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Abstract

The paper compares one-period ahead forecasting performance of lin-
ear vector-autoregressive (VAR) models and single-equation Markov-switching
(MS) models for two cases: when leading information is available and
when it is not. The results show that single-equation MS models tend to
perform slightly better than linear VAR models when no leading infor-
mation is available. However, if reliable leading information is available,
single-equation MS models tend to give somewhat less precise forecasts
than linear VAR models.
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1 Introduction

To the best of our knowledge, there is no publicly available paper that would
discuss the forecasting performance of Markov-switching models used to fore-
cast Latvia’s gross domestic product (GDP). Thus, this paper is the first at-
tempt to fill the gap in the forecasting literature by comparing one-period ahead
forecasting performance of single-equation Markov-switching (MS) and linear
vector-autoregressive (VAR) models using Latvia’s macroeconomic data.

We use MS models developed in Hamilton (1989) and in a series of papers by
Krolzig (see Krolzig, 1998, 2000, 2003, among others), written in a GAUSS code
by Bellone (2005), and adapted to Scilab environment by Dubois and Michaux
(2010) in econometrics toolbox Grocer.

The paper is organized as follows. Section 2 describes the model and its
estimation. Section 3 presents the results for the one-period ahead forecasting
performance of single-equation MS and linear VAR models expressed in terms
of root mean squared forecast error (RMSFE) for both cases when leading in-
formation is available and when it is not available. Following the results in Buss
(2009) that an extra regular differencing of the data might improve the fore-
casting precision during the switch of the business cycle phases, we also show
results for the case when the data are subject to two regular differences, instead
of one. Finally, Section 4 concludes.

2 Methodology

2.1 The Model

Consider a single-equation Markov-switching model whose parameters are, at
least partly, unconditionally time-varying but constant when conditioned on an
unobservable discrete regime variable st ∈ {1, . . . ,M}:

yt = x′
t�st + z′t� + ut

ut∣st ∼ N(0, �2
st
), (1)

where yt is a scalar dependent variable at time t, xt = (x1t, . . . , xnt)
′ is an

(n × 1) vector of exogenous regressors at time t subject to switching regimes,
zt = (z1t, . . . , zqt)

′ is a (q × 1) vector of exogenous regressors at time t that are
not subject to switching regimes, � is a (q × 1) vector of regression coefficients
which are regime independent, and ut is a Gaussian error term subject to regime
changes.

Parameter shift functions �st and �2
st

describe the dependence of the model’s
parameters � and �2 on the regime variable st:

�st =

⎧



⎨



⎩

�1 if st = 1,
...

�M if st = M,

(2)

and

�2
st

=

⎧



⎨



⎩

�2
1 if st = 1,
...

�2
M if st = M.

(3)
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Let ℐt−1 := (yt−1, . . . , y1, x
′
t−1, . . . , x

′
1, z

′
t−1, . . . , z

′
1)

′ be the information set
at t − 1. The unobservable realizations of the regime st ∈ {1, . . . ,M} are
generated by an M-state irreducible ergodic Markov stochastic process that is
independent of ℐt−1 or current exogenous variables, xt and zt, and is defined by
its transition probabilities:

pij = P (st = j∣st−1 = i, st−2 = k, . . . , xt, zt, ℐt−1)

= P (st = j∣st−1 = i),

M
∑

j=1

pij = 1 for all i, j ∈ {1, . . . ,M}, (4)

that can conveniently be represented with a transition matrix

P =

⎡

⎢

⎢

⎢

⎣

p11 ⋅ ⋅ ⋅ pM1

p12 ⋅ ⋅ ⋅ pM2

...
...

...
p1M ⋅ ⋅ ⋅ pMM

⎤

⎥

⎥

⎥

⎦

. (5)

Model (1) can be reduced to such special cases as

∙ the mean-variance model:

yt = �st + ut,

∙ the Markov-switching autoregressive (MS-AR) regime-dependent model:

yt = �st + yt−1�1,st + ⋅ ⋅ ⋅+ yt−n�n,st + ut = (1, yt−1, . . . , yt−n)�st + ut,

∙ the MS-AR intercept regime-dependent model:

yt = �st + yt−1�1 + ⋅ ⋅ ⋅+ yt−q�q + ut = �st + (yt−1, . . . , yt−q)� + ut.

with E[u2
t ∣st] = �2

st
or E[u2

t ∣st] = �2 for any of the above models.

