
Munich Personal RePEc Archive

On continuous ordinal potential games

Kukushkin, Nikolai S.

Russian Academy of Sciences, Dorodnicyn Computing Center

15 February 2010

Online at https://mpra.ub.uni-muenchen.de/20713/

MPRA Paper No. 20713, posted 16 Feb 2010 22:37 UTC



On continuous ordinal potential games

Nikolai S. Kukushkin∗

February 15, 2010

Abstract

If the preferences of the players in a strategic game satisfy certain continuity con-

ditions, then the acyclicity of individual improvements implies the existence of a Nash

equilibrium. Moreover, starting from any strategy profile, an arbitrary neighborhood

of the set of Nash equilibria can be reached after a finite number of individual im-

provements.

Key words: potential game; compact-continuous game; finite improvement prop-

erty.

1 Introduction

By definition, if a strategic game admits a generalized ordinal potential as defined by
Monderer and Shapley (1996) and that potential attains its maximum, then the game
possesses a Nash equilibrium. No doubt, this condition for equilibrium existence is not
very widely applicable; however, we are concerned with another weak point here. Unless
the game in question is finite, our second supposition is only remotely connected with the
basics – strategies and utilities. For instance, it is by no means clear whether a game with
continuous utilities should admit a continuous potential if it admits one.

Our main result sounds somewhat similar to the opening statement, but bypasses the
problem of (semi)continuity of potentials: If a compact-continuous game admits a general-
ized ordinal potential, then it possesses a Nash equilibrium.

To be more precise, we assume that each strategy set is a compact metric space, while
each utility function is upper semicontinuous in the total strategy profile and continuous in
the strategy profile of the partners/rivals; there is no finite individual improvement cycle
although a numeric potential is not nedeed. Finally, we obtain more than the mere exis-
tence of a Nash equilibrium: given an arbitrary strategy profile, there is a finite individual
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improvement path which starts at the profile and ends arbitrarily close to a Nash equilib-
rium. (Therefore, starting from any strategy profile, we can construct a finite or infinite
individual improvement path such that a Nash equilibrium is either on the path or among
its limit points.)

In Section 2 the basic definitions are given. Section 3 contains the formulation and
proof of the main result. A discussion of some related questions in Section 4 concludes the
paper.

2 Preliminaries

Our basic model is a strategic game with ordinal preferences. It is defined by a finite
set of players N , and strategy sets Xi and ordinal utility functions ui : XN → R, where
XN =

∏

i∈N Xi, for all i ∈ N . We denote X−i =
∏

j∈N\{i} Xj for each i ∈ N .

With every strategic game, we associate this individual improvement relation ⊲
Ind on

XN (i ∈ N , yN , xN ∈ XN):

yN ⊲
Ind
i xN ⇋ [y−i = x−i & ui(yN) > ui(xN)]; (1a)

yN ⊲
Ind xN ⇋ ∃i ∈ N [yN ⊲

Ind
i xN ]. (1b)

By definition, a Nash equilibrium is a maximizer of the relation ⊲
Ind on XN , i.e., a strategy

profile xN ∈ XN such that yN ⊲
Ind xN holds for no yN ∈ XN .

An individual improvement path is a (finite or infinite) sequence 〈xk
N〉k=0,1,... such that

xk+1
N ⊲

Ind xk
N whenever k ≥ 0 and xk+1

N is defined. Since we consider no other kind of
improvements, the adjective “individual” is dropped henceforth.

Following Monderer and Shapley (1996), we say that a strategic game Γ has the finite

improvement property (FIP) if it admits no infinite improvement path; then every improve-
ment path, if continued whenever possible, ends at a Nash equilibrium after a finite number
of steps. Γ has the weak FIP (Friedman and Mezzetti, 2001) if a Nash equilibrium can be
reached after a finite number of steps starting from any strategy profile.

