:

φH1-HW(u,Xt, τ) = exp (A(u, τ) +Bx(u, τ)xt +Bσ(u, τ)σt +Br(u, τ)rt) , (3.19)

with boundary conditions A(u, 0) = 0, Bx(u, 0) = iu, Bσ(u, 0) = 0, and Br(u, 0) = 0,
and τ := T − t. We derive the ChF for the H1-HW model, with ∆ and Ωt given in (2.11)
and approximated by (3.1). The ChF for the H1-HW model can be derived in closed
form, with the help of the following lemmas:

Lemma 3.5 (The ODEs related to the H1-HW model). The functions Bx(u, τ) =: Bx,
Br(u, τ) =: Br, Bσ(u, τ) =: Bσ and A(u, τ) =: A for u ∈ R and τ ≥ 0 in (3.19) for the
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H1-HW model satisfy the following system of ODEs:

dBx

dτ
= 0, Bx(u, 0) = iu,

dBr

dτ
= −1 − λBr +Bx, Br(u, 0) = 0,

dBσ

dτ
=

1

2
Bx(Bx − 1) + (γζBx − κ)Bσ +

1

2
γ2B2

σ, Bσ(u, 0) = 0,

dA

dτ
= λθBr + κσ̄Bσ +

1

2
η2B2

r + ηρx,rE(
√
σt)BxBr, A(u, 0) = 0, (3.20)

with t = T − τ, ζ = ρ̂x,σ + ∆, and κ, λ, θ and η correspond to the parameters in
Model (2.8), ∆ and ρ̂x,σ are given by (2.11).

Proof. The proof can be found in Appendix A.

The following lemma gives the closed form solution for the functions Bx(u, τ),
Br(u, τ), Bσ(u, τ) and A(u, τ) in (3.19).

Lemma 3.6 (Characteristic function for the H1-HW model). The solution of the ODE
system in Lemma 3.5 is given by:

Bx(u, τ) = iu, (3.21)

Br(u, τ) = (iu− 1)λ−1(1 − e−λτ ), (3.22)

Bσ(u, τ) =
1 − e−Dτ

γ2 (1 − ge−Dτ )
(κ− γζiu−D) , (3.23)

A(u, τ) = λθI1(τ) + κσ̄I2(τ) +
1

2
η2I3(τ) + ηρx,rI4(τ), (3.24)

with D =
√

(γζiu− κ)2 − γ2iu(iu− 1), g =
κ− γζiu−D

κ− γζiu+D
, κ, θ, η, λ, γ are as in (2.8);

ζ = ρ̂x,σ +∆, where ∆ and ρ̂x,σ are given by (2.11).The integrals I1(τ), I2(τ), and I3(τ)
admit an analytic solution, and I4(τ) a semi-analytic solution:

I1(τ) =
1

λ
(iu− 1)

(
τ +

1

λ
(e−λτ − 1)

)
,

I2(τ) =
τ

γ2
(κ− γζiu−D) − 2

γ2
log

(
1 − ge−Dτ

1 − g

)
,

I3(τ) =
1

2λ3
(i+ u)2

(
3 + e−2λτ − 4e−λτ − 2λτ

)
,

I4(τ) = iu

∫ τ

0

E(
√
σT−s)Br(u, s)ds

= − 1

λ
(iu+ u2)

∫ τ

0

E(
√
σT−s)

(
1 − e−λs

)
ds.

Proof. The proof can be found in Appendix B.

Note that by taking E(
√
σT−s) ≈ a + be−c(T−s), with a, b and c as given in (3.12)

we obtain the closed form expression:

I4(τ) = − 1

λ
(iu+u2)

[
b

c

(
e−ct − e−cT

)
+ aτ +

a

λ

(
e−λτ − 1

)
+

b

c− λ
e−cT

(
1 − e−τ(c+λ)

)]
,

with τ = T − t.
In Appendix C we present the generalization to a full matrix of non-zero correlations

between the processes, and discuss the effect of the correlations on at-the-money implied
volatilities.
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4 Stochastic Approximation for Hybrid Models

In the previous section a rather straightforward way to approximate the non-affine
elements in the instantaneous covariance matrix was presented. Here, we model those
elements by stochastic processes, and call the resulting approximate model H2-HW
(Heston-Hull-White model-2).

4.1 Stochastic Approach, the H2-HW Model

In the lemma below an approximation for finite time t and a non-zero centrality
parameter is presented.

Lemma 4.1 (Normal approximation for
√
σt, for 0 < t < ∞). For any time, t < ∞,

the square root of σt in (2.8) can be approximated by

√
σt ≈ N

(√
c(t)(λ(t) − 1) + c(t)d+

c(t)d

2(d+ λ(t))
, c(t) − c(t)d

2(d+ λ(t))

)
, (4.1)

with c(t), d and λ(t) from (3.4). Moreover, for a fixed value of x in the cumulative
distribution function F√

σ(t)
(x), and a fixed value for parameter d, the error is of order

O(λ2(t)) for λ(t) → 0 and O(λ(t)−
1

2 ) for λ(t) → ∞.

