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Abstract

We study what useful implications strategic complementarity or substitutability
may have when the indifference relation(s) need not be transitive. Two results are
obtained about the existence of a monotone selection from the best response corre-
spondence when both strategies and parameters form chains. Two more results are
obtained about the existence of a Nash equilibrium in games with strategic comple-
mentarities where strategy sets are chains, but monotone selections from the best
response correspondences need not exist. JEL Classification Numbers: C 72; D 11.
Key words: Strong acyclicity; interval order; single crossing; monotone selection;
Nash equilibrium

1 Introduction

The standard way to describe preferences of the players in game theory – with utility
functions – looks severely restrictive when compared with what is available in choice theory
(Fishburn, 1973; Sen, 1984; Aizerman and Aleskerov, 1995). The desirability of bridging the
gap has been recognized since, at the latest, Aumann (1962). However, familiar approaches
quite often do not work in a broader context, or have to be modified substantially.

This paper strives to find out what equilibrium existence results could be derived from
strategic complementarity or substitutability when the preferences are defined by binary
relations such that incomparability need not be transitive. The study of games with strate-
gic complementarities was started in a cardinal framework, “supermodular games” (Topkis,
1979, 1998; Veinott, 1989; Vives, 1990; Milgrom and Roberts, 1990). Milgrom and Shan-
non (1994) developed a purely ordinal version, but their approach only works when the
preferences of each player are described with an ordering (i.e., indifference is transitive).
If a broader class of preference relations is allowed, the whole edifice collapses.
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There is a very simple reason to look beyond orderings. Suppose the utility function
is bounded above, but need not attain a maximum; then ε-optimization suggests itself
strongly, and this means allowing intransitive indifference. To the best of my knowledge,
the previous literature contains no existence result for ε-Nash equilibria in games with
strategic complementarity (to say nothing of strategic substitutability) where the existence
of the best responses is not guaranteed. “Multi-criteria optimization” may be mentioned
as another source of similar (in a sense, even worse) problems.

The main point of this paper is that something can be obtained even in such situations.
One “only” has to apply roundabout techniques and reconcile oneself to less impressive
results.

Theorems 2 and 3 establish the existence of a monotone selection from the best response
correspondence when both available choices and parameters form chains. Proposition 3.1
about the existence of an ε-Nash equilibrium in games with strategic complements or sub-
stitutes and an appropriate aggregation easily follows. It should be noted that every equi-
librium existence result in the literature on games with decreasing best responses hinges on
the presence of scalar aggregation in the utilities and the availability of monotone selections
(Novshek, 1985; Kukushkin, 1994, 2003, 2004, 2007; Dubey et al., 2006).

No aggregation in the utilities is needed for the existence of a Nash equilibrium in the
standard theory of games with strategic complementarities. Theorems 4 and 5 show the
fact to hold in a more general setting; only transitivity of strict preference is required. In
particular, both theorems may work in the absence of monotone selections. Unfortunately,
we still have to assume that every strategy set is a chain although there is no counterexample
with multi-dimensional strategies.

Section 2 introduces conditions on preferences that ensure the existence of optimal
choices and some weak analogs of the “revealed preference” property. Section 3 contains
two theorems on the existence of monotone selections; Section 4, two theorems on the
existence of a Nash equilibrium in the absence of monotone selections. More complicated
proofs are deferred to Section 5.

2 Preferences and choice

Let the preferences of an agent over alternatives from a set X be described by a binary
relation ≻. For every Y ⊆ X, we denote

M(Y,≻) := {x ∈ Y | ∄ y ∈ Y [y ≻ x]}, (1)

the set of “optimal,” or rather acceptable, choices from Y .

A strict order is an irreflexive and transitive binary relation. An ordering is a negatively
transitive strict order: z 6≻ y 6≻ x ⇒ z 6≻ x. Actually, ≻ is an ordering if and only if there
are a chain L and a mapping u : A → L such that, for all x, y ∈ A,

y ≻ x ⇐⇒ u(y) > u(x).
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There is no big difference between preferences described by orderings and (ordinal) utility
functions. What is needed to obtain the usual connections (Milgrom and Shannon, 1994)
between properties such as single crossing or quasisupermodularity, on one hand, and the
monotonicity of optima on the other, is this, “revealed preference,” property:

∀x, y ∈ X [x /∈ M(X,≻) ∋ y ⇒ y ≻ x]. (2)

As is well known, (2) always holds for an ordering ≻. Moreover, if it holds on every finite
subset of X, then ≻ must be an ordering.

