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Intergenerational Long Term Effects of Preschool -
Structural Estimates from a Discrete Dynamic

Programming Model

1 Introduction

We formulate an altruisticmodel of parental preschool investment within a structural stochas-

tic dynamic programming framework. The structural parameters of a structural dynamic

programming model are, in general, not all statistically identified (see Hansen and Sargent

(1981), and Rust (1994)). If some parameters are not identified, the estimation of these pa-

rameters using the maximum likelihood estimation procedure or any other optimizing pro-

cedures may cause serious computational problems. Moreover, the policy analysis based

on unidentified parameter estimates is of very little content. In this paper we provide con-

ditions for parametric and non-parametric identification of our structural dynamic program-

ming model, estimate the structural parameters using the maximum likelihood estimation

procedure, and then use these estimated parameters to examine the effect of preschool on

the production of cognitive and non-cognitive skills of children, their effects on school and

labor market achievements, and the intergenerational long-term effects on social mobility,

schooling mobility and earnings inequality.

In the past three decades, the income gap between the rich and the poor and the wage

gap between the college educated and the non-college educated workers in the US have been

widening. Equalizing education has remained as the main policy in the US to reduce poverty

and income disparities. Many are, however, highly skeptical about a positive answer to the

basic question: ”Can we conquer poverty through school?”
There are many reasons for this skepticism. In the US, education up to high school level

is virtually free. Yet many children of poor SES do not complete high school and many

of them perform poorly in schools. This naturally beckons to the possibility that the poor

quality of the public schools that the children of poor SES attend is the reason for such

failings. Improving school quality will improve school performance of these children only

marginally. Many empirical studies find that better school quality in terms of lower class

size, higher public expenditures per pupil, improved curriculum, and higher desegregation

have onlymarginal effects on school performance of the children of poor SES. SeeHanushek

(1986) for a survey of the studies along this line.

A growing consensus reached among educators, among media writers (see for instance,
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Taub, 2002), among researchers in economics (see for instance, Heckman, 2000 and Currie,

2001, Cunha, Heckman, Lochner and Masterov, 2006) and among researchers in sociology,

psychology and education (see for in stance, Barnett, 1995, Entwisle, 1995, McCormick,

1989, Schweinhart et al., 1993) that children of poor SES are not prepared for college be-

cause they were not prepared for school to begin with. The most effective intervention for

the children of poor SES should be directed at the preschool stage so that these children

are prepared for school and college. The question is then, does the preschool has long-term

positive effects on school performance and labor market success? This is the main issue

that we address in this paper.

There are two types of quantitative studies on this issue. One set of studies use data

on high cost high quality pilot preschool programs such as the High Scope/Perry Preschool

Program and the North Carolina Abecedarian Study. These studies find a substantial lasting

effect of these programs on school performance and labor market outcomes. The partici-

pants in these programs are, however, a very small in number and are not representative of

the US population.

The other set of studies use data on the Head Start preschool program which is funded

by the Federal government. It is available to the children whose parents earn incomes below

poverty line. Not all eligible children are, however, covered by the program. The quality of

the program is very poor compared to the above mentioned pilot programs or most private

preschool programs. Some studies find that the Head Start Preschool Program has no long-

term effect on children's cognitive achievements and school performance, especially for

black children. Currie and Thomas (1995) carry out a careful econometric investigation and

conclude that the benefits disappear for black children because most of the Head Start black

children attend low quality public schools. But after controlling for the school quality, they

find significant positive effects of Head Start Preschool Program. See Barnett (1995) for a

survey of other studies on the long-term school effect of early childhood programs.

The above studies are not based on nationally representative samples of children, and

most studies examine only the effect on school performance such as grade retention and high

school and college graduation rates, and do not model parental choice of investing in their

children's preschool. In this paper, we formulate amodel of parental investment in preschool

that is guided by economic incentives. We show that preschool benefits children in acquiring

many useful cognitive and non-cognitive skills, especially for the children of poor SES who

live in poor HOME environments. We also show the importance of non-cognitive skills in

improving school performance and life-time earnings of children, after controlling for their
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education level, innate ability, and family background. Heckman and Rubinstein (2001)

used data on GED testing program in the US, after careful econometric analysis they show

that non-cognitive skills are important determinant of earnings and educational attainment.

The rest of the paper is organized as follows. Section 2 provides the basic decision

making framework. Section 3 defines notations of the paper. Section 4 develops the inter-

generational altruism model of parental preschool investment within a structural dynamic

programming framework. Section 5 deals with the issues related to identification of the

structural parameters of the dynamic programming model. Section 6 describes the estima-

tion algorithm that we use. Section 7 provides the empirical specifications of the production

processes of cognitive and non-cognitive skills and reports the parameter estimates. Section

8 carries out policy analysis. Section 9 concludes the paper.

2 The Basic Framework

In this section we formulate an econometrically implementable model of preschool invest-

ment decision of an altruistic parent in a dynamic programming framework. The preschool

investment decision of a parent depends on several other decisions at later stages of a child's

life. While we describe each of these decision stages for a better understanding of our frame-

work and for future work, in this paper, however, we restrict only to preschool investment

decision, taking all other decisions as exogenously given. We treat each parent-child pair

as independent. We assume parthenogenetic mode of biological reproduction in our model

and with due respect to both genders, we address all individuals in male gender.

2.1 Individual Decision Problem

We assume that an individual's life comprises of several discrete periods during which im-

portant life-cycle events relevant to leaning and earning occur. While it may be more real-

istic to have finer divisions of these periods, for analytical tractability and given data limita-

tions, we aggregate the whole life-cycle into four periods: [0-5), [5-17), [17-26), [26--]. In

each of these periods some educational and labor market decisions are made and outcomes

are observed.

During ages [0-5), a parent invests in his child's preschool activities which develop the

child's school readiness, and various cognitive and non-cognitive skills. Let a denote the

parental preschool investment decision. At the end of the preschool period, the child ac-

quires a level of innate ability or cognitive skill τ, social skill σ, motivational skill µ, self-
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esteem skill, η, and internal self-control skill φ. The levels of these skills that a child

develop depend on various other childhood interventions, for instance, on the child-rearing

practices at home, the nature of neighborhood and home environments in which the child

grows up (see Mohanty and Raut, 2009 for more on this), and the level of schooling, cog-

nitive, socialization and motivational skills of the parent. We do not, however, explicitly

include these additional determinants of skill formation in this paper to keep computations

manageable.

During ages [5-17), the child goes to school. The school performance at this stage de-

pends on his level of τ, σ, µ, η, and φ that the child has acquired during the previous stage,

on the quality of the school that he attends1, and the type of neighborhood kids whom the

child mingles with. It also depends on the parental home inputs such as how many hours

the parent spend time with the child to do his homework, how many hours the child watches

TV, and how stable and stimulating the relationships among the family members are. Many

of these are choice variables for the parent. We do not have adequate information about

these factors in our dataset, so we do not include them.

During ages [17-26), the child decides whether to complete college education or not,

which depends on his parent's income, his learned and innate abilities. We take this decision

as exogenously given, and denote it as the function s(τ, σ, µ, η, φ, s, εs), where εs represents

the random events during the life-cycle of the child that affect his schooling decision.

During ages [26-], he works, forms his family, has one child and decides how much to

invest in his child's preschool. We assume that apart from the level of schooling, and other

cognitive and non-cognitive skills, there are other life cycle events and variation in tastes

that affect individual's choices. We bundle all these unobserved sources of heterogeneity

among individuals into a vector of random variables ε. The state variables of our system are

represented by the vector z = (τ, σ, µ, η, φ, s, ε). We denote the observable components of

the state variable by x = (τ, σ, µ, η, φ, s) and use the notation z = (x, ε) . For any variable

w, we adopt the convention of using w if it refers to a parent and w′ if it refers to his child.

We assume that given his parental preschool investment decision a, and a realization

of his parent's state variables z = (x, ε), the components of a child's state variable z′ =

(x′, ε′), where x′ = (τ′, σ′, µ′, η′, ϕ′) , and ε′ are generated stochastically by the following
1See Nishimura and Raut (2007) for a model of parental choice of school quality in an altruistic dynamic

programming framework and its effect on social mobility and intergenerational poverty trap.
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conditional probability density functions:

qτ

(

dτ′|τ, s, a
)

(1)

qσ

(

dσ′|τ′, τ, σ, µ, s, a
)

qµ

(

dµ′|τ′, τ, σ, µ, s, a
)

qη

(

dη′|τ′, τ, σ, µ, s, a
)

qϕ

(

dϕ′|τ′, τ, σ, µ, s, a
)

qs
(

ds′|τ′, σ′, µ′, s, a
)

g
(

dε′|τ′, σ′, µ′, s′
)

In the above specifications of the conditional probabilities, the conditioning variables

conform to what we know in the child development literature about the production processes

of these state variables. Wewill discuss the details of each production process in section 7.2.