Proof. As given in [Patnaik-1949] an accurate approximation for the non-central chi-
square distribution, χ2

d(λ(t)), can be obtained by an approximation with a centralized
chi-square distribution, i.e.:

χ2(d, λ(t)) ≈ a(t)χ2(f(t)), (4.2)

with a(t) and f(t) in (4.2) chosen so that the first two moments match, i.e.:

a(t) =
d+ 2λ(t)

d+ λ(t)
, f(t) = d+

λ(t)2

d+ 2λ(t)
. (4.3)

It was shown in [Cox, et al.-1985; Broadie,Yamamoto-2003] that, for a given time t > 0,
σt is distributed as c(t) times a non-central chi-squared random variable, χ2(d, λ(t)),
with d the degrees of freedom parameter and non-centrality parameter λ(t), i.e.: σt =
c(t)χ2 (d, λ(t)) , t > 0. By combining this with (4.2) we have:

√
σt ≈

√
c(t)
√
a(t)χ2(f(t)). (4.4)

Now, we use a result by Fisher [Fisher-1922] that for a given central chi-square random
variable, χ2(d), the expression

√
2χ2(d) is approximately normally distributed with

mean
√

2d− 1 and unit variance, i.e.:

Fχ2(d)(x) ≈ Φ
(√

2x−
√

2d− 1
)
, (4.5)

which implies:

√
σt ≈ N

(√(
f(t) − 1

2

)
c(t)a(t),

1

2
c(t)a(t)

)
. (4.6)

The order of this approximation can be found in [Johnson, et al.-1994].

As already indicated in [Patnaik-1949], the normal approximation resembles the non-
central chi-square distribution very well for either a large number of degrees of freedom,
d, or a large non-centrality λ(t). For t→ 0, the non-centrality parameter, λ(t), tends to
infinity. Therefore, accurate approximations are expected.

In the case of long maturities, the non-centrality parameter converges to 0, which
may give an inaccurate approximation. In this case, satisfactory results depend on the
size of the degrees of freedom parameter d. It is clear that d in (3.4) is directly related
to the Feller condition. In practical applications, however, 2κσ̄ is often smaller than γ2.
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In the numerical experiments to follow we will study the impact of not satisfying the
Feller condition.

In Lemma 4.1 we have shown that
√
σt can be well approximated by a normally

distributed random variable. As the application of Itô’s lemma to find the dynamics
for

√
σt is not allowed (the square root process is not twice differentiable at the

origin [Jäckel-2004]), we construct here a stochastic process, vt, so that equality in

distribution holds, i.e.: vt
d≈ √

σt. Since a normal random variable is completely
described by the first two moments, we need to ensure that E(vt) = E(

√
σt) and

Var(vt) = Var(
√
σt). For this purpose we propose the following dynamics:

dvt = µv
t dt+ ψv

t dW σ
t , v0 =

√
σ0, (4.7)

with some deterministic, time-dependent functions µv
t , and ψv

t , determined so that the
first two moments match. By moment matching the unknown functions µv

t and ψv
t

in (4.7) read:

µv
t =

d

dt
E(

√
σt), ψv

t =

√
d

dt
Var(

√
σt). (4.8)

Using the results from Section 3.1, the expectation, E(
√
σt), and the variance, Var(

√
σt),

can be approximated by a Taylor expansion:

µv
t ≈

c(t)
(
2 − d (d+ λ(t))

−2
)

d
dtλ(t) +

(
−2 + 2λ(t) + d

(
2 + (d+ λ(t))

−1
))

d
dtc(t)

2
√

2

√
c(t)

(
−2 + 2λ(t) + d

(
2 + 1

d+λ(t)

)) ,

ψv
t ≈ 1√

2

√
(d+ λ(t))(d+ 2λ(t)) d

dtc(t) + dc(t) d
dtλ(t)

(d+ λ(t))
2 , (4.9)

with d, c(t) and λ(t) given in (3.4), and

d

dt
λ(t) = − 4σ(0)κ2eκt

(eκt − 1)
2
γ2
,

d

dt
c(t) =

1

4
γ2e−κt. (4.10)

The expressions for µv
t and ψv

t in (4.9) are not exact as they are the result from the
approximation introduced in Lemma 4.1. The exact expressions can be found, but since
the approximations are cheap to compute we stay here with those.

Since the approximate hybrid models are to be used for the calibration to European-
style options (with one terminal payment) we do not need path-wise equality between
processes vt and

√
σt, but only equality in terminal distribution.

4.2 Characteristic Function for the H2-HW Model

We now use the (stochastic) approximation for the term Σ(1,3), with the process dvt

given by (4.7), and the time-dependent functions µv
t and ψv

t as in (4.9).
This approximation gives rise to an extension of the 3D space variable Xt =

[St, σt, rt]
T to a 4D space X̃t = [St, σt, rt, vt]

T, with the following system of SDEs:

dSt = rtStdt +
√
σtStdW

x
t + ρx,r

√
σtStdW

r
t + ∆

√
σtStdW

σ
t , S0 > 0, (4.11)

and 



dσt = κ(σ̄ − σt)dt+ γ
√
σtdW

σ
t , σ0 > 0,

drt = λ(θt − rt)dt+ ηdW r
t , r0 > 0,

dvt = µv
t dt+ ψv

t dW σ
t , v0 =

√
σ0 > 0,

(4.12)

where 



dW x
t dW σ

t = ρ̂x,σdt,
dW x

t dW r
t = 0,

dW σ
t dW r

t = 0,
(4.13)

with
√
σt ≈ vt; ρ̂x,σ, ∆ are given in (2.11) and µv

t ,ψv
t is defined in (4.9).
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By taking the log-transform, xt = logSt, in the model above all the drift terms are
linear, and the symmetric instantaneous covariance matrix, with vt ≈