The relation ⊲
Ind is acyclic if there is no finite improvement cycle, i.e., no improvement

path for which x0
N = xm

N with m > 0. For a finite game, the acyclicity of ⊲
Ind is equivalent

to the FIP, and equivalent to the existence of a generalized ordinal potential, i.e., a function
P : XN → R such that yN ⊲

Ind xN ⇒ P (yN) > P (xN) (Monderer and Shapley, 1996,
Lemma 2.5). When Γ need not be finite, either FIP or the existence of a generalized
ordinal potential still implies the acyclicity of ⊲

Ind, but is not implied by it (Voorneveld
and Norde, 1996, Example 4.1).
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3 Main Result

Henceforth, we assume that each Xi is a metric space with a distance di; then XN is also a
metric space with the distance d(xN , yN) = maxi∈N di(xi, yi). We say that Γ has the very

weak FIP if, for every strategy profile x0
N ∈ XN and ε > 0, there are a Nash equilibrium

yN ∈ XN and a finite improvement path x0
N , x1

N , . . . , xm
N such that d(xm

N , yN) < ε.

We assume that each ui is upper semicontinuous in xN and continuous in x−i; the
assumption has an immediate corollary for individual improvements:

∀i ∈ N ∀yN , xN ∈ XN

[

yN ⊲
Ind
i xN ⇒

∃δ ∈ R++

[

∀x′
N ∈ XN [d(xN , x′

N) < δ ⇒ (yi, x
′
−i) ⊲

Ind
i x′

N ]
]

]

. (2)

Actually, what is needed for our main result is just condition (2).

Theorem. Let each Xi in a strategic game Γ be compact; let ⊲
Ind satisfy condition (2) and

be acyclic. Then Γ has the very weak FIP.

Proof. Given x0
N ∈ XN , we denote Y ⊆ XN the set of strategy profiles that can be reached

from x0
N with finite improvement paths. Then we define Z = cl Y ; clearly, Z is compact.

We have to prove that Z contains a Nash equilibrium, i.e., a maximizer of ⊲
Ind on XN .

First, let us prove the existence of a maximizer of ⊲
Ind on Z. Supposing the contrary,

we fix yN(xN) ∈ Z and i(xN) ∈ N , for every xN ∈ Z, such that yN(xN) ⊲
Ind
i(xN ) xN , and

denote U(xN) the open ball around xN of radius δ from (2). We pick a finite set X∗ ⊆ Z
such that Z ⊆

⋃

xN∈X∗ U(xN), which is possible because Z is compact, and denote

J = {i(xN)}xN∈X∗ ; Y ∗
i = {yi(xN) | xN ∈ X∗ & i(xN) = i} (i ∈ J).

Now we recursively construct an infinite sequence 〈xk
N〉k∈N, starting with x0

N already
given. Having xk

N defined, we pick xN ∈ X∗ such that xk
N ∈ U(xN) and define xk+1

N =
(yi(xN )(xN), xk

−i(xN )). By (2), we have xk+1
N ⊲

Ind
i(xN ) xk

N . Therefore, 〈xk
N〉k∈N is an infinite

improvement path. We define K = {i ∈ N | ∀k ∈ N [xk
i = x0

i ]} and M = N \ K. The
way our path is constructed ensures that M ⊆ J , and xk

i ∈ Y ∗
i ∪ {x0

i } for every i ∈ M and
k ∈ N. We define Y ∗

M =
∏

i∈M Y ∗
i ; since X∗ is finite, Y ∗

M is finite too. Therefore, there must
be k 6= h such that xk

M = xh
M ; since xk

K = xh
K anyway, we have xk

N = xh
N , which contradicts

the supposed acyclicity of ⊲
Ind.