2.2 Estimation

The model is estimated by the maximum likelihood in the following steps:

1. set the initial values of parameters and estimate the model recursively
with the Expectation-Maximization (EM) algorithm,

2. compute smoothed probabilities,

3. forecast observed variables.

The rest of the section gives a more detailed look on the procedure, see also
Ch. 22 in Hamilton (1994). Denote �t a random (M × 1) vector whose jth
element is equal to unity if st = j and zero otherwise:

�t =

⎧



⎨



⎩

(1, 0, 0, . . . , 0)′ if st = 1,
...

(0, 0, 0, . . . , 1) if st = M.

(6)
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If st = i, then the jth element of �t+1 is a random variable that takes on
the value unity with probability pij and zero otherwise. Thus, the conditional
expectation of �t+1 given st = i is

E(�t+1∣st = i) =

⎡

⎢

⎣

pi1
...

piM

⎤

⎥

⎦
, (7)

which implies
E(�t+1∣�t) = P�t

and from Markov property

E(�t+1∣�t, �t−1, . . .) = P�t, (8)

which implies
�t+1 = P�t + vt+1, (9)

where
vt+1 := �t+1 − E(�t+1∣�t, �t−1, . . .) (10)

is a martingale difference sequence.
Let �tj := E[yt∣st = j, xt, zt, ℐt−1] = x′

t�j + z′t� be the conditional expecta-
tion of yt, and let � := (�′

j , �
′, �j)

′ be the vector of parameters characterizing
the conditional density. Then the conditional probability density function is

f(yt∣st = j, xt, zt, ℐt−1, �) = (2�)−
1

2 �−1
j exp

(

−
(yt − �tj)

2

2�2
j

)

. (11)

If there areM different regimes, then there areM different densities represented
by (11), that are collected in an (M × 1) vector

�t =

⎡

⎢

⎣

f(yt∣st = 1, xt, zt, ℐt−1, �)
...

f(yt∣st = M,xt, zt, ℐt−1, �)

⎤

⎥

⎦
. (12)

Collect � and the transition probabilities pij governing (11) in a vector of pa-
rameters �. Let P (st = j∣ℐt, �) denote the analyst’s inference about the value
of st based on data obtained through date t and based on knowledge of the
population parameters �. This inference takes the form of a conditional prob-
ability that the analyst assigns to the possibility that the tth observation was
generated by regime j. Collect these conditional probabilities P (st = j∣ℐt, �)

for j = 1, 2, . . . ,M in an (M × 1) vector �̂t∣t. Collect the forecasts of such prob-
abilities at t+ 1 given observations obtained through date t, P (st+1 = j∣ℐt, �),

in an (M × 1) vector �̂t+1∣t.
Note that it is assumed that xt and zt are exogenous, that is, xt and zt

contain no information about st beyond that contained in ℐt−1. Hence, the jth
element of �̂t∣t−1 could also be described as P (st = j∣xt, zt, ℐt−1, �). The jth

element of the (M × 1) vector (�̂t∣t−1 ⊙ �t), where ⊙ denotes the element-by-
element product, can be interpreted as the conditional joint density-distribution
of yt and st:

P (st = j∣xt, zt, ℐt−1, �)× f(yt∣st = j, xt, zt, ℐt−1, �)

= p(yt, st = j∣xt, zt, ℐt−1, �). (13)
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The density of yt conditioned on past observables is the sum of the M magni-
tudes in (13) for j = 1, 2, . . . ,M. This sum can be written in vector notation
as

f(yt∣xt, zt, ℐt−1, �) = 1′(�̂t∣t−1 ⊙ �t), (14)

where 1 is an (M × 1) vector of 1s.
If the joint density-distribution in (13) is divided by the density of yt in (14),

the result is the conditional distribution of st:

p(yt, st = j∣xt, zt, ℐt−1, �)

f(yt∣xt, zt, ℐt−1, �)
= P (st = j∣yt, xt, zt, ℐt−1, �)

= P (st = j∣ℐt, �).