√
σt, is given by:

Σ̃ =




σt γζσt ρx,rηvt ψv
t ζvt

∗ γ2σt 0 γψv
t vt

∗ ∗ η2 0

∗ ∗ ∗ (ψv
t )

2


dt, (4.14)

which, since ζ = ρ̂x,σ +∆ is constant and ψv
t is a deterministic time-dependent function,

is now affine.
Since the system of SDEs (4.11), (4.12) is affine, we derive the corresponding ChF:

φH2-HW(u,Xt, τ) = exp (A(u, τ) +Bx(u, τ)xt +Bσ(u, τ)σt +Br(u, τ)rt +Bv(u, τ)vt) ,
(4.15)

with boundary conditions φH2-HW(u,XT , 0) = exp(iuxT ) and vt =
√
σt.

The functions A(u, τ), Bx(u, τ), Bσ(u, τ), Br(u, τ) and Bv(u, τ) satisfy the complex-
valued ODEs given by the lemma below.

Lemma 4.2 (The ODEs related to the H2-HW model). The functions Bx(u, τ) =: Bx,
Bσ(u, τ) := Bσ, Br(u, τ) =: Br, Bv(u, τ) =: Bv and A(u, τ) =: A for u ∈ R and
τ = T − t > 0 in (4.15), satisfy:

dBx

dτ
= 0, Bx(u, 0) = iu,

dBr

dτ
= −1 +Bx − λBr, Br(u, 0) = 0,

dBσ

dτ
=

1

2
(Bx − 1)Bx + (γζBx − κ)Bσ +

1

2
γ2B2

σ, Bσ(u, 0) = 0,

dBv

dτ
= ρx,rηBxBr + ψv

t ζBxBv + γψv
tBσBv, Bv(u, 0) = 0,

dA

dτ
= κσ̄Bσ + λθBr + µv

tBv +
1

2
η2B2

r +
1

2
(ψv

t )
2
B2

v , A(u, 0) = 0, (4.16)

with ζ = ρ̂x,σ + ∆, and µv
t ,ψ

v
t as given in (4.9).

Proof. The proof is very similar to the proof of Lemma 3.5.

Lemma 4.3 (Solutions to the ChF coefficients of the H2-HW model). The solutions to
the ODEs for Bx(u, τ), Bσ(u, τ), Br(u, τ), defined in Lemma 4.2, are given by:

Bx(u, τ) = iu,

Br(u, τ) = (iu− 1)λ−1
(
1 − e−λτ

)
,

Bσ(u, τ) =
1 − e−Dτ

γ2 (1 − ge−Dτ )
(κ− γc2iu−D) , (4.17)

with D =

√
(γc2iu− κ)

2 − ζ(iu− 1)iuγ2, and g =
κ− γc2iu−D

κ− γc2iu+D
.

Proof. The proof is analogous to the proof of Lemma 3.6.

Note that the remaining two functions, Bv(u, τ) and A(u, τ), involve the rather
complicated function ψv

t . We leave these equations to be solved numerically with a
basic ODE routine.

4.3 Numerical Experiment

Here we determine the performance of the deterministic (Section 3.2) and the
stochastic (Section 4.2) approximations to the HHW model. We compare the fit to
the full-scale HHW hybrid model, in terms of relative errors. The HHW benchmark
prices were obtained by Monte Carlo simulation, as in [Andersen-2008].
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In Table 4.1 we present the relative errors for European equity call options, ǫ(ρx,r),
for different correlations between the stock, St, and the short rate, rt, and different
strikes. We show results for a maturity of ten years, τ = 10, and for parameters that do
not satisfy the Feller condition4.

Both approximations give very similar, highly accurate, results for low correlations,
ρx,r. This is different for high values of ρx,r. The deterministic approach generates
somewhat more bias for high strikes, whereas the stochastic approach is essentially bias-
free. The errors presented in Table 4.1 depend on the volatility parameter of the interest
rate process, η. For very low volatility, the two approximations provide a similar level
of accuracy. As the volatility of the short rate process increases, a higher accuracy is
expected for the stochastic approximation. Other results will be presented in Section 6,
where the calibration results is discussed.

ρx,r Approx. Strike

K=40 K=100 K=160 K=260

0.2
√
σ ≈ E(

√
σt) 0.003 0.005 0.008 0.012

(0.006) (0.009) (0.016) (0.032)√
σt ≈ N (·) 0.003 0.006 0.009 0.014

(0.006) (0.009) (0.016) (0.031)

0.8
√
σ ≈ E(

√
σt) -0.006 -0.010 -0.021 -0.047

(0.005) (0.008) (0.013) (0.032)√
σt ≈ N (·) 0.001 0.003 0.006 0.010

(0.005) (0.008) (0.013) (0.027)

Table 4.1: Error ǫ(ρx,r) for the deterministic and stochastic approximations. Numbers
in parentheses are sample standard deviations. The parameters were chosen as follows:
κ = 1.2, σ̄ = 0.06, γ = 0.5, θ = 0.04, λ = 1.2, η = 0.05, and ρx,σ = −0.3, with initial
values: S0 = 100, σ0 = σ̄ and r0 = 0.04.