Here we rely on properties weaker than (2). A binary relation ≻ has the NM-property
on a subset Y ⊆ X if

∀x ∈ Y \ M(Y,≻)∃y ∈ M(Y,≻) [y ≻ x]. (3)

≻ has the strong NM-property on a subset Y ⊆ X if

∀{x0, . . . , xm} ⊆ Y \ M(Y,≻)∃y ∈ M(Y,≻) ∀k ∈ {0, . . . , m} [y ≻ xk]. (4)

Roughly speaking, the strong NM-property (plus single crossing) ensures the existence of
a monotone selection from the best response correspondence, while the NM-property (plus
single crossing) ensures the existence of a Nash equilibrium.

A strict order ≻ is called an interval order if it satisfies the condition

∀x, y, a, b ∈ X
[

[y ≻ x & a ≻ b] ⇒ [y ≻ b or a ≻ x]
]

. (5)

≻ is an interval order if and only if there are a chain L and two mappings u+, u− : A → L
such that, for all x, y ∈ A,

u+(x) ≥ u−(x); y ≻ x ⇐⇒ u−(y) > u+(x).

A relation ≻ is strongly acyclic if there exists no infinite improvement path, i.e., no
sequence 〈xk〉k∈N such that xk+1 ≻ xk for all k. As an example, let u : X → R be bounded
above and ε > 0; let the preference relation be

y ≻ x ⇋ u(y) > u(x) + ε. (6)

It is easily seen that ≻ is a strongly acyclic interval order (actually, a semiorder). M(Y,≻)
consists of all ε-maxima of u on Y .

Routine proofs of the two following statements are given for completeness.

Proposition 2.1. Let ≻ be a binary relation on a set X. Then ≻ has the NM-property on
every nonempty subset Y ⊆ X if and only if it is strongly acyclic and transitive.

Proof. To prove the sufficiency, we assume x∗ ∈ Y \ M(Y,≻). There is y1 ∈ Y such that
y1 ≻ x∗. If y1 ∈ M(Y,≻), we are home; otherwise, there is y2 ∈ Y such that y2 ≻ y1 ≻ x∗.
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Iterating this argument, we obtain an improvement path x∗, y1, y2, . . . Since ≻ is strongly
acyclic, the path ends, at some stage, with ym ∈ M(Y,≻). Since ≻ is transitive, we have
ym ≻ x∗.

Conversely, if ≻ admits an infinite improvement path 〈xk〉k∈N, then M({xk}k∈N,≻) = ∅.
If z ≻ y ≻ x, but z 6≻ x, then M({x, y, z},≻) = {z}, hence (3) does not hold for Y =
{x, y, z} and x∗ = x.

Proposition 2.2. Let ≻ be a binary relation on a set X. Then ≻ has the strong NM-prop-
erty on every nonempty subset Y ⊆ X if and only if it is a strongly acyclic interval order.

Proof. To prove the sufficiency, we assume {x0, . . . , xm} ⊆ Y \ M(Y,≻). When m = 0,
we just invoke Proposition 2.1. Then we argue by induction. For m > 0, the induction
hypothesis implies the existence of y′ ∈ M(Y,≻) such that y′ ≻ xk for each k = 0, . . . , m−1;
we also have y′′ ∈ M(Y,≻) such that y′′ ≻ xm. For each k = 0, . . . , m − 1, we apply (5) to
xk, y′, y′′, xm, obtaining that either y′ ≻ xm or y′′ ≻ xk for each k = 0, . . . , m− 1. In either
case, we are home.

Conversely, if (5) does not hold, we have M({x, y, a, b},≻) = {y, a}, hence (4) does not
hold for Y = {x, y, a, b} and {x, b} ⊆ Y \ M(Y,≻).

Remark. Strong acyclicity alone is necessary and sufficient for the property that
M(Y,≻) 6= ∅ whenever X ⊇ Y 6= ∅.

Various versions of compactness-continuity may be substituted for strong acyclicity. We
consider just one of them, expressed in terms of order rather than topology.