Finally, we pick a maximizer zN of ⊲
Ind on Z, and show that it is a Nash equilibrium,

i.e., a maximizer of ⊲
Ind on XN . Suppose the contrary: yN ⊲

Ind
i zN , where yN ∈ XN and

i ∈ N . By (2), there is δ > 0 such that (yi, x−i) ⊲
Ind
i xN whenever d(zN , xN) < δ. Given

ε > 0, there is a finite improvement path x0
N , x1

N , . . . , xm
N such that d(xm

N , zN) < min{δ, ε}.
We define xm+1

N = (yi, x
m
−i). Since x0

N , x1
N , . . . , xm

N , xm+1
N remains a finite improvement path,

xm+1
N ∈ Y . Since d(xm+1

N , yN) < ε and ε was arbitrary, we have yN ∈ Z, which contradicts
the choice of zN .
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4 Concluding remarks

4.1. The upper semicontinuity of ui in xN alone is not sufficient for our theorem to remain
valid, even under the existence of an ordinal potential rather than just acyclicity of ⊲

Ind

(Kukushkin, 1999, Example 2). [For the analysis there to be correct, “π(x) = 0” in the
definition of the ordinal potential should be replaced with “π(x) = −∞”; the infinity can
be avoided by the replacement of all other values of π with, say, their exponents.]

4.2. Given δ > 0, we may define a “very weak δ-potential” as a function P : XN → (−N)
satisfying this requirement: If xN ∈ XN has the property that, whenever d(x′

N , xN) < δ,
there is y′

N ∈ XN for which y′
N ⊲

Ind x′
N , then there is yN ∈ XN such that yN ⊲

Ind xN and
P (yN) > P (xN).

Proposition 1. A strategic game has the very weak FIP if and only if it admits a very

weak δ-potential for every δ > 0.

A straightforward modification of the proof of Proposition 6.2 in Kukushkin (2004)
is sufficient. There is no clear way to define a (numeric or not) “very weak potential”
independent of δ, obtaining a closer analog of said Proposition 6.2.

4.3. There is no counterexample to a conjecture that the assumptions of our theorem imply
the existence of a generalized ordinal potential as defined by Monderer and Shapley (1996).
In particular, the game constructed in the proof of Theorem 4.1 from Voorneveld (1997),
which satisfies our assumptions and has the very weak FIP, even admits an upper semicon-

tinuous generalized ordinal potential. If R as the strategy set of player 2 in Example 4.1
of Voorneveld and Norde (1996) is replaced with, say, a closed interval, the game will have
the weak FIP (even without “very”) although still admit no (numeric) generalized ordinal
potential; however, the game is not continuous.

4.4. Following Milchtaich (1996) and Kukushkin (2004), we may consider best response

improvement paths. However, our theorem cannot be extended that far.

Example 1. Let N = {1, 2} and X1 = X2 be circles in the plane with polar coordinates,
{(ρi, ϕi) | ρi = 1} (0 ≤ ϕi < 2π), while utility functions be u1(x1, x2) = − |ϕ1 − ϕ2| and
u2(x1, x2) = − |ϕ1 ⊕ ϕ0 − ϕ2|, where ⊕ denotes addition modulo 2π and ϕ0 is incommen-
surable with 2π. Both utility functions are continuous; best response improvements never
cycle. However, there is no Nash equilibrium, to say nothing of the very weak FIP.

4.5. When strategy spaces are (compact) metric spaces, improvement paths parameterized
with transfinite numbers suggest themselves strongly: if an infinite number of steps have
been made, a limit point is taken and, if the point is still not a maximizer (Nash equilib-
rium), the process continues further. Something is known about the behavior of such paths
under our continuity assumptions, but a good deal remains unclear. The whole topic is left
out here because it requires much heavier techniques.
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4.6. One may wonder whether the (very) weak FIP is implied by popular sufficient con-
ditions for the existence of a Nash equilibrium. The answer is “yes” for a finite game
with perfect information (Kukushkin, 2002, Theorem 3) or strategic complementarities
(Kukushkin et al. 2005, Theorem 1). On the other hand, the applicability of Tarski’s fixed
point theorem to the best responses does not, by itself, ensure the weak FIP even in a finite
two person game (Kukushkin et al., 2005, Example 1).

Let us show that the applicability of the Brouwer fixed point theorem also does not
ensure the very weak FIP even in a continuous two person game.