Given the density functions in Eq. (1), the transition probability density p (dx′, dε′|x, ε, a)

over the states of our system is determined.

We assume that the lifetime average annualized permanent earnings of an individual

with the state variable (x, ε) is represented by an earning function w (x, ε). Let A be the

set of all possible preschool investment choices of a parent. We assume it to be an ordered

set. Assume that the annualized average cost to a parent of making a preschool investment

choice a is θ (a) , a ∈ A. Given his choice a and permanent annualized income w, the

annualized permanent consumption c (w, a) is then given by c (w, a) ≡ w − θ (a) .The

choices of a parent with observable characteristics x are restricted to the set A (x, ε) ≡

{a ∈ A|c (w (x, ε) , a) > 0} . The choice a yields direct utility from life-time annualized

consumption and indirect utility through its effect on child outcomes and welfare, as repre-

sented in the following Bellman equation corresponding to the parent's preschool investment

decision problem

V (x, ε) = max
a∈A(x,ε)

u (x, ε, a) + β

∫

V
(

x′, ε′
)

p
(

dx′, dε′|x, ε, a
)

(2)

where V(.) is the intergenerational welfare function, known in the dynamic programming

literature as the value function, u(.) is the felicity index of yearly permanent consumption

over the whole lifetime of the parent, and the parameter β measures the degree of parental

altruism toward the child.

Under general regularity conditions on u(.), p (dx′, dε′|x, ε, a) and β, the value func-

tion V (x, ε), and a measurable optimal decision rule a∗ (x, ε) exist (see, for instance, Bhat-
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tacharya and Majumdar, 1989, Theorem 3.2). Given u(.), p (dx′, dε′|x, ε, a) and β, sat-

isfying the regularity conditions, we carry out a Lucas-Critique free policy evaluation by

examining a policy's effect on the individual optimal decision a, on the intergenerational

welfare level V, and we also examine the intergenerational long-run aggregate effect of the

policy on the economy by aggregating individual choices with respect to the long-run pop-

ulation distribution, also known as the invariant population distribution, of the equilibrium

transition probability distribution p (dx′, dε′|x, ε, a∗ (x, ε)).

To be able to do this, we need to estimate the structural parameters. Our data consists

of a sample of parent-child pairs with information on parent's observable state x, child's

observable state x′, parent's permanent income w, and the parent's preschool investment de-

cision a. Suppose a vector of parameters ξ p specifies the probability distributions in Eq. (1),

i.e., given ξ p, the transition probability distribution p (dx′, dε′|x, ε, a) is determined. Our

problem is then to statistically estimate the structural parameters ζ =
{

u(.), ξ p, β
}

given

observable information on a random sample of parent-child pairs y = {(xi, x
′
i), ai}

n
i=1

such

that the predicted behaviors of the sample from the model are close to observed behavior.

We denote the log-likelihood function of the sample by Ly(ζ). Estimation of the model

involves two steps: For a given ζ, calculate the probability distribution of the endogenous

variables ai|xi and x′i |xi, ai using the model to form the log-likelihood of the sample Ly(ζ)

and then use an appropriate estimation procedure to choose a ζ.

Two questions need be addressed to that end. First, is the computation of the likelihood

Ly(ζ), which involves solving the dynamic programming problem in Eq. (2) repeatedly for

each (x, ε), feasible with the currently available computing technology, especially when ε

is a continuous multivariate random variable? Second, are the structural parameters of the

model identified (the definition of identification is stated later)?

The answer to both questions is in general no. Following the literature, we make sim-

plifying assumptions to transform the above structural dynamic programming problem into

a random utility model of discrete choices. We will show that these assumptions greatly

simplify the computation and the identification of the structural parameters of the model.

Given those assumptions, we will see two facts: First, the set of structural parameters ξ p

determines the transition distribution p (x′|x, a) of the observable state variables, which is

the mixture distribution of the original transition probability distribution, more specifically

p (x′|x, a) =
∫

p (x′, ε′|x, ε, a) dε|x dε′|x′. Second, the set of optimal choice probabilities

P (a|x) , a ∈ A (x) , x ∈ X over the observed discrete choices depends on ξ p only through

p (x′|x, a) .
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Notice that the optimal choice a is treated as an exogenous variable in the estimation of

p (x′|x, a) , the maximization of joint likelihood of two components is more efficient. To

make estimation task computationally manageable, however, again following the trend in

the literature, in place of ξ p, we take an estimate of p (x′|x, a) as our fixed parameters in

the vector of parameters ζ, and in place of β, we calibrate β from other information, and

then form the likelihood of the sample of observed discrete choices ai|xi for identification

and estimation of the remaining parameters.

3 Notation

In the rest of the paper, our parameter vector is ζ = {u (x, a) , p (x′|x, a) , β}, a ∈ A (x) , x ∈

Xwhere p (x′|x, a) and β are fixed. Denote byΞ the set of all such parameter values. We de-

note by Ly(ζ) the log-likelihood of the sample of observed choices y = {ai|xi, i = 1...n}.

Given a set of conditional choice probabilities {P (a|x) , a ∈ A (x) , x ∈ X}which depends

on ζ, the log-likelihood function Ly(ζ) of the sample is defined.

Let Jx denote the number of elements in the feasible choice set A (x) . Denote by J =

∑x∈X Jx. Assume that X is a finite ordered set of M elements.

Denote by F (a) = [ f (x′|x, a)]x′,x∈X the Jx × Jx′ conditional transition probability

matrix given a choice a ∈ A (x) where the element f (x′|x, a) corresponding to the row x

and the column x′ is the probability of the child moving to state x′ given that his parent is

from the state x and he had made a choice a ∈ A (x) .We denote by F (x, a) the row vector

of F(a) corresponding to the parent's state x.

The vector of conditional choice probabilities denoted byP = {P (a|x) , a ∈ A (x) , x ∈ X}

is ordered by the primary index of ordering in X and the secondary index of the ordering in

A. For each x, the component vector of conditional choice probabilities {P (a|x) , a ∈ A (x)}

belongs to a Jx− 1 dimensional simplex. The set of all vectorsP of conditional choice prob-

abilities△ is a subset of ℜMJ
++ which is restricted to the interior of the M-fold cross product

of the Jx − 1 dimensional simplices.

For any function v (x, a) , its vector representation is a J× 1 vector v (i.e., with the same

symbol v) in which the function values v (x, a)'s are ordered in the same way as in P . For

any scalar or a vector function w (x) , we denote by w (again using the same symbol w to

denote it) the values of w stacked in rows in the same order as in the ordered set X.

For any random vector or a random variable w (x, a) ,we denote its expectation with re-

spect to a by w̄ (x) , i.e., w̄ (x) ≡ ∑a∈A(x) w (x, a) P (a|x) , (with the convention that when
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w is a random vector, the product inside this summation is element-by-element). Define the

M× J matrix Π derived from a vector of conditional choice probabilities P by

Π

M×J
=





P (a = 1|x1) ... P (a = J|x1) ... 0 ... 0
0 ... 0 ... 0 ... 0
0 ... 0 ... P (a = 1|xM) ... P (a = J|xM)





and the transition matrices in matrix notation as a J ×M matrix F by,

F

J×M
=





















f (x′1|x1, a = 1) ... f (x′M|x1, a = 1)
...

f (x′1|x1, a = Jx1) ... f (x′M|x1, a = Jx1)
...

f (x′1|xM, a = 1) ... f (x′M|xM, a = 1)
...

f (x′1|xM, a = JxM) ... f (x′M|xM, a = JxM)





















4 Structural Estimation

The structural estimation of the original problem is computationally intractable. Similar

to Rust (1994), we make the following simplifying assumptions to transform the original

model in Eq. (1) to a random utility model. In the next two sections, we utilize these

simplifications to find conditions for identification and estimation of structural parameters.

We assume that w (x, ε) and hence A (x, ε) does not depend on ε, i.e., w () does not

contain any unobservable idiosyncratic shocks. However, we assume that ε represents a

taste shifter for individual preferences and constitutes our only source of unobserved het-

erogeneity, the specific nature of which is stated formally in the following assumption.

Assumption 1 u (x, ε, a) = u (x, a) + ε (a) , and support of ε (a) is the real line for
all a ∈ A (x) .

We also make the following additional assumptions.

Assumption 2 The transition probability p (x′, ε′|x, ε, a) = g (ε′|x′) f (x′|x, a) for
some twice continuously differentiable density function g with finite first moment.