A set with a given strict order is called a partially ordered set (poset); when the order
is total, i.e., every two different points are comparable, the poset is called a chain. A chain
X is complete if the least upper bound sup Y and the greatest lower bound inf Y exist in
X for every subset Y ⊆ X. A subset Y of a complete chain X is subcomplete if sup Z ∈ Y
and inf Z ∈ Y for every nonempty subset Z ⊆ Y .

Assuming X a complete chain, we introduce a very weak version of upper semicontinuity:

∀Y ⊆ X
[

∀y, x ∈ Y [y > x ⇒ y ≻ x] ⇒ ∀x ∈ Y \ {sup Y } [sup Y ≻ x]
]

; (7a)

∀Y ⊆ X
[

∀y, x ∈ Y [x > y ⇒ y ≻ x] ⇒ ∀x ∈ Y \ {inf Y } [inf Y ≻ x]
]

. (7b)

Remark. Every strongly acyclic relation trivially satisfies (7): whenever either “left hand
side” condition is applicable to Y ⊆ X, there holds sup Y ∈ Y or inf Y ∈ Y , respectively.

Theorem 1. Let ≻ be a binary relation on a complete chain X. Then ≻ has the NM-prop-
erty on every subcomplete subset Y ⊆ X if and only if it is a strict order satisfying both
conditions (7).

The proof is deferred to Subsection 5.1.
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Remark. There is an obvious, if vague, analogy to Theorem 1 of Kukushkin (2008); condi-
tions (7) are similar to “ω-transitivity” there. The analogy could be extended by noticing
that conditions (7) are also necessary for just the nonemptyness of M(Y,≻) for subcomplete
Y ⊆ X if ≻ is a semiorder, cf. Theorem 4.1 of Smith (1974) and Theorem 4 of Kukushkin
(2008), but not otherwise; see Example 3 of Kukushkin (2008), where an interval order on
a closed interval admits a maximizer on every compact (i.e., subcomplete) subset, but does
not satisfy (7a).

Proposition 2.3. Let ≻ be a binary relation on a complete chain X. Then ≻ has the
strong NM-property on every subcomplete subset Y ⊆ X if and only if it is an interval
order satisfying both conditions (7).

The sufficiency is proven with a reference to Theorem 1 combined with the same ar-
gument as in the proof of Proposition 2.2. The necessity for ≻ to be an interval order is
proven in the same way as in Proposition 2.2; the necessity of conditions (7) immediately
follows from Theorem 1.

3 Monotone selections

We consider a parametric family 〈≻s〉s∈S of binary relations on X; the parameter s reflects
outside influences (e.g., the choice(s) of other agent(s) ). To simplify notations, we define
the best response correspondence:

R(s) := M(X,≻s). (8)

Henceforth, we always assume X and S to be posets (most often, just chains). A
mapping r : S → X is increasing if r(s′′) ≥ r(s′) whenever s′, s′′ ∈ S and s′′ ≥ s′. A
monotone selection from R is an increasing mapping r : S → X such that r(s) ∈ R(s) for
every s ∈ S.

A parametric family 〈≻s〉s∈S has the single crossing property if these conditions hold:

∀x, y ∈ X ∀s, s′ ∈ S
[

[s′ > s & y ≻s x & y > x] ⇒ y ≻s′ x
]

; (9a)

∀x, y ∈ X ∀s, s′ ∈ S
[

[s′ > s & y ≻s′ x & y < x] ⇒ y ≻s x
]

. (9b)

This definition is equivalent to Milgrom and Shannon’s (1994) if every ≻s is an ordering
represented by a numeric function.

For a family of preference relations defined by ε-optimization (6) with a parameter
s in the function, both conditions (9) hold if u(x, s) satisfies Topkis’s (1979) increasing
differences condition:

∀x, y ∈ X ∀s, s′ ∈ S
[

[s′ ≥ s & y ≥ x] ⇒ u(y, s′) − u(x, s′) ≥ u(y, s) − u(x, s)
]

. (10)

When X and S are chains, the property is equivalent to the supermodularity of u (as a
function on the lattice X × S).
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Theorem 2. Let X and S be chains. Let a parametric family 〈≻s〉s∈S of strongly acyclic
relations on X satisfy single crossing conditions (9). Let every ≻s (s ∈ S) have the strong
NM-property on X. Then there exists a monotone selection from R on S.

The proof is deferred to Subsection 5.2.