Hence, from (14),

P (st = j∣ℐt, �) =
p(yt, st = j∣xt, zt, ℐt−1, �)

1′(�̂t∣t−1 ⊙ �t)
. (15)

But recall from (13) that the numerator in the expression on the right side of

(15) is the jth element of the vector (�̂t∣t−1 ⊙ �t) while the left side of (15)

is the jth element of the vector �̂t∣t. Thus, collecting the equations in (15) for
j = 1, 2, . . . ,M into an (M × 1) vector produces

�̂t∣t =
(�̂t∣t−1 ⊙ �t)

1′(�̂t∣t−1 ⊙ �t)
. (16)

To obtain �̂t+1∣t, take expectations of (9) conditional on ℐt:

E(�t+1∣ℐt) = PE(�t∣ℐt) + E(vt+1∣ℐt). (17)

Since vt+1 is a martingale difference sequence with respect to ℐt, (17) becomes

�̂t+1∣t = P�̂t∣t. (18)

The optimal inference and forecast for each date t in the sample are found
by iterating on the pair of equations (16) and (18). Given a starting value �̂1∣0
and an assumed value for the population parameter vector �, one can iterate on
(16) and (18) for t = 1, 2, . . . , T to calculate the values of �̂t∣t and �̂t+1∣t for each
date t in the sample. The log likelihood function L (�) for the observed data ℐT
evaluated at the value of � that is used to perform the iterations is calculated
as a by-product of this algorithm from

L (�) =

T
∑

t=1

log f(yt∣xt, zt, ℐt−1, �), (19)

where
f(yt∣xt, zt, ℐt−1, �) = 1′(�̂t∣t−1 ⊙ �t)

and maximized numerically with respect to �.
When the model is estimated, the smoothed probabilities can be calculated.

Let �̂t∣� represent the M × 1 vector whose jth element is P (st = j∣ℐ� , �). For
t < � it represents the smoothed inference about the regime the process was
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in at date t based on data obtained on through some later date �. Smoothed
inferences are calculated using an algorithm developed by Kim(1993). In vector
form, this algorithm can be written as

�̂t∣T = �̂t∣t ⊙ {P′[�̂t+1∣T ⊘ �̂t+1∣t]}, (20)

where the sign ⊘ denotes element-by-element division. The smoothed probabil-
ities �̂t∣T are found by iterating on (20) backward for t = T − 1, T − 2, . . . , 1.

This iteration is started with �̂T ∣T , which is obtained from (16) for t = T. This
algorithm is valid only when st follows a first-order Markov chain, when the con-
ditional density (11) depends on st, st−1, . . . only through the current state st,

and when xt and zt , the vectors of explanatory variables other than the lagged
values of yt, are strictly exogenous, meaning that xt and zt are independent of
s� for all t and � (see Appendix 22.A in Hamilton, 1994).

From the conditional density (11) it is straightforward to forecast yt+1 con-
ditional on knowing ℐt, xt+1, zt+1 and st+1:

E(yt+1∣st+1 = j, xt+1, zt+1, ℐt, �) = x′
t+1�j + z′t+1�. (21)

There are M different conditional forecasts associated with the M possible val-
ues for st+1. Note that the unconditional forecast based on actual observable
variables is related to these conditional forecasts by

E(yt+1∣xt+1, zt+1, ℐt, �)

=

∫

yt+1f(yt+1∣xt+1, zt+1, ℐt, �)dyt+1

=

∫

yt+1

⎧

⎨

⎩

M
∑

j=1

p(yt+1, st+1 = j∣xt+1, zt+1, ℐt, �)

⎫

⎬

⎭

dyt+1

=

∫

yt+1

⎧

⎨

⎩

M
∑

j=1

[f(yt+1∣st+1 = j, xt+1, zt+1, ℐt, �)P (st+1 = j∣xt+1, zt+1, ℐt, �)]

⎫

⎬

⎭

dyt+1

=

M
∑

j=1

P (st+1 = j∣xt+1, zt+1, ℐt, �)

∫

yt+1f(yt+1∣st+1 = j, xt+1, zt+1, ℐt, �)dyt+1

=

M
∑

j=1

P (st+1 = j∣ℐt, �)E(yt+1∣st+1 = j, xt+1, zt+1, ℐt, �).

Note that although the Markov chain itself admits the linear representation,
�t+1 = P�t + vt+1, the optimal forecast of yt+1 is a nonlinear function of ob-
servables, since the inference �̂t∣t in (16) depends nonlinearly on ℐt.