Assumption 3 The set of observable individual characteristics X =
{

x1, ..xM
}

is
a finite ordered set.
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Under assumptions 1 - 3 , we have

V (x, ε) = max
a∈A(x)

u (x, a) + ε (a) + β ∑
x′∈X

∫

V
(

x′, ε′
)

g
(

dε′|x′
)

f
(

x′|x, a
)

(3)

Denote the value function, after integrating out the unobservable component of the state

variable, by v(x) ≡
∫

V (x, ε) g (dε|x). Integrating both sides of Equation (3) with respect

to the conditional density g(dε|x), and utilizing this notation for v (x), we have

v (x) =
∫

max
a∈A

[ �v (x, a) + ε (a)] g(dε|x) (4)

where

�v (x, a) ≡ u (x, a) + β ∑
x′∈X

v
(

x′
)

f
(

x′|x, a
)

(5)

= u(x, a) + βF (x, a) .v

Eq. (4) above is a random utility model in which the function �v (x, a)measures the common

utility that an individual of observable characteristics x derives from a choice a ∈ A (x) .

Denote by

Ω (x, a) =
{

ε| �v (x, a) + ε (a) ≥ �v
(

x, a′
)

+ ε
(

a′
)

, for all a′ ∈ A (x)
}

(6)

the set of individuals with observed characteristics x who made a as their optimal choice.

The conditional choice probabilities are then given by

P (a|x) =
∫

Ω(x,a)
g (dε|x) . (7)

By partitioning the domain of integral in Eq. (4) into disjoint regionsΩ (x, a) , a ∈ A (x) , x ∈

X and then integrating we have the following,

v (x) = ∑
a∈A(x)

P (a|x)

[

u (x, a) +

∫

Ω(x,a) ε (a) g (dε|x)

P (a|x)
+ β ∑

x′∈X

v
(

x′
)

f
(

x′|x, a
)

]

= ∑
a∈A(x)

P (a|x) [u (x, a) + e (x, a) + βF (x, a) · v] ...(*) (8)

= ū (x) + ē (x) + βF̄ (x) · v

where

e (x, a) ≡
∫

Ω(x,a)
ε (a) g (dε|x) /P (a|x) (9)
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in line (*) is the conditional expectation of the component ε (a) of the random vector ε given

x and a. Writing the above in matrix notation, we have

v = ū+ ē+ βF̄ · v ≡ Φ (v, ζ) (10)

Let v (ζ) be a fixed point of the map Φ (v, ζ) for given ζ ∈ Ξ, and denote by P (v) the

conditional choice probabilities in Eq. (7) for a given value function v. Then the computa-

tion of the likelihood of the sample is simplified to the computation of the fixed point of the

above map Φ (v, ζ) . The computation of P (a|x) , and e (x, a) involve multi-dimensional

numerical integration, which may make computations extremely slow. Both computational

tasks are, however, substantially simplified under the following assumption:

Assumption 4 The components of ε are independently and identically distributed
as extreme value distribution with location parameter 0 and scale parameter 1.

McFadden (1981) has shown that under Assumption 4, e (x, a) = (λ − ln P (a|x)),

where λ is the Euler-Mascheroni constant, with a numerical value of λ = 0.57721566, and

the conditional choice probability P (a|x) has the following Logit representation,

P (a|x) =
e �v(x,a)

∑a∈D e �v(x,a′)
(11)

The above strategy of computational simplification was pioneered by Rust (1987). The

computational burdens could be, however, further simplified as follows: From Eq. (10) it

follows that v = [IM − βF̄]
−1

[ū+ ē] . Substituting this in Eq. (5), we have

�v (x, a) = u (x, a) + βF (x, a) [IM − βF̄]
−1

[ū+ ē] (12)

It is easy to see that givenP0∈△, the right hand side of the above, and hence, a new vector of

conditional choice probabilities say P1∈△ can easily be computed by substituting it in Eq.

(11). We represent this relationship for each structural parameter ζ ∈ Ξ byP1 = Ψ (P0, ζ) .

Following the line of argument in Aguirregabiria and Mira (2002), it is easy to show that for

each ζ ∈ Ξ, there exists a unique fixed point P(ζ) to the mapping Ψ (P , ζ) , and starting

from any initial P0∈△, the iterative process Pn+1 = Ψ (Pn, ζ) , n ≥ 0 converges to the

fixed point P(ζ)∈△. Thus, for each structural parameter ζ ∈ Ξ, there exists a unique

likelihood of the sample Ly (ζ) , the computation of which is brought down to computation

of the fixed point of the mapping Ψ on the finite dimensional space△.
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5 Identification of Structural Parameters

In the previous section we saw that given ζ ∈ Ξ, there exists a unique likelihood function

Ly (ζ) . To be able to estimate ζ ∈ Ξ, the model should be identified in the sense that

Ly (ζ) = Ly

(

ζ ′
)

a.e. if and only if ζ = ζ ′, (13)

the a.e. is with respect to the dominant probability measure defining the likelihood of the

sample. Following Prakasa Rao (1992), we say that our model is globally identified if the
relationship in Eq. (13) holds for any two ζ, ζ ′ ∈ Ξ, and is locally identified around a partic-
ular parameter ζ ∈ Ξ, if the relationship in Eq. (13) holds for all ζ ′ ∈ Ξ in a neighborhood

of ζ.

To find reasonable conditions for identification, from Eq. (6) note that the optimal

choices are invariant if we add a locationmx and divide both sides by a scale factor σx > 0,

for each x ∈ X. Thus it follows that we can recover the utility function only up to a scale and

location. Given this fact, we restrict the one period utility function (u (x, a) , a ∈ A (x)) to

lie in a Jx − 1 dimensional open submanifold of ℜJx for each x ∈ X. We take each possible

utility vector (u (x, a) , a ∈ A (x) , x ∈ X) to lie in the cross product (or equivalently in the

direct sum, if we viewℜJx to be embedded inℜJ) of these Jx − 1 dimensional submanifolds

over all x ∈ X. There are many such manifolds, and up to diffeomorphisms they are all

equivalent. We define one such manifold U using the map ϕ : △ ∋ P 7→ u ∈ ℜJ (which

reads as, ϕ takes a member P in△ to a member u in ℜJ) by

u =
[

IJ + βF (IM − βF̄)
−1

Π
]−1

[ �v− �e] ≡ ϕ (P) (14)

where �v (x, a) = ln P (a|x) and �e = βF (IM − βF̄)
−1

Πe. Take U = ϕ−1 (△) . It can be

shown that the set U is a J − M dimensional smooth manifold. Given parameters β, and

F fixed, we restrict our parameter space Ξ to be such that the u-component of a parameter

vector ζ ∈ Ξ is restricted to lie in U . The most general non-parametric family that we

can restrict our parameters u to lie in is U . Our nonparametric identification issue boils

down to the question, under what conditions can we identify our structural model in this

non-parametric family of U? Theorem 1 addresses this, using the following assumption

Assumption 5 Given the vector of transition probabilities F, the degree of altruism
parameter β is such that (1) 0 ≤ β < 1 and (2) IJ + βF (IM − βF̄)

−1
Π is of full rank.
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Note that there always exist such β′s at least near β = 0. Also note that β = 1 will

violate condition (2) since in that case IM − βF̄ is not invertible, as each row will add-up to

zero.

Theorem 1 (Nonparametric Identification) Suppose the components β and
F of the parameter vectors are fixed. LetP ∈ △ be a vector of conditional choice probabili-
ties that satisfy Assumption 5. Then there exists a unique utility function (u (x, a) , a ∈ A (x) , x ∈ X)

∈ U that generates P as the optimal solution to the choice problem in Eq. (2). Further-
more, the model in Eq. (2) is globally or locally non-parametrically identified depending
on whether Assumption 5 holds globally or locally.

Proof. LetP ∈ △ be a vector of conditional choice probabilities that satisfy Assumption 5.

Note that writing Eq. (12) in matrix notation, we have �v =
[

IJ + βF (IM − βF̄)
−1

Π
]

u+

βF (IM − βF̄)
−1

Πe,where F̄ is the expectation of F (a)with respect toP . Taking �v (x, a) ≡

ln P (a|x) , and denoting by �e = βF (IM − βF̄)
−1

Πe, we have

u =
[

IJ + βF (IM − βF̄)
−1

Π
]−1

[ �v− �e] (15)

Thus by Assumption 5, for each P , there exists a unique u ∈ U .