Corollary. Let X and S be chains. Let a parametric family 〈≻s〉s∈S of strongly acyclic
interval orders on X satisfy single crossing conditions (9). Then there exists a monotone
selection from R on S.

Remark. The result is rather close to Theorem 3 from Kukushkin (2009). The existence
of both min S and max S was assumed there, and the existence of a monotone selection r
with a finite r(S) was established. The finiteness statement need not hold here.

An application of Theorem 5 from Kukushkin (2007) to monotone selections from ε-best
response correspondences existing by Theorem 2 immediately gives us this result.

Proposition 3.1. Let Γ be a strategic game with a compact strategy set Xi ⊂ R for each i ∈
N . Let each utility function be ui(xN) = Ui(xi,

∑

j 6=i aijxj), where aij = aji ∈ R whenever
j 6= i. Let each Ui(·, s) be bounded above and let the increasing differences condition (10)
be satisfied by each Ui(x, s). Then Γ possesses an ε-Nash equilibrium for every ε > 0.

Remark. When aij ≥ 0 for all j 6= i, we have a game with strategic complementarity;
when aij ≤ 0 for all j 6= i, a game with strategic substitutability. A more general situation
with coefficients of both signs is also possible. The linear aggregate of the choices of other
players can be replaced with a polylinear combination (Kukushkin, 2007, Theorem 5), or
the (minus) minimum/maximum of them (Kukushkin, 2003, Theorems 7 and 8).

Without the strong NM-property, Theorem 2 becomes wrong even for finite sets X
and S (Kukushkin, 2009, Example 4.3). Under the assumption that every ≻s has the
NM-property on X, Theorem 2 fails in full generality (Kukushkin, 2009, Example 4.4), but
is valid for finite X or S.

Proposition 3.2. Let X and S be chains, and S be finite. Let a parametric family 〈≻s〉s∈S

of binary relations on X satisfy (9a). Let every ≻s (s ∈ S) have the NM-property on X.
Then there exists a monotone selection from R on S.

Proof. We start with s+ := max S and pick r(s+) ∈ R(s+) arbitrarily. Then we move along
S downwards, denoting s+1 the point in S immediately above s. If r(s+1) ∈ R(s), we set
r(s) := r(s + 1); otherwise, we invoke (3) and pick r(s) ∈ R(s) such that r(s) ≻s r(s + 1).
The inequality r(s) > r(s + 1) would, by (9a), imply r(s) ≻s+1 r(s + 1), contradicting the
induction hypothesis; therefore, r(s) ≤ r(s + 1) for all s ∈ S.

Proposition 3.3. Let X and S be chains, and X be finite. Let a parametric family 〈≻s〉s∈S

of binary relations on X satisfy (9a). Let every ≻s (s ∈ S) have the NM-property on X.
Then there exists a monotone selection from R on S.
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Proof. For every s ∈ S, we set r(s) := minR(s). The inequalities s′ > s and r(s) > r(s′)
would imply r(s′) /∈ R(s), hence R(s) ∋ y ≻s r(s′) by (3). By the definition of r(s), we
have y ≥ r(s) > r(s′), hence y ≻s′ r(s′) by (9a), contradicting the definition of r(s′).

Remark. Obviously, (9a) can be replaced with (9b) in both propositions.

The replacement of both conditions (9) with one of them in Propositions 3.3 and 3.2
comes at a cost. As is easily seen from the proof, the statement of Theorem 2 can be
strengthened: whenever s0 ∈ S and x0 ∈ R(s0), there is a monotone selection r from R
such that r(s0) = x0. Example 3.4 shows this statement wrong without both conditions
(9), even when both S and X are finite and all ≻s are orderings. However, it becomes valid
again if we add (9b) to the assumptions of Proposition 3.3 or 3.2; a routine modification
of the proofs is omitted.

Example 3.4. Let X := {0, 1}, S := {0, 1} (both with natural orders), and relations
≻s be defined by 0 ≻1 1; condition (9a) holds by default while (9b) does not. We have
R(0) = {0, 1} and R(1) = {0}, so there is no monotone selection with r(0) = 1.

Theorem 3. Let X and S be chains, and X be complete. Let a parametric family 〈≻s〉s∈S of
transitive binary relations on X satisfy single crossing conditions (9). Let every ≻s satisfy
both conditions (7) and have the strong NM-property on X. Then there exists a monotone
selection from R on S.