3 Results

The dependent variable of the model (1) is Latvia’s quarterly GDP series from
1995Q1 till 2009Q3. The explanatory variables are an aggregate of a few com-
ponents of the GDP from the production side (cp), imports (imp), net exports
(nx), and money supply M1 (m). All series are quarterly, expressed in logs, and
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once regularly and once seasonally differenced, except m, that is not seasonally
differenced. For comparison, we also run models on series for which one regular
differencing of the data is replaced with two regular differences due to the result
in Buss (2009) that an extra regular differencing might improve the precision
of one-period ahead forecasts during a switch of the business cycle phases. Ap-
pendix 1 contains a more detailed description of the data. All calculations are
performed in Scilab with the aid of its econometrics toolbox Grocer.

The results are summarized in four tables. Tables 1 and 2 show the results
about models imposed on once regularly differenced series, while Tables 3 and 4
- on twice regularly differenced series. Tables 1 and 3 give results about models
that use leading information, that is, it is assumed in these tables that variables
cp, imp, nx and m are known one period ahead of the GDP, so the four ex-
planatory variables are used as leading indicators. Note that, in this case, the
exogeneity assumption of the explanatory variables no longer holds for single-
equation MS model. Nevertheless, we can still analyze the model’s forecasting
performance, bearing in mind that not all of the model’s assumptions are sat-
isfied. On the contrary, Tables 2 and 4 assume there is no leading information,
so the timing of the four explanatory variables there coincide with the timing
of the GDP.

Table 1 shows root mean squared forecast errors (RMSFE) for the full sam-
ple, the first half of the sample (RMSFE1.half) and the second half of the sample
(RMSFE2.half) from one-period ahead pseudo real-time forecasts beginning at
sample size 19 from single-equation Markov-switching (MS) and linear vector
autoregressive (VAR) models with leading information on once regularly differ-
enced series to compare the predictive performance of the two types of models.
VAR models are specified by their endogenous variables (first parenthesis) and
a lag order (second parenthesis). MS models are specified by the number of
regimes (first parenthesis), whether the model is autoregressive (AR) or autore-
gressive distributed lag (ARDL) model with the explanatory variables other
than the endogenous lagged variable specified in parenthesis; next, follows the
specification of the lag orders for each explanatory variable along the indication
of their dependence (s) or independence (ns) of the regime; finally, it is speci-
fied whether the model contains an intercept (c) and whether the intercept is
switching (s) or not (ns). The sample is split in halves because the first half
of the sample contains a smooth growth whereas the second half of the sample
contains a rapid economic downturn, so one can see how the forecasting perfor-
mance of the models changes along a business cycle. The least RMSFE for each
sample space is framed.

The forecasting performance of VAR models is shown in the first four rows
in Table 1. Model (1) contains two endogenous variables, GDP and cp; one can
see from models (2) to (4) that an addition of endogenous variable nx to the
model slightly deteriorates the one-period ahead forecasting performance of the
first model, whereas an addition of imp or m slightly improves it for the second
half of the sample.

Now, let us discuss the forecasting performance of MS models, starting with
MS-AR ones. Model (5) is the mean-variance model since it does not contain
any other regressors than a switching constant. Models (6) and (7) are MS-AR
models with switching autoregressive coefficient and a non-switching constant.
Model (8) is an MS-AR model with non-switching autoregressive coefficients but
a switching intercept. It can be seen that these four models, (5)-(8), are doing
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No Model RMSFE RMSFE1.half RMSFE2.half

1 VAR(GDP,cp)(2) 0.0186595 0.0142492 0.0222107
2 VAR(GDP,cp,nx)(2) 0.0198866 0.0169021 0.0224782

3 VAR(GDP,cp,imp)(2) 0.0175402 0.0154376 0.0194165
4 VAR(GDP,cp,m)(2) 0.0187341 0.0149037 0.0219047
5 MS(2)-AR(0)-c(s) 0.0289542 0.0165902 0.0374361
6 MS(2)-AR(3)(s)-c(ns) 0.0288561 0.0156118 0.0377043
7 MS(2)-AR(2)(s)-c(ns) 0.0284772 0.0164813 0.0367461
8 MS(2)-AR(2)(ns)-c(s) 0.0324838 0.0174618 0.0424910