We now prove the second part regarding the nonparametric identification. Note that

the data on distribution of choices given a fixed number of individuals n (x) (a positive

integer) for each observed value of individual characteristics x ∈ X can be summarized as

an ordered vector y defined similar toP by y= (n (a|x) , a ∈ A (x) , x ∈ X)where n (a|x)
is the number of individuals who chose a ∈ A (x) given their characteristics x ∈ X. The

likelihood of the sample can be written as follows

Ly (P) = ∏
x∈X

n (x)!

∏a∈A(x) na (x)!
exp

(

∑
x∈X

n (x) ln

(

1−
Jx−1

∑
a=1

P (a|x)

))

×

exp

(

∑
x∈X

Jx−1

∑
a=1

n (a|x) ln

(

P (a|x)

1− ∑
Jx−1

a=1
P (a|x)

))

= h (y) g (η) exp
(

y′η
)

, where η = (η (a|x) , a ∈ A (x) , x ∈ X) ,with

η (a|x) = ln

(

P (a|x)

1− ∑
Jx−1

a=1
P (a|x)

)

, and g (η) = −∑ n (x) ln

(

1+
Jx−1

∑
a=1

exp η (a|x)

)

,

and h (y) is the multiplicative component in the first expression. It follows from the above

that Ly (P) is an exponential distribution. The determinant det(I (P)) of the Fisher in-

formation matrix I (P) of Ly (P) at any parameter vector P ∈ △ can be shown to be

13



det(I (P)) =
[

∏x∈X ∏
Jx−1

a=1
P (a|x)

]−1

, which is always > 0 since each P (a|x) > 0.

Since det(I (P)) is a continuous function of P , there exists a neighborhood of P in △

such that the Fisher information matrix is of full rank for all P in that neighborhood. More-

over, note that the function g (η) is continuously differentiable in η. Hence by Prakash Rao

(1992, Theorem 6.3.2), for any P ′ in a neighborhood of P , we have Ly (P) = Ly (P ′)

a.e. ⇔ P = P ′. But u = ϕ (P) in Eq. (14) is a 1-1 function from △ to U around

P ∈ △ that satisfies Assumption 5. Hence for any ζ ∈ Ξ such that the corresponding

P (ζ) satisfies Assumption 5, there exists a neighborhood of ζ in Ξ such that for any ζ ′ in

that neighborhood, Ly (P (ζ)) = Ly

(

P
(

ζ ′
))

a.e. ⇔ ζ = ζ ′. Hence the model in Eq. (2)

is locally nonparametrically identified around a ζ whose associatedP (ζ) satisfies Assump-

tion 5. It is also clear that if Assumption 5 is true for all P ∈ △, the model in Eq. (2) is

also globally identified.

The conditional choice probabilities P = {P (a|x) , a ∈ A, x ∈ X} are nothing but the

aggregate demand functions of discrete choices a ∈ A as a function of individual charac-

teristics x ∈ X. The characteristics x ∈ X is acting like a price of the Marshallian demand

function. Nonparametric identification problem in our set-up can be viewed as the well-

known aggregation problem of the consumer theory: Given a system of demand functions
P ∈ △, when does there exist a utility function u (x, a) that generates P as the optimal
solution of problem in Eq. (2)? The above theorem provides conditions for an analogous

aggregation problem in the present context of structural dynamic programming problem.

Suppose instead of most general non-parametric utility specifications for the parameter

vector ζ, we parametrize u (and also possibly β, but F is still assumed to be fixed) to have

a parametric form ζ : Θ → Ξ, where Θ ⊂ ℜk, k < J − M+ 1 is an open set. When can

we identify such parametric models? To state our sufficient condition for this, we recall

a definition from the Differential Geometry. A map f : Θ → △ is an immersion at θ ∈

Θ, an open subset of ℜk, if the differential map d fθ : ℜk → Tf (θ) (△) is injective, i.e.,

one-to-one, where Tf (θ) (△) is the tangent space of the manifold△ at f (θ).

Theorem 2 (Parametric Identification) Let Θ ⊂ ℜk be an open set. Let
ζ : Θ → Ξ denotes a family of parametric models. A parametric model is locally identified
at θ ∈ Θ if and only if the map P (ζ (θ)) : Θ → △ is an immersion at θ. The parametric
model is globally identified if and only if the map P (ζ (θ)) is an injective map.

Proof. SinceP (ζ (θ)) is an immersion at θ, there exists a neighborhood around θ in Θ

such that P (ζ (θ)) is one-one in this neighborhood. For any θ′ in this neighborhood of θ,
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Ly (P (ζ (θ))) = Ly

(

P
(

ζ
(

θ′
)))

a.e. implies P (ζ (θ)) = P
(

ζ
(

θ′
))

since Ly (P) is

globally identified in the parameter space △ by theorem 1. Hence θ = θ′ since P (ζ (θ))

is 1-1 in this neighborhood. The second part follows immediately.

6 Econometric implementation

The structural estimation of discrete dynamic programming models has two components.

One component involves solving a fixed point problem associated with the dynamic pro-

gramming problem to compute the likelihood function of the sample, and the second com-

ponent involves finding a set of structural parameters to maximize the likelihood of the

sample. Rust (1987) used a fixed point algorithm on value function, and then used the value

function to compute the optimal choice probabilities for each set of structural parameters.

Whereas, Hotz and Miller (1993) used the fixed point algorithm on the choice probabilities

and then used these choice probabilities to compute the value function. Both procedures

then carried the likelihood maximization to find an estimate of the structural parameters.

Aguirregabiria and Mira (2002) introduced a faster estimation procedure by interchanging

the order of executing these two components of the computation. They showed that their

estimation procedure has good asymptotic properties. Our estimation procedure follows

the Aguirregabiria and Mira procedure which can be briefly described as follows: First we

compute F, the transition probability matrix, from the subset of the data of the type (xi, x′i)
of the observable states for all parent-child pairs. We then assume a parametric form of the

utility function uθ (x, a) , where θ ∈ ℜk and follow these steps:

1. Start with an initial J × 1 vector of probabilities P0 ∈ △.

2. Maximize the likelihood L (θ;P0) =
n

∏
i=1

P0 (ai|xi, θ) , where

P (ai|xi, θ) =
e �v(x,a;θ)

∑a∈D e �v(x,a′;θ)

�v (x, a) = uθ (x, a) + βF (x, a) [IM − βF̄]
−1

[ūθ + ē]

3. Given θ∗ in step 2, compute P1 = (P (a|x, θ∗) , x ∈ X, a ∈ A) ∈ △ from the above

formula.

4. If ||P1 −P0|| < ε stop, else set P0 = P1 go to step 2.
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FollowingAguirregabiria andMira (2002), we parameterize uθ (x, a) = θ0w (x)− θ1a,

where θ0 is the marginal utility of annualized lifetime earnings, and θ1/θ0 is the preschool

investment cost in the unit of earnings w. Note that uθ (x, a) is not identified, because for

each x ∈ X, the ordered vector (uθ (x, a) , a ∈ A (x)) should belong to an one dimensional

subspace ofℜ2, in this specification u lies in a two-dimensional manifold instead. However,

the parameter measuring the preschool investment cost θ1/θ0 is identified.

We have used the public domain Sun Java programming language to implement the

above estimation procedure and for all other computational tasks.

7 Empirical Findings

7.1 The Dataset and Variables

For our analysis we use the NLSY79 dataset and the NLSY79 Children and Young Adults.

The NLSY79 dataset contains a nationally representative sample of 12,686 young men and

women who were 14-22 years old when they were first surveyed in 1979, i.e., these sampled

individuals represent a population born in the 1950s and 1960s, and living in the United

States in 1979. These individuals are interviewed annually. The dataset has records of

school and labor market experiences of these individuals and also the information on their

cognitive and non-cognitive traits. We, however, also need information on most of these

variables for the parents of the respondents. This dataset does not have much information

on respondents' parents. So we link this dataset with the NLSY79 Children and Young

Adults dataset. The child survey dataset includes longitudinal assessments of each child's

cognitive, attitudinal and social, motivational, academic and labor market experiences.

Two other important datasets in this area of research are the High/Scope Perry Preschool

Study and the Carolina Abecedarian Project. These are small scale pilot programswith small

number of participants. Data from these programs contain school performance information

but the labor market outcome data is weak. While these datasets are good for studying the

effect of high quality preschool program on school performance and labor market success,

these datasets do not nationally representative samples, because the participants were selec-

tively chosen. For details on the High/Scope Perry Preschool Study see Schweinhart et al.

(1993) and on the Abecedarian Project, see Campbell et al. (1998).

More recently PSID Child Supplement began to collect data on a nationally represen-

tative sample of children. This dataset will enable one to link a child's school success and
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the labor market outcomes to a child's preschool experiences regarding the child rearing

methods, home environment, teaching methods followed in schools. While the dataset con-

tains the school performance of these children, the sampled cohorts will have data on labor

market outcomes available only many years later in the future.