The proof is deferred to Subsection 5.3.

4 Nash equilibrium without monotone selections

Let us consider a modification of the standard notion of a strategic game. There is a finite
set N of players and a poset Xi of strategies for each i ∈ N . We denote XN :=

∏

i∈N Xi and
X−i :=

∏

j 6=i Xj; both are posets with the Cartesian product of the orders on components.

Each player i’s preferences are described by a parametric family of binary relations ≻x−i

i

(x−i ∈ X−i) on Xi; the player’s best response correspondence Ri is defined by (8) with
S := X−i. A Nash equilibrium is xN ∈ XN such that xi ∈ Ri(x−i) for each i ∈ N .

Remark. When each player’s preferences are defined with a utility function ui(xN), our
definition of a Nash equilibrium is equivalent to the standard one. It may be worthwhile to
note that the question of, say, (in)efficiency of equilibria makes no sense in our framework.
Assuming that the preferences are defined in the style of (6), our definition transforms into
that of an ε-Nash equilibrium.

Theorem 4. Let Γ be a strategic game where each Xi is a chain such that both min Xi and
max Xi exist. Let the parametric family of preference relations of each player satisfy both
conditions (9). Let every relation ≻x−i

i be strongly acyclic and have the NM-property on X.
Then Γ possesses a Nash equilibrium.
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The proof is deferred to Subsection 5.4.

Remark. This result slightly strengthens Theorem 4 of Kukushkin (2009), where the com-
pleteness of each Xi was assumed. The proof goes along the same lines, following Algo-
rithm II of Topkis (1979).

Example 4.1. Let N := {1, 2}, X1 := X2 :=]0, 1] (with the natural order); let preferences
of the players be defined by (6) with utility functions u1(x1, x2) := − |2x1 − x2| /x2 and
u2(x1, x2) := − |x1 − x2| /x1, and ε ∈]0, (3 −

√
5)/2[. All assumptions of Theorem 4 (or

Theorem 5 for that matter) are satisfied except for the existence of min Xi; single crossing
conditions (9) hold because both utility functions are supermodular. There is no (ε-)Nash
equilibrium: x2 > (1 − ε)x1 whenever x2 ∈ R2(x1), while x1 > (2 − ε)x2 whenever x1 ∈
R1(x2); therefore, there should hold x2 > (1 − ε)(2 − ε)x2 > x2 at any equilibrium.

Theorem 5. Let Γ be a strategic game where each Xi is a complete chain. Let the para-
metric family of preference relations of each player satisfy both conditions (9). Let every
relation ≻x−i

i be a strict order satisfying both conditions (7). Then Γ possesses a Nash
equilibrium.

The proof is deferred to Subsection 5.5.

Example 4.4 of Kukushkin (2009) shows that the assumptions of Theorems 4 or 5 do
not ensure the existence of monotone selections from the best response correspondences.
Both theorems become just wrong without NM-property, even for finite sets Xi.

Example 4.2. Let N := {1, 2}, X1 := {0, 1, 2, 3, 4} and X2 := {5, 6} (both with natural
orders); let preference relations ≻x−i

i be defined by: 2 ≻5
1 4 ≻5

1 0 ≻5
1 1 ≻5

1 3; 1 ≻6
1 3 ≻6

1 2 ≻6
1

4 ≻6
1 0; 5 ≻x1

2 6 whenever x1 ≤ 1; 6 ≻x1

2 5 whenever x1 ≥ 2. The preferences of player 1 are
intransitive, but single crossing conditions (9) are easy to check: (9a) is nontrivial only for
4 ≻5

1 0; (9b), only for 1 ≻6
1 3 and 2 ≻6

1 4. Player 2’s preferences are described by a family of
total orders; (9) are obvious. There is no Nash equilibrium: R1(5) = {2} and R1(6) = {1},
whereas R2(2) = {6} and R2(1) = {5}.

The assumption that each Xi is a chain is essential for the current proof of either
theorem; whether it is necessary for the validity of the theorems themselves remains unclear.

Remark. For games with strategic substitutes and preferences “less rational” than assumed
in Theorems 2 and 3, e.g., where each player may keep in mind several objectives, there
is neither equilibrium existence result, nor an example of non-existence (in the presence of
an appropriate aggregation as, say, in Proposition 3.1).
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5 Proofs

5.1 Proof of Theorem 1

We consider two auxiliary strict orders:

y ≻
> x ⇋ [y ≻ x & y > x];

y ≻
< x ⇋ [y ≻ x & y < x].