5 Heston-Cox-Ingersoll-Ross Hybrid Model

We also present the ChF for a Heston-Cox-Ingersoll-Ross hybrid model, p = 1/2
in (2.3), which is more involved than the Hull-White based hybrid models. For
the Heston-Hull-White models, H1-HW and H2-HW, we have used two different
approximations for the non-affine term in the instantaneous covariance matrix (2.14).
In the Heston-CIR model the non-linearity is given in (2.15). Again we use two
approximations to obtain the ChF. In the first model, H1-CIR, we use the deterministic
setup and for the second model, H2-CIR, we determine the stochastic approximation.

5.1 Characteristic Function for the H1-CIR model

The dynamics for the log-stock price, xt, in the Heston-CIR model read:

dxt =

(
rt −

1

2
Ω2

t rt −
1

2

(
1 + 2ρ̂x,σ∆ + ∆2

)
σt

)
dt+

√
σtdW

x
t + Ωt

√
rtdW

r
t + ∆

√
σtdW

σ
t .

With Ωt = ρx,r

√
σt

rt

, from Lemma 2.1, the dynamics simplify:

dxt =

(
rt −

1

2
σt

)
dt+

√
σtdW

x
t + ρx,r

√
σtdW

r
t + ∆

√
σtdW

σ
t .

We assume that correlation ρr,σ = 0. Σ(1,3) in (2.15) can then be approximated, as:

Σ(1,3) ≈ ηρx,rE (
√
rt
√
σt)

⊥⊥
= ηρx,rE(

√
rt)E(

√
σt). (5.1)

4For short maturities, τ < 10, and for model parameters for which the Feller condition is satisfied,
we did not find any significant differences between the two approximations and the full scale model.

15



Since the processes involved are of the same type, the expectations in (5.1) can be
determined as already presented in Section 3.1. The ChF and the corresponding Riccati
ODEs are defined as below:

φH1-CIR(u,Xτ , τ) = exp (A(u, τ) +Bx(u, τ)xt +Bσ(u, τ)σt +Br(u, τ)rt) , (5.2)

Lemma 5.1 (The ODEs related to the H1-CIR model). The functions Bx(u, τ) =: Bx,
Bσ(u, τ) =: Bσ, Br(u, τ) =: Br and A(u, τ) =: A for u ∈ R and τ > 0 in (5.2) satisfy:

dBx

dτ
= 0, Bx(u, 0) = iu,

dBr

dτ
= −1 +Bx − λBr +

1

2
η2B2

r , Br(u, 0) = 0,

dBσ

dτ
=

1

2
(Bx − 1)Bx + (γζBx − κ)Bσ +

1

2
γ2B2

σ, Bσ(u, 0) = 0,

dA

dτ
= κσ̄Bσ + λθBr + ηρx,rE(

√
σt)E(

√
rt)BxBr, A(u, 0) = 0. (5.3)

with ζ = ρ̂x,σ + ∆, and E(
√
σt) and E(

√
rt) from Lemma 3.2.

Proof. The proof is very similar to the proof in Appendix A.

Lemma 5.2 (Solutions for the ChF coefficients of the H1-CIR model). The solutions
for the ODEs for Bx(u, τ), Bσ(u, τ), Br(u, τ) and A(u, τ), defined in Lemma 5.1, are
given by:

Bx(u, τ) = iu, (5.4)

Br(u, τ) =
1 − e−D1τ

η2 (1 −G1e−D1τ )
(λ−D1) , (5.5)

Bσ(u, τ) =
1 − e−D2τ

γ2 (1 −G2e−D2τ )
(κ− γζiu−D2) , (5.6)

and

A(u, τ) =

∫ τ

0

(
κσ̄Bσ(u, s) + λθBr(u, s) + ρx,rηiuE(

√
σT−s)E(

√
rT−s)Br(u, s)

)
ds,

with ζ = ρ̂x,σ + ∆, D1 =
√
λ2 + 2η2(1 − iu), D2 =

√
(γζiu− κ)

2 − (iu− 1)iuγ2,

G1 =
λ−D1

λ+D1
and G2 =

κ− γζiu−D2

κ− γζiu+D2
.

Proof. The proof is very similar to the proof in Appendix B.

The integral for A(u, τ) in Lemma 5.2 can only be determined analytically for
constant approximations of the two expectations involved.

5.2 Characteristic Function for the H2-CIR model

As before, we aim to find an approximation of the instantaneous covariance matrix for
which the affinity of the approximation model is obtained, but now with the stochastic
approximation.