7.2 Production of non-cognitive skills

We show in the next two subsections that non-cognitive skills are important determinants

of earnings and learning. In this section we consider the production process of these skills.

The literature in sociology, psychology, early childhood development and physiology

suggest that early childhood investment is the most crucial input for development of cog-

nitive and non-cognitive skills. The studies in these literatures link school success to home

environment, child rearing practices, neighborhood type in which the kid is raised. For in-

stance, the Coleman report (1966) and many subsequent studies find that family capital,

which captures family tradition and values towards economic success and education, and

social capital, which captures the benefits of social bonds, social norms, social networks,

the social bonds between adults and children and among children in a neighborhood are

of immense value during a child's growing up. These factors affect parental choices of

preschool investment and child rearing methods which in turn determine a child's cognitive

and non-cognitive abilities that affect their learning and earning. Physiology literature pro-

duces ample evidence that the human brain develops extremely rapidly during age [2-4], and

the type of stimulations regarding health and learning that the child experience during this

period is a critical determinant of a child's cognitive, social and motor developments. Child

psychology literature also points out that a structured preschool stimulation also boosts a

child's self-confidence, school preparedness, parents' and teachers' assessment of the child's

ability. These in turn create a conducive learning environment for the child over many more

years of schooling, beginning with the elementary school. See Entwisle (1995), and Barnett

(1995) for more on these issues.

We construct the variables of our study as follows:

Early childhood inputs and home environment: We take father's and mother's ed-

ucation levels to measure family background. The NLSY dataset has poor measures of

respondent's early childhood inputs. It has only a binary variable containing information on

whether the respondent had preschool (does not include Head Start) experience or not. We

treated individuals with Head Start experience as no preschool. Notice that this will lead to

underestimation of the effect of preschool investment. We use the revised AFQT score to
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measure innate ability.

Socialization skill (σ): Each respondent were asked how social towards others he/she

felt at age 6, expressed in the scale of 1 to 4, the highest number represents most social. We

create a binary sociability variable by assigning the value 1 if a respondent reported a value

of 3 or 4 and assigning 0 otherwise.

Motivational skill (µ): The educational goal (µ) is the grade that the respondent in 1979
expected to achieve.

Rosenberg measure of self-esteem skill (η): It measures the positiveness with which
individuals regard themselves, i.e., a positive sense of self. Six questions were taken from

the classic Rosenberg (1965) scale in the NLSY surveys. There is, however, no well ac-

cepted definition of adequate self-esteem. Based on the distribution, we divided the 25-point

scale by treating a score of 20 or greater indicated a high self-esteem and assign a value 1

to η and a value 0 to η otherwise.

Pearlin mastery scale of internal self-concept (φ): This measures to what extent

individuals believe that their life chances are under their control (Pearlin et al. 1981). This is

similar to Rotter scale of self-control. The respondents were asked seven questions yielding

scores ranging from 0 to 28. We assign the value 1 representing a high sense of self-control

to respondents with a score between 23 and 28 inclusive, otherwise we assign a a value 0.

We estimated Logit models for the cognitive and non-cognitive skills for the child

sample. These parameter estimates are then used to fix the transition probability p (x′|x, a) .

We report in table 1 the parameter estimates for specifications in which only the significant

regressors (x and a). In our structural maximum likelihood estimations, however, we have

reported sensitivity of parameter estimates for this specification and speciations in which

we have used both significant and insignificant parameter estimates for p (x′|x, a).

From table 1, it is clear that after controlling for parents' grade, preschool experience

has significantly positive effect on the socialization skill, the motivational skill and on the

levels of talent and schooling but has no effect on Pearlin measure of internal self-cocept

and the Rosenberg measure of self-esteem. The estimates in the table also show that level

of talent has strong positive effect on all skills.

It will be interesting to see if preschool has stronger positive effect on socialization

and motivational skills of children of poorer SES. If so, then the preschool could be a used

to compensate for the better HOME environment that the well to do counterpart of these

children have, and through preschool we can achieve a higher equality of opportunities by

equalizing the differences in cognitive and non-cognititve skills of the children.
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Table 1: Logit model of cognitive and non-cognitive skills.

Talent Socialization Motivation Self-concept Self-Esteem College*
τ σ µ (Pearlin): φ (Rosenberg):η s

Intercept -3.587 1.164 0.428 -1.106 0.672 -4.694
(3.46) (11.60) (0.92) (13.56) (8.96) (18.22)

Own Talent 0.835 1.036 0.402 0.596 1.877
(5.55) (7.60) (4.62) (5.28) (12.08)

Parent's Talent 1.707
(15.91)

σ :Socialisation 0.243 0.477
(3.09) (3.28)

µ : Motivation 2.726
(Education Goal) (17.28)
φ : Internal Self- 0.503 0.443
Concept (Pearlin) (2.78) (2.26)
η : Self-Esteem 0.372 0.325 0.380 0.551 1.245
(Rosenberg) (3.45) (3.35) (4.26) (6.08) (4.94)
Parents' Grade 1.814 1.339

(1.75) (5.17)
Preschool 0.424 0.310 0.190 0.668

(4.47) (3.03) (2.09) (3.72)

Note: *While for other models the attributes Socilazation, Motivation, Internal Self-concept
(Pearlin) and Self-esteem (Rosenberg) in the first column are parents' attributes, for this
model, these attributes in column one are the individual's own attributes, and this model is
estimated using the 1979 youth sample.
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7.3 AnAugmentedEarnings Function - Role of cognitive and non-
cognitive skills

In this section we examine the effect on earnings of non-cognitive skills such as social, moti-

vational, self-esteem and internal self-concept skills together with the effect of the cognitive

skills such as innate ability and grades. The previous studies included only innate ability,

schooling level and school quality as the main determinants of earnings. While preschool

investment is an important determinant of these skills, we also included preschool binary

variable as one of the regressors in the earnings function to see if it has an independent

effect. In our specification, we included two dummy variables, High School (taking value

1 if a respondent had the high school degree) and College (if a respondent graduated from

college). These dummy variables together with grade variable are to capture the earnings

premiums for graduating from high school and college. Since we included AFQT score

which is a reasonably good measure of one's innate ability, we do not have the ability biases

in our estimates. We use the yearly earnings data to estimate the model.

Table 1 shows the parameter estimates of this augmented earnings function. The first

column is for all three races together and the next three columns give the estimates for the

Hispanics, Blacks and the Whites ethnic groups separately. It is clear from the estimates

that after controlling for innate ability, family background and the schooling level, all four

measures of non-cognititve skills have significant positive effect on earnings for all ethnic

groups. Preschool has independent positive effect only for blacks. It is also interesting to

note that a college graduate earns 8.35% higher returns in the overall population, and for

Blacks and Hispanics this premium is even higher, slightly above 10%. The sociability

skills are significant only for White but not for Black and Hispanic workers.

7.4 Estimation of Schooling Function

We consider two specifications of the schooling function s∗ (τ′, σ′, µ′, η′, φ′, a, ε′). In the

first specification, we assume that the schooling level is a continuous variable. We specify

the optimal reaction function s∗ (τ′, σ′, µ′, η′, φ′, a, ε′) as a linear function. We assume that

the vector of random variable ε′ constitutes the error term of the linear model and satisfies

all the assumptions of the OLS model.2 We included the cognitive and non-cognitive skills

together with the family background variable as measured by the parent's education level.