Lemma 5.1.1. Let X be a complete chain and ≻ be a strict order on X satisfying (7a).
Then ≻

> has the NM-property on X.

Proof. Having x∗ ∈ X \ M(X, ≻
> ), we denote X∗ := {x ∈ X | x ≻

> x∗} and show that
Zorn’s Lemma is applicable to ≻

> on X∗. Indeed, whenever Y ⊆ X∗ is a chain w.r.t. ≻
> ,

sup Y (existing because X is complete) is an upper (w.r.t. ≻
> ) bound of Y by (7a). Finally,

we have ∅ 6= M(X∗, ≻
> ) ⊆ M(X, ≻

> ) because ≻
> is transitive.

Lemma 5.1.2. Let X be a complete chain and ≻ be a strict order on X satisfying (7b).
Then ≻

< has the NM-property on X.

The proof is dual to that of Lemma 5.1.1.

To prove the sufficiency part of the theorem, we assume x∗ ∈ Y \ M(Y,≻) and denote
Y ∗ := {x ∈ M(Y, ≻

< ) | x ≻ x∗ or x = x∗}; Y ∗ 6= ∅ by Lemma 5.1.2. Invoking Zorn’s
Lemma, let us show M(Y ∗, ≻

> ) 6= ∅. Assuming Z ⊆ Y ∗ a chain w.r.t. ≻
> , we denote

x∞ := sup Z. Clearly, x∞ ≻
> x for all x ∈ Z \ {x∞} by (7a), hence x∞ ≻ x∗ unless

Z = {x∞} = {x∗}. Therefore, once we show that x∞ ∈ M(Y, ≻
< ), we have an upper bound

for Z in Y ∗, hence Zorn’s Lemma applies indeed. Supposing the contrary, y ≻
< x∞, we

would have y ≻
< x for some x ∈ Z ⊆ M(Y, ≻

< ): a contradiction.

Now let y∗ ∈ M(Y ∗, ≻
> ); by definition, y∗ ≻ x∗ or y∗ = x∗. If y∗ ∈ M(Y,≻), we are

home. Supposing the contrary, x ≻ y∗ for some x ∈ Y , we immediately see that x ≻ x∗ as
well and x > y∗ because y∗ ∈ M(Y, ≻

< ). By Lemma 5.1.2, there is y ∈ M(Y, ≻
< ) such that

y ≻ y∗ [either y = x ∈ M(Y, ≻
< ) or y ≻

< x], hence y ∈ Y ∗. Since y∗ ∈ M(Y, ≻
< ), we must

have y > y∗, but then y ≻
> y∗, contradicting the choice of y∗.

Let us turn to the necessity. First, ≻ is a strict order for the same way as in Proposi-
tion 2.1.

Let the “left hand side” condition in (7a) be satisfied for Y ⊆ X. If sup Y ∈ Y , there
is nothing to prove; suppose sup Y /∈ Y , hence for every y ∈ Y there is y′ ∈ Y such that
y′ > y. Let ∆ be a well ordered set of a cardinality greater than that of Y . Picking λ(0) ∈ Y
arbitrarily, we define a mapping λ : ∆ → X by (transfinite) recursion. Whenever λ(α) is
defined and λ(α) ∈ Y , we pick λ(α+1) ∈ Y such that λ(α+1) > λ(α); if λ(α) /∈ Y , we set
λ(α + 1) := λ(α). Whenever α is a limit ordinal and λ(β) is defined for all β < α, we set
λ(α) := sup{λ(β)}β<α. Since λ(α + 1) > λ(α) whenever λ(α) ∈ Y , while the cardinality of
∆ is greater than that of Y , there must be ᾱ ∈ ∆ such that λ(ᾱ) = sup Y [= λ(α) for all
α > ᾱ ]. We define Y ∗ := {λ(α)}α∈∆.
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Given a nonempty subset Z ⊆ Y ∗, we denote B := {α ∈ ∆ | λ(α) ∈ Z}, β− := min B,
and β+ := min{α ∈ ∆ | ∀β ∈ B [λ(α) ≥ λ(β)]} [≤ ᾱ]. Clearly, λ(β−) = min Z while
Y ∗ ∋ λ(β+) = sup Z. Therefore, Y ∗ is subcomplete in X.