9 MS(2)-ARDL(cp)(1,2)(s)-c(ns) 0.0176693 0.0127261 0.0215047
10 MS(2)-ARDL(cp,nx)(1,2,2)(s)-c(ns) 0.0182237 0.0156688 0.0204620
11 MS(2)-ARDL(cp,imp)(1,2,1)(s)-c(ns) 0.0182519 0.0146824 0.0212295
12 MS(2)-ARDL(cp,m)(2,2,2)(s)-c(ns) 0.0207493 0.0174545 0.0235882
13 MS(2)-ARDL(cp,nx)(2(s),{2,2}(ns)) 0.0175944 0.0144578 0.0202508
14 MS(2)-ARDL(cp,imp)(2(s),{2,2}(ns)) 0.0176390 0.0149478 0.0199708

Table 1: A comparison of one-period ahead pseudo real-time forecasting perfor-
mance from single-equation MS and VAR models with leading information on
once regularly differenced series in terms of RMSFE for the full sample, first
half of the sample and second half of the sample. The least RMSFE in each
sample space is framed.

No Model RMSFE RMSFE1.half RMSFE2.half

1 VAR(GDP,cp)(2) 0.0292156 0.0167268 0.0377798
2 VAR(GDP,cp,nx)(2) 0.0370149 0.0247806 0.0461100
3 VAR(GDP,cp,imp)(2) 0.0341238 0.0196662 0.0440694
4 VAR(GDP,cp,m)(2) 0.0299038 0.0171283 0.0386665
5 MS(2)-AR(0)-c(s) 0.0289542 0.0165902 0.0374361
6 MS(2)-AR(3)(s)-c(ns) 0.0328038 0.0186472 0.0424789

7 MS(2)-AR(2)(s)-c(ns) 0.0282835 0.0162663 0.0365420
8 MS(2)-AR(2)(ns)-c(s) 0.0366473 0.0181612 0.0485410
9 MS(2)-ARDL(cp)(2,2)(s)-c(ns) 0.0283754 0.0161356 0.0367419
10 MS(2)-ARDL(cp,nx)(2,2,2)(s)-c(ns) 0.0322806 0.0195304 0.0412630
11 MS(2)-ARDL(cp,imp)(2,2,2)(s)-c(ns) 0.0318800 0.0257724 0.0369926
12 MS(2)-ARDL(cp,m)(2,2,2)(s)-c(ns) 0.0287118 0.0168035 0.0369646
13 MS(2)-ARDL(cp,m)(2(s),{2,2}(ns)) 0.0309477 0.0169541 0.0403495

14 MS(2)-ARDL(cp,imp)(2(s),{2,1}(ns)) 0.0323059 0.0151246 0.0431113

Table 2: A comparison of one-period ahead pseudo real-time forecasting perfor-
mance from single-equation MS and VAR models without leading information
on once regularly differenced series in terms of RMSFE for the full sample, first
half of the sample and second half of the sample. The least RMSFE in each
sample space is framed.
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No Model RMSFE RMSFE1.half RMSFE2.half