Σ(1,3) now consists of two stochastic components,
√
σt and

√
rt. We approximate

both and obtain:

Σ(1,3) ≈ Σ̃(1,3) = ρx,rηvtRt, Rt =
√
rt, vt =

√
σt. (5.7)

This form, based on the product of two random variables, is not affine. To linearize (5.7)
we need to specify the joint dynamics, d(

√
σt
√
rt). If we assume that the dynamics for

d(
√
σt) and d(

√
rt) can be approximated by normally distributed processes, we find, by

Itô’s lemma, that the dynamics of zt = vtRt are given by:

dzt =
(
µR

t vt + µv
tRt

)
dt+ ψv

tRtdW
v
t + ψR

t vtdW
r
t . (5.8)
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With three additional variables, vt, Rt and zt, the state vector Xt, with log-stock
process xt = logSt is expanded to Xt = [xt, σt, rt, vt, Rt, zt]

T, with the following
corresponding system of SDEs:

dxt =

(
rt −

1

2
σt

)
dt+

√
σtdW

x
t + ρx,r

√
σtdW

r
t + ∆

√
σtdW

σ
t , (5.9)

and




dσt = κ(σ̄ − σt)dt+ γ
√
σtdW

σ
t , σ0 > 0,

drt = λ(θt − rt)dt+ η
√
rtdW

r
t , r0 > 0,

dvt = µv
t dt+ ψv

t dW σ
t , v0 =

√
σ0,

dRt = µR
t dt+ ψR

t dW r
t , R0 =

√
r0,

dzt =
(
µR

t vt + µv
tRt

)
dt+ ψv

t

√
rtdW

σ
t + ψR

t

√
σtdW

r
t , z0 =

√
r0
√
σ0,

(5.10)

with ∆, ρ̂x,σ and the other coefficients as in (2.11).
The symmetric instantaneous covariance matrix reads:

Σ̃∗ =




σt γζσt ηρx,rzt ψv
t ζvt ρx,rψ

R
t vt ζψv

t zt + ρx,rψ
R
t σt

∗ γ2σt 0 ψv
t γvt 0 γψv

t zt

∗ ∗ η2rt 0 ψR
t ηRt ηψR

t zt

∗ ∗ ∗ (ψv
t )2 0 (ψv

t )2Rt

∗ ∗ ∗ ∗ (ψR
t )2 (ψR

t )2vt

∗ ∗ ∗ ∗ ∗ (ψv
t )2rt + (ψR

t )2σt



, (5.11)

where ζ = ρ̂x,σ + ∆. Since ψv
t and ψR

t are deterministic time-dependent functions, the
approximate H2-CIR model is now affine and we can derive the corresponding ChF:

φH2-CIR(u,Xt, τ) = exp (A(u, τ) +Bx(u, τ)xt +Bσ(u, τ)σt +Br(u, τ)rt

+Bv(u, τ)vt +BR(u, τ)Rt +Bz(u, τ)zt) ,
(5.12)

with vt =
√
σt, Rt =

√
rt, zt =

√
σt
√
rt, and the functions A(u, τ), Bx(u, τ), Bσ(u, τ),

Br(u, τ), Bv(u, τ), BR(u, τ) and Bz(u, τ) satisfy the ODEs given by the lemma below.

Lemma 5.3 (The ODEs related to the H2-CIR model). The functions Bx(u, τ) =: Bx,
Bσ(u, τ) =: Bσ, Br(u, τ) =: Br, Bv(u, τ) =: Bv, BR(u, τ) =: BR, Bz(u, τ) =: Bz and
A(u, τ) =: A for u ∈ R and τ > 0 in (5.12), satisfy:

dBx

dτ
= 0, (5.13)

dBr

dτ
= −1 +Bx − λBr +

1

2
η2B2

r +
1

2
(ψv

t )2B2
z , (5.14)

dBR

dτ
= µv

tBz + ψR
t ηBrBR + (ψv

t )2BvBz, (5.15)

dBz

dτ
= ηρx,rBxBr + ζψv

tBxBz + γψv
tBσBz + ηψR

t BrBz, (5.16)

dA

dτ
= κσ̄Bσ + λθBr + µv

tBv + µR
t BR +

1

2
(ψv

t )2B2
v +

1

2
(ψR

t )2B2
R, (5.17)

and

dBσ

dτ
=

1

2
Bx (Bx − 1) − κBσ + γζBxBσ +

1

2
γ2B2

σ + ρx,rψ
R
t BxBz +

1

2
(ψR

t )2B2
z ,

dBv

dτ
= µR

t Bz + ψv
t ζBxBv + γψv

tBσBv + ρx,rψ
R
t BxBR + (ψR

t )2BRBz,

with the boundary conditions: Bx(u, 0) = iu, Br(u, 0) = 0, BR(u, 0) = 0, Bz(u, 0) = 0,
Bσ(u, 0) = 0, Bv(u, 0) = 0 and A(u, 0) = 0. Parameters µv

t , µ
R
t , ψv

t , ψR
t are specified

in (4.9), constant ζ is as in (5.11), and the remaining parameters are in (5.10).
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Proof. The proof is very similar to the proof in Appendix A.

The system of the ODEs given in Lemma 5.3 is difficult to solve analytically.
To find the solution we have used an explicit Runge-Kutta method [Forsythe, et al.;
Kahaner-1989], ode45 from the Matlab package. Numerical results are presented in the
next subsection.

The results above are obtained by expanding each process around the mean, but
the framework presented is also valid with higher order terms of the Taylor expansion
included, or when exact representations are used.

The extension of the H2-CIR model to the case of a full matrix of correlations is a
trivial exercise.

5.3 Numerical Experiment

We compare the performance of the approximations H1-CIR and H2-CIR with the
full-scale HCIR model. As in the case of the HHW models, we have chosen here T = 10,
and the model parameters are chosen so that the Feller condition does not hold. The
results, presented in Table 5.1, are very satisfactory. Both approximation models, H1-
CIR and H2-CIR, provide a relative error, ǫ(ρx,r), for a call option within the confidence
bounds. For higher correlation ρx,r the error grows, but it is still small.