The parameter estimates from this model are shown in table 3 for all ethnic groups together,

2More generally we could assume that E
(

ε
′

s
|τ′, σ′, µ′, h

)

= 0 and use GLS method to correct for het-
eroskedasticity.
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Table 2: Determinants of earnings -- role of cognitive and non-cognitive skills (from the
parent sample)

Variables All Races Hispanic Black White
Intercept 2.369 2.355 0.813 2.613

(31.28) (13.64) (4.44) (27.27)
Own Talent 0.005 0.004 0.006 0.003

(32.28) (8.79) (12.07) (15.67)
Grade 0.054 0.037 0.088 0.057

(22.82) (7.83) (14.08) (18.43)
Dummy for High School 0.065 0.048 0.028 0.095

(8.22) (2.82) (1.52) (9.07)
Dummy for College 0.088 0.097 0.109 0.084

(7.61) (2.83) (3.59) (6.30)
Age 0.319 0.306 0.354 0.314

(70.49) (29.04) (32.92) (56.03)
Square of Age -0.004 -0.004 -0.004 -0.004

(51.59) (20.84) (24.53) (40.96)
Mother's grade 0.000 0.011 0.016 -0.003

(0.30) (4.29) (4.35) (1.12)
Father's grade 0.007 0.004 -0.006 0.012

(5.74) (1.77) (2.29) (6.93)
Dummy for preschool 0.001 -0.048 0.060 0.007

(0.15) (2.32) (3.10) (0.63)
Socialization 0.013 -0.026 0.025 0.014

(1.90) (1.58) (1.46) (1.65)
Motivation (education goal) 0.002 0.016 0.007 0.007

(1.16) (3.52) (1.37) (2.72)
Self-esteem(Rosenberg) 0.018 0.026 0.018 0.018

(16.32) (9.51) (6.49) (13.50)
Internal self-control(Pearlin) 0.024 0.032 0.026 0.019

(21.07) (11.49) (9.36) (13.46)
Gender -0.512 -0.491 -0.365 -0.578

(74.98) (30.43) (21.98) (68.77)
R2 0.381 0.396 0.375 0.383
n 81,005 13,769 15,972 51,264

Notes: Absolute t-values are in parentheses.
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and also separately for the Hispanic, Black and White populations. It is clear from the

estimates that the main determinant of grade is the innate ability measured by AFQT score.

After controlling for family background, we find that the sociability skill has no effect on

the schooling level.

In our second specification, we consider only two levels of schooling: college and more

(s = 1), and no college (s = 0). Again we assume that s∗ (τ′, σ′, µ′, η′, φ′, a, ε′) is repre-

sented by a Probit model. We use a subset of the above regressors in this specification and

use these estimates to calibrate our basic model in Eq. 2. The college status of parents is de-

fined by assigning the value 1 if at least one parent had some college, and 0 otherwise. The

parameter estimates from this model are shown in table 1 for all ethnic groups together. It is

clear from the estimates that the main determinant of grade is again the innate ability mea-

sured by AFQT score. After controlling for family background, we find that all cognitive

and non-cognitive skills are significant determinants of the schooling level, the measure of

motivational skills has the most significant positive effect on the probability of completing

college.

7.5 Optimal Parental Preschool Investment Decision

We assume that the state variables s, τ, σ, µ, η and φ are all binary, all components of the

random vector ε is continuous which are observed by the decision maker but not by the

econometrician, and the preschool investment decision a is also a binary variable, taking

value 1 when parents decide to invest in preschool and 0 otherwise. For most children, we

have two parents but in our model we have assumed one parent. We could take mother

as the parent. We have instead used both parent's information as follows: We construct

parent's binary schooling variable s by assigning s = 1 if the average grades of two parents

is more than 12, otherwise s = 0. We assume that τ is biologically inherited and it is not

influenced by preschool investment. We create the binary variable τ assigning value 1, i.e.,

an individual is highly talented if the AFQT score of the individual is 70 or higher, and

assigning value 0 otherwise.

The estimate of the preschool investment cost depends on the calibrated value of the

altruism parameter β as can be seen from table 5. Schweinhart et al. took average yearly

preschool cost to be $6178 per year. Consistent with their study, we calibrate the altruism

parameter to β = 0.35 for our analysis to be consistent with their cost estimate. The optimal

preschool investment decision and the value function are shown respectively in columns 3

and 4 of table 6.
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Table 3: Determinants of grade -- role of cognitive and non-cognitive skills (from the parent
sample)

Variables All Races Hispanic Black White
Intercept 2.753 3.324 3.245 2.335

(13.24) (5.95) (7.66) (8.53)
Own Talent 0.028 0.035 0.030 0.028

(29.55) (11.38) (12.85) (22.19)
Mother's grade 0.059 0.027 0.113 0.076

(6.48) (1.41) (6.03) (5.43)
Father's grade 0.028 -0.002 0.004 0.067

(3.77) (0.12) (0.28) (6.44)
Dummy for Preschool 0.266 -0.086 0.227 0.301

(4.85) (0.57) (2.25) (4.25)
σ : Socialization 0.037 -0.128 0.119 0.051

(0.83) (1.04) (1.34) (0.94)
µ : Motivation 0.458 0.425 0.348 0.468
(Education Goal) (40.75) (13.93) (14.98) (31.43)
η : Self-Esteem 0.035 0.042 0.069 0.020
(Rosenberg) (5.10) (2.10) (4.83) (2.32)
η : Internal 0.034 0.055 0.010 0.034
self-control(Pearlin) (4.78) (2.75) (0.73) (3.87)
Gender 0.182 0.126 0.464 0.117

(4.27) (1.06) (5.47) (2.24)
R2 0.560 0.488 0.541 0.585
n 5,782 1,012 1,218 3,552
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We consider a public policy of providing preschool to children of poor socioeconomic

status (SES) in all periods. We define a parent to fall in the poor SES if his earnings is

less than 70 percent of the average earnings in economy. This will incur a per capita cost,
but such policy may also improve social mobility, earnings inequality and lead to a higher

level of per capita long-run earnings. We examine if the gain from per capita earnings can

outpace the cost of providing such a social insurance program. We also look at its within

generation effects on earnings, and on intergenerational social and college mobility.

Table 4: Maximum likelihood parameter estimates given two different estimates of
p (x′|x, a) and altruism parameter β = 0.35.

Parameter Estimates given p (x′|x, a) using
only significant x′s all x′s

Marginal utility (�θ0) 6.729 8.452
from average earnings (5.136) (5.646)
Utility cost (�θ1) of 4.636 4.761
Preschool investment (9.391) (10.077)
Annualized cost 689.032 563.229
in dollars 1000× (�θ1/�θ0)
Percent of poor 28.39 36.30
SES population
Per capita cost 0.196 0.204
to society ('000 dollars)
Per capita change 0.310 0.432
in earnings ('000 dollars)
Log-likelihood -1039.626 -1037.236

Note: Absolute value of t-statistics are in parentheses.

8 Economic Benefits fromPublic Provision of Preschool

We have shown that investment in preschool enhances certain skills that are important for

learning and earning. We have also seen that the parents of poor SES do not invest in

their children's preschool. If preschool is publicly provided for the children of poor SES,

it will have many economic benefits: It will increase social mobility, it will reduce income

inequality, it will improve college enrollment rate, it will improve the community or criminal

behavior, and it will also bring higher tax revenues because more workers will be earning

higher wages. It is important to note that the magnitude of the effect of publicly provided
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Table 5: Sensitivity of maximum likelihood estimates with variations of the altruistic pa-
rameter β.

β �θ0 t-stat �θ1 t-stat annualized per capita costs and benefits in $ '000
of �θ0 of �θ1 costs: parent costs: tax payer benefits: △w̄

0.030 82.313 4.484 4.430 8.572 0.054 0.015 0.313
0.070 35.151 4.566 4.458 8.673 0.127 0.036 0.313
0.110 22.274 4.647 4.485 8.775 0.201 0.057 0.313
0.150 16.255 4.729 4.512 8.877 0.278 0.079 0.312
0.190 12.761 4.810 4.538 8.979 0.356 0.101 0.312
0.230 10.476 4.892 4.563 9.082 0.436 0.124 0.311
0.270 8.863 4.973 4.588 9.185 0.518 0.147 0.311
0.310 7.661 5.055 4.613 9.288 0.602 0.171 0.310
0.350* 6.729 5.136 4.637 9.391 0.689 0.196 0.310
0.390 5.985 5.218 4.660 9.495 0.779 0.221 0.309
0.430 5.376 5.299 4.682 9.599 0.871 0.247 0.308
0.470 4.867 5.380 4.704 9.704 0.967 0.274 0.308
0.510 4.435 5.462 4.726 9.809 1.065 0.302 0.307
0.550 4.064 5.543 4.746 9.914 1.168 0.332 0.306
0.590 3.741 5.624 4.766 10.020 1.274 0.362 0.306
0.630 3.456 5.705 4.786 10.126 1.385 0.393 0.305
0.670 3.204 5.787 4.804 10.233 1.500 0.426 0.304
0.710 2.978 5.868 4.822 10.340 1.619 0.460 0.303
0.750 2.774 5.949 4.839 10.448 1.744 0.495 0.302
0.790 2.590 6.030 4.856 10.556 1.875 0.532 0.301
0.830 2.421 6.111 4.872 10.664 2.012 0.571 0.300
0.870 2.267 6.192 4.887 10.774 2.156 0.612 0.299
0.910 2.125 6.273 4.901 10.883 2.306 0.655 0.298
0.950 1.994 6.354 4.915 10.994 2.465 0.700 0.297
0.990 1.872 6.435 4.928 11.105 2.633 0.747 0.296
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Table 6: Equilibrium Solution