1 VAR(GDP,cp)(3) 0.0208546 0.0189648 0.0226907
2 VAR(GDP,cp,nx)(3) 0.0224267 0.0219535 0.0229187

3 VAR(GDP,cp,imp)(3) 0.0208160 0.0205227 0.0211232

4 VAR(GDP,cp,m)(3) 0.0198595 0.0177855 0.0218484
5 MS(2)-AR(0)-c(s) 0.0331835 0.0264885 0.0390591
6 MS(2)-AR(3)(s)-c(ns) 0.0266697 0.0222837 0.0306497
7 MS(2)-AR(2)(s)-c(ns) 0.0290660 0.0237741 0.0337925
8 MS(2)-AR(2)(ns)-c(s) 0.0323721 0.0273066 0.0370021
9 MS(2)-ARDL(cp)(2,2)(s)-c(ns) 0.0252970 0.0200264 0.0298957
10 MS(2)-ARDL(cp)(3,3)(s)-c(ns) 0.0303869 0.0316822 0.0289470
11 MS(2)-ARDL(cp,nx)(2,2,1)(s)-c(ns) 0.0256729 0.0218496 0.0291915
12 MS(2)-ARDL(cp,imp)(2,2,1)(s)-c(ns) 0.0277238 0.0260182 0.0294278
13 MS(2)-ARDL(cp,m)(2,2,1)(s)-c(ns) 0.0275117 0.0248066 0.0301209
14 MS(2)-ARDL(cp,nx)(2(s),{2,1}(ns)) 0.0286470 0.0233144 0.0333926
15 MS(2)-ARDL(cp,m)(2(s),{2,2}(ns)) 0.0245432 0.0191248 0.0292193
16 MS(2)-ARDL(cp,nx)({3,3}(s),3(ns)) 0.0296731 0.0277234 0.0316133
17 MS(2)-ARDL(cp,imp)(3,3,3)(s)-c(ns) 0.0317678 0.0339501 0.0292714
18 MS(2)-ARDL(cp,m)(3,3,3)(s)-c(ns) 0.0330116 0.0335336 0.0324477

Table 3: A comparison of one-period ahead pseudo real-time forecasting perfor-
mance from single-equation MS and VAR models with leading information on
twice regularly differenced series in terms of RMSFE for the full sample, first
half of the sample and second half of the sample. The least RMSFE in each
sample space is framed.
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No Model RMSFE RMSFE1.half RMSFE2.half

1 VAR(GDP,cp)(3) 0.0283351 0.0251617 0.0313568
2 VAR(GDP,cp,nx)(3) 0.0374566 0.0377379 0.0371554
3 VAR(GDP,cp,imp)(3) 0.0351003 0.0318312 0.0382690
4 VAR(GDP,cp,m)(3) 0.0341215 0.0346078 0.0335972
5 MS(2)-AR(0)-c(s) 0.0331835 0.0264885 0.0390591
6 MS(2)-AR(3)(s)-c(ns) 0.0364793 0.0290636 0.0429787
7 MS(2)-AR(2)(s)-c(ns) 0.0289120 0.0233798 0.0338124
8 MS(2)-AR(2)(ns)-c(s) 0.0320115 0.0272778 0.0363722

9 MS(2)-ARDL(cp)(2,2)(s)-c(ns) 0.0291961 0.0228417 0.0346950
10 MS(2)-ARDL(cp,nx)(2,2,2)(s)-c(ns) 0.0339771 0.0292548 0.0383628
11 MS(2)-ARDL(cp,imp)(2,2,2)(s)-c(ns) 0.0317295 0.0266464 0.0363598
12 MS(2)-ARDL(cp,m)(2,2,2)(s)-c(ns) 0.0308232 0.0234447 0.0370879
13 MS(2)-ARDL(cp,m)(2(s),{2,2}(ns)) 0.0297117 0.0261638 0.0330669
14 MS(2)-ARDL(cp,imp)(2(s),{2,1}(ns)) 0.0313216 0.0245121 0.0372157

15 MS(2)-ARDL(cp)(3,3)(s)-c(ns) 0.0264927 0.0230135 0.0297469
16 MS(2)-ARDL(cp,nx)(3,3,2)(s)-c(ns) 0.0341934 0.0350868 0.0332178
17 MS(2)-ARDL(cp,imp)(3,3,3)(s)-c(ns) 0.0358542 0.0351741 0.0365629
18 MS(2)-ARDL(cp,m)(3,3,2)(s)-c(ns) 0.0281086 0.0238231 0.0320399

Table 4: A comparison of one-period ahead pseudo real-time forecasting perfor-
mance from single-equation MS and VAR models without leading information
on twice regularly differenced series in terms of RMSFE for the full sample, first
half of the sample and second half of the sample. The least RMSFE in each
sample space is framed.
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poorly in the second half of the sample, although are still competitive in the
first half of the sample. Next, consider four MS-ARDL models, (9)-(12), with
switching slope coefficients and a non-switching intercept. It can be seen that
model (9), which is a close counterpart to model (1), performs slightly better
than model (1) in terms of RMSFE in both halves of the sample. Similarly,
model (10), which is a close counterpart to model (2), performs slightly better
than the latter in all sample spaces. However, models (11) and (12) seem to
perform slightly worse than their VAR counterparts, (3) and (4), respectively.
Finally, models (13) and (14) exclude a constant and allow for switching co-
efficients for lagged GDP and cp, but fix other coefficients. One can see that
these two models perform well in both halves of the sample. To summarize
information in Table 1, the forecasting performance of the two model types is
similar, with the least RMSFE for the first half of the sample obtained by an
MS model, and the least RMSFE for the second half of the sample and the full
sample - by linear VAR.