ρx,r Approx. Strike

K=40 K=100 K=160 K=260

0.2
√
σ ≈ E(

√
σt) 0.001 0.003 0.007 0.019

(0.006) (0.009) (0.016) (0.032)√
σt ≈ N (·) -0.001 -0.002 0.003 0.018

(0.006) (0.009) (0.016) (0.031)

0.8
√
σ ≈ E(

√
σt) 0.004 0.012 0.029 0.036

(0.007) (0.013) (0.020) (0.039)√
σt ≈ N (·) 0.002 0.008 0.027 0.035

(0.007) (0.013) (0.020) (0.039)

Table 5.1: Error ǫ(ρx,r) for a deterministic and stochastic approximation of the HCIR
model. Numbers in parentheses are sample standard deviations. The parameters were
chosen as τ = 10, κ = 1.2, σ̄ = 0.06, γ = 0.5, θ = 0.05, λ = 1.2, η = 0.05, and
ρx,σ = −0.3. Initial values: S0 = 100, σ0 = 0.04 and r0 = 0.05.

We also present the time needed for obtaining the plain vanilla option prices, with
the characteristic functions H2-HW (Section 4.2) and H2-CIR (Section 5.2) based on
the numerical solution for the system of Riccati ODEs. Table 5.2 shows that, although
the ODEs in Lemma 5.3 need to be solved numerically, the time for obtaining European
option prices, by the COS pricing method [Fang,Oosterlee-2008], is often less than 0.1
seconds. The pricing of the options by means of the COS method, a method based on
Fourier cosine series expansions, was performed with a fixed number of 250 terms, which
guaranteed highly accurate option prices (up to machine precision).

The tolerance for the ODE solves, by Matlab’s ode45, is varied in the experiments
shown in the table.

Table 5.2: Time in seconds for pricing a call option based on an explicit Runge-Kutta
method combined with the COS method [Fang,Oosterlee-2008].

Model Accuracy Maturity

τ = 0.5 τ = 1 τ = 2 τ = 5 τ = 10

H2-HW 10−2 4.37e-2 4.80e-2 6.41e-2 7.49e-2 8.10e-2
10−5 5.32e-2 5.82e-2 8.05e-2 9.74e-2 1.21e-1

H2-CIR 10−2 7.78e-2 7.80e-2 8.38e-2 8.48e-2 8.90e-2
10−5 8.33e-2 8.97e-2 1.05e-1 1.34e-1 1.62e-1
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6 Calibration of the Heston Hybrid Models

Here, we evaluate the performance of the approximations H1-HW, H2-HW, H1-CIR
and H2-CIR for the Heston hybrid models, HHW and HCIR, in a calibration setting.

Reference call option prices are given in Table D.1 in Appendix D. For all models
the simulation was performed with an a-priori defined speed of mean reversion for the
variance process, κ = 0.3 (which is set small on purpose). The calibration is here
performed with varying correlations, ρx,r. In practice, these correlations can be obtained
from historical data.

The calibration procedure is performed in two stages. First, the parameters for the
short rate process are determined (independent of the equity part). In the second stage,
the calibrated rt is included in the Heston model, and the remaining parameters are
determined. The parameters for the interest rate part are found to be λHW = 0.501,
ηHW = 0.005, λCIR = 1.1, and ηCIR = 0.03.

First, we also perform, as a benchmark, the calibration of the pure Heston model with
constant interest rate, see Table 6.1. SSE stands stands for the “sum-squared error”. In

Table 6.1: Calibration results for the Heston stochastic volatility model with
deterministic interest rate. The mean reversion parameter is κ = 0.3.

model γ σ̄ ρx,σ σ0 r SSE

Heston 0.5995 0.0871 -0.5289 0.0391 0.04 4.1411e-5

Table 6.2 the calibration results for the HHW approximations, H1-HW and H2-HW, are
presented. For both models a highly satisfactory fit is obtained, with a slightly better
performance of the stochastic approximation H2-HW. For ρx,r = 0.2 and ρx,r = 0.8 the
calibration procedure gives roughly the same sets of parameters for both models. In
the case of high correlation the differences appear only after the third decimal. When
comparing the calibration results for HHW with those for the pure Heston model, we
see that the inclusion of stochastic interest rates in the model results in a lower vol-
vol parameter, γ, and a more negative correlation, ρx,σ. The decrease of the vol-vol
parameter can be explained by additional volatility which comes from the interest rate
process.

Table 6.2: Calibration results for the H1-HW model from Section 3.2, and the H2-HW
model from Section 4.2, with κ = 0.3, and correlation ρx,r = {0.2, 0.8}.

model ρx,r γ σ̄ ρx,σ σ0 SSE

H1-HW 20% 0.4804 0.0807 -0.6054 0.0392 5.9614e-5
80% 0.4746 0.0776 -0.6339 0.0391 7.5487e-5

H2-HW 20% 0.4802 0.0807 -0.6051 0.0392 5.9373e-5
80% 0.4771 0.0770 -0.6256 0.0392 6.0059e-5

In Table 6.3 the results for the approximations of the HCIR model are shown. The
conclusions are analogous to those for the HHW model.