[τ, σ, µ, η, φ, s] p0 Earnings Pb(a = 1|x) Pa(a = 1|x) optVb optVa p∗b p∗a
[0, 0, 0, 0, 0, 0] 0.1797 4.1520 0.0735 1.0000 60.1545 62.5914 0.0088 0.0075
[0, 1, 0, 0, 0, 0] 0.0013 4.3993 0.0740 1.0000 62.1775 64.6075 0.0351 0.0334
[0, 0, 1, 0, 0, 0] 0.0029 4.7769 0.0735 1.0000 64.3592 66.7961 0.0155 0.0136
[0, 1, 1, 0, 0, 0] 0.0000 5.0241 0.0740 1.0000 66.3822 68.8122 0.0571 0.0544
[0, 0, 0, 0, 1, 0] 0.0029 6.2648 0.0843 1.0000 76.4401 78.9237 0.0226 0.0195
[0, 1, 0, 0, 1, 0] 0.0000 6.5120 0.0848 1.0000 78.5247 80.9992 0.0920 0.0866
[1, 0, 0, 0, 0, 0] 0.0665 6.7053 0.1312 1.0000 79.0355 82.0031 0.0001 0.0001
[0, 0, 0, 1, 0, 0] 0.3029 6.8013 0.0822 1.0000 78.6578 81.1644 0.0043 0.0038
[0, 0, 1, 0, 1, 0] 0.0000 6.8896 0.0843 1.0000 80.6448 83.1284 0.0297 0.0246
[1, 1, 0, 0, 0, 0] 0.0006 6.9525 0.1320 1.0000 81.0655 84.0271 0.0009 0.0010
[0, 1, 0, 1, 0, 0] 0.0060 7.0485 0.0827 1.0000 80.6867 83.1864 0.0178 0.0170
[0, 1, 1, 0, 1, 0] 0.0000 7.1369 0.0848 0.0812 82.7293 83.0784 0.1014 0.0897
[1, 0, 1, 0, 0, 0] 0.0019 7.3301 0.1312 0.1235 83.2402 83.6627 0.0002 0.0002
[0, 0, 1, 1, 0, 0] 0.0342 7.4261 0.0822 0.0778 82.8625 83.2858 0.0071 0.0062
[1, 1, 1, 0, 0, 0] 0.0000 7.5774 0.1320 0.1246 85.2701 85.6776 0.0015 0.0015
[0, 1, 1, 1, 0, 0] 0.0013 7.6734 0.0827 0.0785 84.8914 85.2989 0.0261 0.0244
[1, 0, 0, 0, 1, 0] 0.0010 8.8180 0.1416 0.1348 95.3049 95.6369 0.0004 0.0004
[0, 0, 0, 1, 1, 0] 0.0215 8.9140 0.0910 0.0871 94.9085 95.2359 0.0115 0.0100
[1, 1, 0, 0, 1, 0] 0.0000 9.0653 0.1420 0.1357 97.3925 97.7091 0.0030 0.0033
[0, 1, 0, 1, 1, 0] 0.0003 9.1613 0.0913 0.0877 96.9992 97.3112 0.0470 0.0441
[1, 0, 0, 1, 0, 0] 0.1705 9.3545 0.1409 0.1330 97.5396 97.9225 0.0001 0.0001
[1, 0, 1, 0, 1, 0] 0.0010 9.4429 0.1416 0.1348 99.5096 99.8416 0.0004 0.0004
[0, 0, 0, 0, 0, 1] 0.0092 9.4477 0.1346 0.1259 100.6712 101.0250 0.0002 0.0002
[0, 0, 1, 1, 1, 0] 0.0048 9.5389 0.0910 0.0871 99.1132 99.4406 0.0128 0.0105
[1, 1, 0, 1, 0, 0] 0.0063 9.6018 0.1416 0.1340 99.5746 99.9434 0.0006 0.0007
[1, 1, 1, 0, 1, 0] 0.0000 9.6901 0.1420 0.1357 101.5972 101.9138 0.0027 0.0028
[0, 1, 0, 0, 0, 1] 0.0000 9.6949 0.1344 0.1260 102.7032 103.0454 0.0011 0.0013
[0, 1, 1, 1, 1, 0] 0.0000 9.7862 0.0913 0.0877 101.2039 101.5158 0.0428 0.0373
[1, 0, 1, 1, 0, 0] 0.0285 9.9794 0.1409 0.1330 101.7442 102.1272 0.0001 0.0001
[0, 0, 1, 0, 0, 1] 0.0006 10.0725 0.1346 0.1259 104.8759 105.2297 0.0042 0.0047
[1, 1, 1, 1, 0, 0] 0.0006 10.2266 0.1416 0.1340 103.7792 104.1481 0.0008 0.0009
[0, 1, 1, 0, 0, 1] 0.0000 10.3198 0.1344 0.1260 106.9078 107.2501 0.0250 0.0293
[1, 0, 0, 1, 1, 0] 0.0146 11.4673 0.1474 0.1409 113.7605 114.0576 0.0002 0.0003
[0, 0, 0, 0, 1, 1] 0.0013 11.5604 0.1193 0.1131 117.1245 117.4035 0.0015 0.0016
[1, 1, 0, 1, 1, 0] 0.0000 11.7145 0.1476 0.1415 115.8532 116.1366 0.0020 0.0021
[0, 1, 0, 0, 1, 1] 0.0000 11.8077 0.1185 0.1127 119.2084 119.4756 0.0101 0.0116
[1, 0, 0, 0, 0, 1] 0.0006 12.0009 0.1672 0.1580 122.9650 123.2108 0.0000 0.0000
[1, 0, 1, 1, 1, 0] 0.0054 12.0921 0.1474 0.1409 117.9652 118.2623 0.0002 0.0002
[0, 0, 0, 1, 0, 1] 0.0409 12.0969 0.1260 0.1183 119.4114 119.7248 0.0001 0.0001
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Table 7: Continuation of Table 6.

[τ, σ, µ, η, φ, s] p0 Earnings Pb(a = 1|x) Pa(a = 1|x) optVb optVa p∗b p∗a
[0, 0, 1, 0, 1, 1] 0.0000 12.1853 0.1193 0.1131 121.3292 121.6082 0.0257 0.0272
[1, 1, 0, 0, 0, 1] 0.0000 12.2482 0.1666 0.1578 125.0072 125.2455 0.0003 0.0004
[1, 1, 1, 1, 1, 0] 0.0000 12.3394 0.1476 0.1415 120.0579 120.3413 0.0015 0.0015
[0, 1, 0, 1, 0, 1] 0.0010 12.3442 0.1254 0.1181 121.4449 121.7480 0.0009 0.0010
[0, 1, 1, 0, 1, 1] 0.0000 12.4325 0.1185 0.1127 123.4131 123.6803 0.1394 0.1546
[1, 0, 1, 0, 0, 1] 0.0000 12.6258 0.1672 0.1580 127.1697 127.4155 0.0006 0.0007
[0, 0, 1, 1, 0, 1] 0.0076 12.7218 0.1260 0.1183 123.6161 123.9295 0.0030 0.0033
[1, 1, 1, 0, 0, 1] 0.0000 12.8730 0.1666 0.1578 129.2119 129.4501 0.0068 0.0077
[0, 1, 1, 1, 0, 1] 0.0006 12.9690 0.1254 0.1181 125.6496 125.9527 0.0175 0.0200
[1, 0, 0, 0, 1, 1] 0.0006 14.1137 0.1384 0.1324 139.1534 139.3505 0.0003 0.0003
[0, 0, 0, 1, 1, 1] 0.0257 14.2097 0.1081 0.1030 135.7709 136.0161 0.0012 0.0013
[1, 1, 0, 0, 1, 1] 0.0000 14.3609 0.1373 0.1316 141.2364 141.4260 0.0035 0.0039
[0, 1, 0, 1, 1, 1] 0.0010 14.4569 0.1071 0.1024 137.8560 138.0911 0.0080 0.0091
[1, 0, 0, 1, 0, 1] 0.0165 14.6502 0.1465 0.1391 141.5275 141.7475 0.0000 0.0000
[1, 0, 1, 0, 1, 1] 0.0003 14.7385 0.1384 0.1324 143.3581 143.5551 0.0039 0.0043
[0, 0, 1, 1, 1, 1] 0.0032 14.8345 0.1081 0.1030 139.9756 140.2208 0.0169 0.0176
[1, 1, 0, 1, 0, 1] 0.0013 14.8974 0.1458 0.1387 143.5690 143.7823 0.0003 0.0004
[1, 1, 1, 0, 1, 1] 0.0000 14.9858 0.1373 0.1316 145.4411 145.6307 0.0426 0.0476
[0, 1, 1, 1, 1, 1] 0.0006 15.0818 0.1071 0.1024 142.0606 142.2957 0.0898 0.0972
[1, 0, 1, 1, 0, 1] 0.0029 15.2750 0.1465 0.1391 145.7322 145.9522 0.0005 0.0006
[1, 1, 1, 1, 0, 1] 0.0003 15.5223 0.1458 0.1387 147.7737 147.9870 0.0059 0.0067
[1, 0, 0, 1, 1, 1] 0.0247 16.7629 0.1203 0.1157 157.6138 157.7899 0.0003 0.0003
[1, 1, 0, 1, 1, 1] 0.0013 17.0102 0.1191 0.1148 159.6961 159.8658 0.0034 0.0039
[1, 0, 1, 1, 1, 1] 0.0054 17.3878 0.1203 0.1157 161.8185 161.9945 0.0034 0.0037
[1, 1, 1, 1, 1, 1] 0.0000 17.6350 0.1191 0.1148 163.9008 164.0705 0.0369 0.0410
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preschool will depend on if the social protection will be available to all future generations

or it is just a one time policy.