Next, consider Table 2 that summarizes the forecasting performance of linear
VAR and single-equation MS models when no leading information is available.
As in the previous table, the first four models are VAR ones with different sets
of endogenous variables. Model (5) is the mean-variance model with a switch-
ing intercept being the only regressor. Regardless of the simplicity of model
(5), it shows a slightly better forecasting performance than any of the VAR
models considered in any sample space. Models (6) to (8) introduce non-zero
number of lags. It can be seen that introducing two lags of the dependent vari-
able and allowing slope coefficients to be regime-dependent, further improves
the forecasting performance of the MS-AR model for all sample spaces. Models
(9)-(12) are single-equation MS counterparts to the linear VAR models (1)-(4),
respectively. One can see that all four MS models perform better than the re-
spective VAR models for all sample spaces, except model (11) for the first half
of the sample. The results for models (13)-(14) show that allowing only the
coefficients for lagged dependent variable to switch does not improve the fore-
casting performance. To summarize Table 2, single-equation MS models tend
to perform slightly better than linear VAR models in terms of one-period ahead
forecasting performance on once regularly differenced series when no leading
information is available.

Following the result of Buss (2009) that, during a switch of the business cycle
phases, the short-term forecasting performance might improve if two, instead
of one, regular differencing is implemented, Tables 3 and 4 show results for
twice regularly differenced data. Table 3 summarizes a comparison of one-
period ahead pseudo real-time forecasting performance of single-equation MS
and linear VAR models with leading information on twice regularly differenced
series. One can see that the performance of MS models lags behind that of
VAR counterparts. Table 4 shows the results of single-equation MS and linear
VAR models without leading information on twice regularly differenced series.
Table 4 shows that, comparing the models with the same variables and lag
order, single-equation MS models (15)-(18) tend to give smaller RMSFE than
the corresponding linear VAR models for all sample spaces, except for model
(17) for the first half of the sample.

The results show that, if leading information is available, a second regular
differencing of the data does not seem to improve the forecasting precision during
a switch of the business cycle phases. However, if no leading information is used,
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the second regular differencing appears to improve forecasting precision, which
is in line with the results in Buss (2009), where no leading information was used.

4 Conclusions

To the best of our knowledge, this is the first publicly available paper that at-
tempts to evaluate short-term forecasting performance of MS models for Latvia’s
economy. This paper compares one-period ahead pseudo real-time forecasting
performance of single-equation MS models compared to linear VAR models with
and without leading information. The results show that when leading informa-
tion is available, the forecasting performance of single-equation MS models is
slightly worse than linear VAR models. On the contrary, if there is no leading
information at hand, MS models tend to perform somewhat better in terms of
one-period ahead forecasts than their linear VAR counterparts.

The results also show that if leading information is available, a second regular
differencing of the data does not appear to improve the forecasting precision
during a switch of the business cycle phases. However, if no leading information
is used, the second regular differencing appears to improve forecasting precision,
which is in line with the results in Buss (2009) where no leading information
was used.
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Appendix 1

The list of data used in the paper. All national accounts series are chain-priced as of 2000.

Series Definition Source

GDP Gross domestic product Central Statistical Bureau of Latvia
C Output in mining and quarrying industry Central Statistical Bureau of Latvia
D Output in manufacturing industry Central Statistical Bureau of Latvia
E Output in electricity, gas and water supply industry Central Statistical Bureau of Latvia
F Output in construction industry Central Statistical Bureau of Latvia
H Output in hotels and restaurants industry Central Statistical Bureau of Latvia
L Output in public administration and defense,

and compulsory social security industries Central Statistical Bureau of Latvia
D21 Taxes Central Statistical Bureau of Latvia
cp Sum of C,D,E,F,H,L, and D21 Derived by the author

exp Exports Central Statistical Bureau of Latvia
imp Imports Central Statistical Bureau of Latvia
nx Net exports, exp-imp Derived by the author
m Monetary aggregate M1, quarterly average Bank of Latvia
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