Since λ(α + 1) ≻ λ(α) for every α < ᾱ, we have λ(α) /∈ M(Y ∗,≻) for every α < ᾱ.
Thus, (3) for Y ∗ implies that M(Y ∗,≻) = {λ(ᾱ)} [= {sup Y ∗}] and λ(ᾱ) ≻ λ(α) for every
α < ᾱ.

The necessity of (7b) is proven dually.

5.2 Proof of Theorem 2

A subset S ′ ⊆ S is an interval if s ∈ S ′ whenever s′ < s < s′′ and s′, s′′ ∈ S ′. The
intersection of any number of intervals is an interval too. Let S be a chain, S ′ ⊆ S be an
interval, and s ∈ S \ S ′; then either s > s′ for all s′ ∈ S ′, or s′ > s for all s′ ∈ S ′. We write
s > S ′ in the first case, and s < S ′ in the second.

Lemma 5.2.1. Let a parametric family 〈≻s〉s∈S of binary relations on a chain X satisfy both
conditions (9). Let every ≻s have the NM-property on X. Then the set {s ∈ S | x ∈ R(s)},
for every x ∈ X, is an interval.

Proof. Suppose the contrary: s′ < s < s′′ and x ∈ R(s′)∩R(s′′), but x /∈ R(s). By (3), we
can pick x∗ ∈ R(s) such that x∗ ≻s x. If x∗ > x, we have x∗ ≻s′′ x by (9a), contradicting the
assumed x ∈ R(s′′). If x∗ < x, we have x∗ ≻s′ x by (9b) with the same contradiction.

The key role is played by the following recursive definition of sequences xk ∈ X, sk ∈ S,
Sk ⊆ S, and ϑk ∈ {−1, 1} (k ∈ N) such that, in particular,

sk ∈ Sk; (11a)

Sk is an interval; (11b)

∀s ∈ Sk
[

xk ∈ R(s)
]

; (11c)

∀m < k
[

Sk ∩ Sm = ∅
]

; (11d)

∀s ∈ S
[

[xk ∈ R(s) & s < Sk] ⇒ ∃m < k [s ∈ Sm or s < sm < sk]
]

; (11e)

∀s ∈ S
[

[xk ∈ R(s) & s > Sk] ⇒ ∃m < k [s ∈ Sm or s > sm > sk]
]

; (11f)

∀m < k
[

[sk < sm ⇒ xk < xm] & [sk > sm ⇒ xk > xm]
]

; (11g)

∀m < k
[

xk ≻sk

xm or xm ∈ R(sk)
]

. (11h)

We start with an arbitrary s0 ∈ S, pick x0 ∈ R(s0), and set S0 := {s ∈ S | x0 ∈ R(s)}
and ϑ0 := 1. Now (11a), (11c), (11e) and (11f) for k = 0 immediately follow from the
definitions; (11b), from Lemma 5.2.1; (11d), (11g), and (11h) hold by default.

Let k ∈ N\{0}, and let xm, sm, Sm satisfying (11) have been defined for all m < k. We
define Σk :=

⋃

m<k Sm. For every s ∈ Σk, there is a unique, by (11d), µ(s) < k such that
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s ∈ Sµ(s). By (11c), r(s) := xµ(s) is a selection from R on Σk. The conditions (11b) and
(11g) imply that r is increasing. If Σk = S, then we already have a monotone selection, so
we stop the process.

Otherwise, we proceed in accordance with the following rules. First, we look for s ∈
S \Σk such that both K−

k (s) := {m < k | sm < s} and K+
k (s) := {m < k | sm > s} are not

empty; if successful, we pick one of them as sk and set ϑk := ϑk−1. Otherwise, i.e., if Σk

is an interval, we set ϑk := −ϑk−1. Then, if ϑk−1 = −1, we first look for sk ∈ S \ Σk such
that K−

k (sk) = ∅; if ϑk−1 = 1, we first look for sk ∈ S \ Σk such that K+
k (sk) = ∅. If the

search is unsuccessful in either case, we pick sk ∈ S \ Σk arbitrarily.