While looking at themagnitude of the estimated economic benefits below, it is important

to keep in mind that the effects that we report are underestimated for many reasons: First,

we have treated the Head Start children same as children without preschool. Second, the

preschool programs that the respondents attended were the ones that existed during the six-

ties. The quality of preschool programs ever since has improved significantly and thus the

effects of current preschool programs will be much higher than the estimates that we have.

Third, we have calibrated our model cost to a higher cost of a high quality pilot porgram.

Note that since ε does not affect earnings, the optimal a depends only on the observable

component x of a parent's state variable, i.e. optimal preschool plan is a (x). In the ab-

sence of the social contract, suppose the parents follow the optimum preschool investment

plans a (x) as shown in table 6. The invariant distribution of the corresponding transition

matrix {p(x′|x, a (x)), x ∈ X} is shown in table 6 under the heading Pb (a = 1|x). The

interpretation of this invariant distribution is as follows: If Pb (a = 1|x) is the distribution

of population over the observable states of generation t, and the parents of generation t fol-

low the optimal preschool investment plan a (x), the distribution of population of the next

generation will also be Pb (a = 1|x).

8.1 Social Mobility

A number of mobility measures for a transition matrix appear in the literature. Sommers and

Conlisk (1979) argued that out of the existing measures, 1− λmax is the most appropriate

measure of social mobility, where λmax is the second highest positive eigenvalue of the

transition matrix (the highest positive eigenvalue of a transition matrix is always 1). We

use this measure of social mobility to examine how the introduction of the social contract

would improve social mobility. Our estimate of the measure of social mobility before the

introduction of the social contract is 0.568759 and after the introduction of the social contract

program, it improves to 0.598074. The estimate of 0.568759 for the measure is very close

to the estimates found in other studies of social mobility in the US.

8.2 College Mobility

Denote by Qs =
[

qij

]

, i, j = 1, 2, the intergenerational college mobility matrix in which

state 1 represents no college and state 2 represents college and higher. The element qij

represents the probability that a child of a parent of college education status i will move

28



to the college education status j, for all i and j = 1, 2. We report below the estimated

college mobility matrices, the corresponding invariant distributions, and the estimates of the

mobility measure before and after the introduction of the social contract. These estimates

indicate that the introduction of the social contract will increase college enrollment from

a 32.90 percent to a 37.21 percent, i.e. a 4.31 percent increase for a child of non-college

parent. And the percentage of college enrolled population will increase in the long-run from

the rate of 48.17 percent without social contract to a higher rate of 51.18 percent with the

social contract. That is, there will be about a 3.01% increase in college enrollments in the

long-run.

College mobility statistics before introduction of social contract:

Qs
b =

[

0.6710 0.3290
0.3541 0.6459

]

, ps
b =

[

0.518327 0.481673
]

, 1− λs
max,b = 0.683070

College mobility statistics after introduction of social contract:

Qs
a =

[

0.6279 0.3721
0.3550 0.6450

]

, ps
a =

[

0.488177 0.511823
]

, 1− λs
max,a = 0.727102

8.3 Income Inequality

Preschool experience will increase the incomes of the children of poor SES and thus it will

reduce the income gap between the rich and the poor. Using the Gini-coefficient to measure

income inequality, we would expect that over time the income inequality will improve. In

the long-run, the income distribution that one observes is the invariant distribution. Thus

we compute the Gini-coefficient of income inequality for the invariant income distribution

before the introduction of the social contract and compare it with the Gini-coefficient for

the invariant income distribution after the introduction of the social contract. The estimated

Gini-coefficients are respectively 0.2133 without the social contract, and 0.2087 with the

social contract. The estimated Gini-coefficient of earnings 0.2133 turns out to be very close

to the estimates found in other studies on US. We note that the social contract of publicly

providing preschool to children of poor SES leads to a significant reduction in the inequality

of the long-term earnings.

8.4 Tax Burden of the Social Contract

Suppose the government provides preschool to the children of poor SES perpetually. We

know that the size of the population of poor SES will become smaller over time. Thus
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the resource needs of the program will become smaller, and the tax revenues will become

higher over time. We can look at the stream of these costs and benefits to the society and

then compute the average per period costs and benefits to calculate the tax-burdens of the

social contract. Applying the Ergodic theorem, however, this boils down to computing the

costs and benefits of the invariant distribution that will result after the introduction of the

social contract.

Approximately 28.39 percent of the population will fall in the poor socioeconomic status

using our definition. Thus the per capita cost of the social contract to the economy in the

long-run is $195.638 but the gain in per capita income due to the introduction of the social

contract is $309.60, so there is a net gain to the economy. This net gain is based on a

reasonable value of the altruistic parameter β. The simulation results in our sensitivity

analysis shows that, the lower is the value of the altruism parameter β, the higher is the gain

from the introduction of the social contract. The economic reason for this is quite obvious.

When parents have lower altruism towards children, they will invest less on their children's

preschool since such investment decreases their own felicity index and increase welfare of

the children which got a lower weight when β has lower value. This estimate of net gain is

based on calibrating the value of β to the cost data of a high cost program as noted earlier

whose benefits are supposed to be higher than our estimated benefits. Thus, this gain is

an underestimate of the actual net benefit. Furthermore, our benefit calculation does not

take into account other public savings such as savings from welfare assistance programs

and savings to the criminal justice system and potential victims of crimes. If we incorporate

these, the returns will be much higher. Using data from the High/Scope Perry Preschool

Program, Schweinhart et al. estimated a total benefit of $7.16 from all these sources for

each dollar spent on the preschool program.

9 Conclusion

This paper formulated an altruistic model of parental preschool investment within a struc-

tural dynamic programming framework. The paper provided conditions for the local and

global identification of the non-parameteric and parametric structural parameters of the dy-

namic programming model. It used the NLSY79 and NLSY79 Children and Young Adult

datasets for all emprical estimations of the model.

The paper estimated the production processes of two types of cognitive skills - the IQ

score and the schooling level, and four types of non-cognitive skills - the socialization skill,
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the motivational skill, the Rosenberg measure of self-esteem skill and the Pearlin mastery

scale of internal self-concept skill. The paper found that the preschool boosted significantly

all the cognitive and non-cognitive skills, but not the Rosenberg measure of self-esteem

skill and the Pearlin measure of internal self-concept skill. Moreover, all these cognitive

and non-cognitive skills have significant positive effects on the level of schooling and the

labor market earnings of individuals.

The paper estimated the structural parameters and then used those to carry out a Lucas-

Critique free policy analysis to examine the effect of publicly providing preschool to eco-

nomically disadvantged children. Taking into account the within generation and between in-

tergenerations effects of such a policy, the paper estimates that in the long run the preschool

social contract policy

• improves the social mobility from 0.569 to 0.598, measured in a scale of 0 to 1 .

• improves the college mobility from 0.683 to 0.727, measured in a scale of 0 to 1 and

increases the college completion rate of the children of non-college educated parents

from 32.9 percent to 37.21 percent, i.e., a 4.31 percent increase.

• reduces the earnings inequality measured by the Gini coefficient in a scale of 0 to 1

from 0.213 to 0.209.

The paper estimates that the preschool social contract policy costs the economy $195.64

per capita but increases the per capita earnings by $309.60. That is, there is a significant

net positive gain to the tax payers from the introduction of the preschool social contract

program.

The positive effects of the preschool social contract will be even higher in reality because

we have used the estimated cost of a high cost, high quality pilot preschool program, but used

the estimated benefits from the lower cost, lower quality preschool programs that existed in

the 1970s.
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