In Figure 6.1 the corresponding implied volatilities for a long maturity time (τ = 10y)
are presented. Both hybrid models perform very well. A higher accuracy for the hybrid
models compared to the plain Heston model can be observed.

7 Concluding Remarks

In this article we have presented the extension of the Heston stochastic volatility
equity model by stochastic interest rates. We have focused our attention on two hybrid
models, the Heston-Hull-White and the Heston-Cox-Ingersoll-Ross models.

By approximations of the non-affine terms in the corresponding instantaneous
covariance matrix, we placed the approximation hybrid models in the framework of
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Table 6.3: Calibration results for the H1-CIR, and the H2-CIR models defined in
Section 5.1 and Section 5.2. The experiment was done with a-priori defined κ = 0.3,
and correlation ρx,r = {0.2, 0.8}.

model ρx,r γ σ̄ ρx,σ σ0 SSE

H1-CIR 20% 0.5413 0.0876 -0.5976 0.0396 1.9655e-5
80% 0.5445 0.0855 -0.6022 0.0405 4.4726e-5

H2-CIR 20% 0.5313 0.0877 -0.6076 0.0394 1.7753e-5
80% 0.5350 0.0853 -0.6125 0.0398 2.7583e-5
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Figure 6.1: The implied Black-Scholes volatilities for Heston hybrid models compared to
the pure Heston model and a reference implied volatility curve. Correlation, ρx,r = 80%.
The left-hand graph presents the implied volatilities for τ = 10. The corresponding
implied volatility error with respect to the reference is shown in the right-hand figure.

affine diffusion processes. The approximations in the models have been validated by
comparing the implied volatilities and instantaneous correlations to the full-scale hybrid
models.

The approximations in the Heston-Hull-White and the Heston-Cox-Ingersoll-Ross
models lead to highly efficient solutions for the characteristic function. The more
sophisticated approximation is based on a transformation of the 3D Heston-CIR model
to a 6D representation.

The deterministic and the stochastic approach for approximating the instantaneous
covariance matrix of the hybrid model provide very similar prices for European options.
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[Kummer-1936] E. E. Kummer, Über die Hypergeometrische Reihe F (a; b; x). J. reine

angew. Math., 15: 39–83, 1936.

[Oehlert-1992] G. W. Oehlert, A Note on the Delta Method. Amer. Statistician, 46: 27–29,
1992.

[Øksendal-2000] B. Øksendal, Stochastic Differential Equations, Fifth Ed., Springer Verlag,
2000.

[Patnaik-1949] P. B. Patnaik, The Non-Central χ2 and F -Distributions and Their
Applications. Biometrika, 36: 202-232, 1949.
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A Proof of Lemma 3.5

Proof. For a given state vector X∗
t = [rt, σt, xt]

T, for p = 0, the symmetric instantaneous
covariance matrix (1.3) is given by:

Σ := σ(X∗

t )σ(X∗

t )
T =



η2 0 ηρx,rE(

√
σt)

∗ γ2σt γρx,σσt

∗ ∗ σt


 , (A.1)

which, with (1.2), (1.3), (1.4) and (1.5), implies:

a0 =
[
λθ κσ̄ 0

]T
, aT

1 =




−λ 0 1
0 −κ − 1

2
0 0 0


 , (A.2)

and:

c0 =




η2 0 ηρx,rE(
√
σt)

0 0 0
ηρx,rE(

√
σt) 0 0


 , (A.3)

c1 =




(0, 0, 0)T (0, 0, 0)T (0, 0, 0)T

(0, 0, 0)T (0, γ2, 0)T (0, γρx,σ, 0)T

(0, 0, 0)T (0, γρx,σ, 0)T (0, 1, 0)T


 . (A.4)

Note that in covariance matrix (A.1) we have used ζ = ρ̂x,σ − ∆ ≡ ρx,σ from
Equation (2.11).
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So, for Br := Br(u, τ), Bσ := Bσ(u, τ) and Bx := Bx(u, τ) the system of ODEs
(see [Duffie, et al.-2000]) to be solved is of the following form:

d

dτ



Br

Bσ

Bx


 = −




1
0
0


+




−λ 0 1
0 −κ − 1

2
0 0 0





Br

Bσ

Bx


+




0
1
2γ

2B2
σ + γρx,σBxBσ + 1

2B
2
x

0


 ,

(A.5)
since B := [Br(u, τ), Bσ(u, τ), Bx(u, τ)]T we have:

d

dτ
A(u, τ) = BT



λθ
κσ̄
0


+

1

2
BT




η2 0 ηρx,rE(
√
σt)

0 0 0
ηρx,rE(

√
σt) 0 0


B. (A.6)

By simplifications the proof is finished.

B Proof of Lemma 3.6

Obviously, due to the boundary condition, Bx(u, 0) = iu, we have Bx(u, τ) = iu.
For the second ODE, by multiplying both sides with eλτ we get:

d

dτ

(
eλτBr

)
= (iu− 1)eλτ , (B.1)

by integrating both sides and using the boundary condition, Br(u, 0) = 0, we find

Br(u, τ) = (iu− 1)λ−1
(
1 − e−λτ

)
.