Example 2. Let N = {1, 2} and X1 = X2 be unit discs in the plane with polar coordinates,
{(ρ, ϕ) | 0 ≤ ρ ≤ 1}, while utility functions are defined with the following construction.
We define V (ρ1, ρ2) = min{ρ1, 4ρ2 − ρ1} and r(ρ) = min{2ρ, 1}. Then we pick functions
η′(ρ1, ρ2) and η′′(ϕ1, ϕ2) satisfying these requirements: η′(ρ1, ρ2) = 1 if ρ1 = r(ρ2), 0 <
η′(ρ1, ρ2) < 1 whenever 0 < |ρ1 − r(ρ2)| < min{ρ2, 1/3} and η′(ρ1, ρ2) = 0 otherwise;
η′′(ϕ1, ϕ2) = 1 if ϕ1 = ϕ2 and 0 ≤ η′′(ϕ1, ϕ2) < 1 otherwise. To be more precise, we
pick η′′ continuous everywhere, while η′ continuous on [0, 1]2 \ {(0, 0)}. We also pick ϕ0 ∈
]0, 2π[. Finally, we set u1((ρ1, ϕ1), (ρ2, ϕ2)) = V (ρ1, ρ2) + ρ2 · η′(ρ1, ρ2) · η′′(ϕ1, ϕ2) and
u2((ρ1, ϕ1), (ρ2, ϕ2)) = u1((ρ2, ϕ2), (ρ1, ϕ1 ⊕ ϕ0)), where ⊕ denotes addition modulo 2π.

Both utility functions are continuous; the symmetry allows us to restrict attention to the
viewpoint of player 1. Given x2 = (ρ2, ϕ2), both V and η′ are maximized when ρ1 = r(ρ2); if
ρ2 > 0, η′′ is maximized when ϕ1 = ϕ2. Thus, the unique best response is x1 = (r(ρ2), ϕ2).
Similarly, the unique best response to x1 = (ρ1, ϕ1) is x2 = (r(ρ1), ϕ1 ⊕ϕ0). Therefore, the
existence of a Nash equilibrium is ensured by the Brouwer theorem; indeed, the origin is a
unique equilibrium.

Suppose that ρ2 ≥ 1/3. Then u1((ρ1, ϕ1), (ρ2, ϕ2)) ≥ V (ρ1, ρ2) ≥ 1/3 whenever ρ1 ≥
1/3. Meanwhile, if ρ1 < 1/3, then V (ρ1, ρ2) < 1/3 whereas ρ1 < r(ρ2) − 1/3, hence
η′(ρ1, ρ2) = 0; thus, u1((ρ1, ϕ1), (ρ2, ϕ2)) = V (ρ1, ρ2) < 1/3. We see that any improvement
path starting in the region where ρi ≥ 1/3 for both i remains in the region forever, hence
never reaches, nor even approaches, a Nash equilibrium. It may be noted that the players
have no reason to regret this failure because their utility levels at the equilibrium are 〈0, 0〉.

4.7. Our approach is purely ordinal to the extent that the preferences of the players can
be described with binary relations ≻i rather than utility functions ui. It is enough to
replace ui(yN) > ui(xN) in (1a) with yN ≻i xN . Neither upper semicontinuity in xN , nor
continuity in x−i need make any sense now; however, condition (2) remains a meaningful
“quasi-continuity” assumption. The theorem remains valid; no modification of the proof is
needed. We do not even need any a priori restriction on the preference relations such as
transitivity, acyclicity, etc.

Under this broad interpretation of “preferences,” a maximizer of any binary relation can
be seen as a Nash equilibrium in a game with one player. (2) then becomes the “open lower
contours” assumption, and our theorem implies the main result of Walker (1977). (To be
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more precise, Walker did not have to assume that the topology is defined with a distance;
here, we need some uniform structure at least.) If there are two (or more) non-dummy
players, (2) does not imply open lower contours of ⊲

Ind, so our theorem does not follow
from Walker’s.
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