By setting a = − 1
2 (u2 + iu), b = γζiu− κ, c = 1

2γ
2, and d = κσ̄ the ODEs for Bσ(u, τ)

and I2(τ) are given by the following Riccati-type of equation:

d

dτ
Bσ(u, τ) = a+ bBσ(u, τ) + cB2

σ(u, τ), Bσ(u, 0) = 0, (B.2)

I2(τ) = κσ̄

∫ τ

0

Bσ(u, s)ds. (B.3)

Equations (B.2) and (B.3) are of the same form as those in [Heston-1993]. Their solutions
are given by:

Bσ(u, τ) =
−b−D − 2c

2c(1 −Ge−Dτ )
(1 − e−Dτ ), (B.4)

I2(τ) =
d

2c

(
(−b−D)τ − 2 log

(
1 −Ge−Dτ

1 −G

))
, (B.5)

with D =
√
b2 − 4ac, G =

−b−D − 2c

−b+D − 2c
.

The evaluation of the integrals I1(τ), I3(τ) and I4(τ) is straightforward. The proof
is finished by appropriate substitutions.

C Hybrid Model with Full Matrix of Correlations

Similar to the approximation of the non-affine terms in the instantaneous covariance
matrix of the Heston hybrid model presented in Section 3.1, we discuss here the inclusion
of the additional correlation, ρr,σ, between the interest rate rt and the stochastic
volatility σt. We call the resulting model the Heston-Hull-White Hybrid Model-3, and
denote it by H3-HW. For the state vector Xt = [xt, σt, rt]

T the H3-HW model has the
following symmetric instantaneous covariance matrix:

Σ := σ(Xt)σ(Xt)
T =



σt ρx,σγσt ρx,rη

√
σt

∗ γ2σt ρr,σγη
√
σt

∗ ∗ η2




(3×3)

. (C.1)
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The affinity issue arises in two terms of matrix (C.1), namely, in elements (1, 3) and
(2, 3):

Σ(1,3) = ρx,rη
√
σt, Σ(2,3) = ρr,σγη

√
σt.

For completeness, we also present the associated Kolmogorov backward equation, which
is now given by:

0 =
∂φ

∂t
+

(
r − 1

2
σ

)
∂φ

∂x
+ κ(σ̄ − σ)

∂φ

∂σ
+ λ(θt − r)

∂φ

∂r
+

1

2
σ
∂2φ

∂x2
+

1

2
γ2σ

∂2φ

∂σ2

+
1

2
η2 ∂

2φ

∂r2
+ ρx,σγσ

∂2φ

∂x∂σ
+ Σ(1,3)

∂2φ

∂x∂r
+ Σ(2,3)

∂2φ

∂r∂σ
− rφ, (C.2)

with boundary condition equal to:

φ(u,XT , T, T ) = exp(iuxT ).

By taking ρr,σ = 0 the H3-HW model with a full matrix of correlations collapses to the
setup in Section 3.1.

As before, we can use the deterministic approximation Σ(1,3) ≈ ρx,rηE(
√
σt) and

Σ(2,3) ≈ ρr,σγηE(
√
σt) for which Result 3.3 can be used.

The representations of the Heston-Hull-White model in (2.8) and the model in (2.3)
with ρr,σ 6= 0 for p = 0 are closely related. The lemma below specifies the relation in
terms of the coefficients of the corresponding ChF.

Lemma C.1 (The ChF for the H3-HW model with full matrix of correlations). The
discounted ChF for the H3-HW model is of the following form:

φH3-HW(u,Xt, τ) = exp
(
Â(u, τ) + iuxt + B̂σ(u, τ)σt + B̂r(u, τ)rt

)
,

with the functions Â(u, τ), B̂σ(u, τ) and B̂r(u, τ) given by:

B̂r(u, τ) = Br(u, τ), (C.3)

B̂σ(u, τ) = Bσ(u, τ), (C.4)

with Br(u, τ) in (3.22) and Bσ(u, τ) given in (3.23). For Â(u, τ) we have:

Â(u, τ) = A(u, τ) + ρr,σγη

∫ τ

0

E(
√
σT−s)B̂r(u, s)B̂σ(u, s)ds, (C.5)

where A(u, τ) is given in (3.24).

As it is now possible to include a full matrix of correlations, we can show the effect
of varying ρx,r and ρr,σ in Figure C.1. The impact of the correlations on the implied
at-the-money Black-Scholes volatilities is evaluated. Both correlations, ρx,r and ρx,σ,
have a significant impact on the implied volatilities. For ρx,r = 0.3 the implied volatility
is higher than for ρx,r = 0 and lower for ρx,r = −0.3, whereas higher correlations ρr,σ

imply lower implied volatilities. We also see that the effect of correlation ρx,r is more
significant than for ρr,σ.

The agreement between the results with the full-scale HHW model and the H3-HW
model is very well. In practical applications the correlation ρr,σ can be used as an
additional degree of freedom for example to increase the accuracy of the model fit to
market data.

D Market Data Used for the Calibration
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Figure C.1: The impact of correlations ρx,r and ρr,σ on the at-the-money implied
volatilities. The parameters in both cases were chosen to: θ = 0.05, κ = 0.5, σ̄ = 0.2,
γ = 0.25, λ = 0.8, η = 0.15, S0 = 1, r0 = 0.05 and σ0 = 0.2.

Figure D.1: Interpolated equity call option prices for standardized equity S0 = 1.
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