We denote K∗ := {m < k | xm /∈ R(sk)}, m− := argmaxm∈K−
k

(sk) sm, m+ :=

argminm∈K+

k
(sk) sm, and I := [sm−

, sm+

]. If one of K±
k (sk) is empty, the respective m±

is left undefined, in which case I := {s ∈ S | sm−

< s} or I := {s ∈ S | s < sm+}. By (4),
we can pick xk ∈ R(sk) such that xk ≻sk

xm for each m ∈ K∗, hence (11h) holds. Finally,
we define Sk := {s ∈ S \ Σk | xk ∈ R(s)} ∩ I. Now the conditions (11a), (11c), and (11d)
immediately follow from the definitions; (11b), (11e) and (11f), from Lemma 5.2.1.

Checking (11g) needs a bit more effort. If we assume that xm− ∈ R(sk), then the
condition (11e) for m− and sk implies the existence of m < m− such that sm−

< sm < sk,
contradicting the definition of m−; therefore, m− ∈ K∗, hence xk ≻sk

xm−

by the choice

of xk. If xk < xm−

then xk ≻sm
−

xm−

by (9b), contradicting (11c) for m−. Therefore,
xk > xm− ≥ xm for all m ∈ K−

k (sk). A dual argument shows that xk < xm+ ≤ xm for all
m ∈ K+

k (sk). Thus, (11g) holds.

To summarize, either we obtain a monotone selection on some step, or our sequences
are defined [and satisfy (11)] for all k ∈ N.

Lemma 5.2.2. Let there be a sequence 〈kn〉n∈N such that kn+1 > kn and skn+1 > skn for
all n ∈ N; then there is no s ∈ S such that s ≥ skn for all n ∈ N.

Proof. We denote H := {h ∈ N | ∃n ∈ N [sh < skn ]} ⊇ {kn}n∈N and recursively define a
sequence 〈κn〉n∈N in this way: κ0 := k0; given κn, κn+1 := min{h ∈ H | sh > sκn} [6= ∅].
Obviously, the sequence 〈κn〉n∈N satisfies the same monotonicity conditions as 〈kn〉n∈N.

For every n ∈ N, we have xκn+1 > xκh by (11g) and xκn+1 ≻s
κh+1

xκn by (11e) and the
minimality of κn+1. If an upper bound s for skn existed, it would be an upper bound for
sκn as well because of the definition of H. Therefore, we would have xκn+1 ≻s xκn by (9a)
for all n ∈ N, contradicting the strong acyclicity of ≻s.

Lemma 5.2.3. Let there be a sequence 〈kn〉n∈N such that kn+1 > kn and skn+1 < skn for
all n ∈ N; then there is no s ∈ S such that s ≤ skn for all n ∈ N.

The proof is dual to that of Lemma 5.2.2.

Let us assume our sequences defined for all k ∈ N, and define Σ∞ :=
⋃

k∈N
Sk. The

same r(s) := xµ(s) is a monotone selection from R on Σ∞. The final step of the proof
consists in showing that Σ∞ = S.

11



Let us suppose that Σ∞ is not an interval. Then there must be s ∈ S \ Σ∞ such that
both K−

k (s) and K+
k (s), as defined in the recursive process, are nonempty for some k ∈ N.

We denote s− := min{sm | m ≤ k} < s and s+ := max{sm | m ≤ k} > s. For every h > k,
Σh is not an interval, hence we have s− < sh < s+ for all h > k, hence s− ≤ sh ≤ s+ for all
h ∈ N. Now we have a contradiction with Lemma 5.2.2 or Lemma 5.2.3: one can always
find a strictly increasing or strictly decreasing subsequence in an infinite sequence without
repetitions.

Let there be s ∈ S \Σ∞ such that s > sk for all k ∈ N. Then Lemma 5.2.2 immediately
implies the existence of max{sk}k∈N < s; let sn ≥ sk for all k ∈ N. We define s− :=
min{sk | k ≤ n} < s; if s− ≤ sk ≤ sn for all k ∈ N, we have the same contradiction as in
the preceding paragraph. Otherwise, we define h := min{k ∈ N | sk < s−}; by definition,
we have sh < sk ≤ sn for all k < h, hence K−

h−1(s
h) = ∅. Now the description of the

recursive process implies that Σh is an interval and ϑh−1 = −1 [because K+
h−1(s) = ∅ ].

Therefore, ϑh = 1, hence the inequality sk < sn for k > h is only possible if Σk is not an
interval, hence we have sh < sk < sn for all k > h, hence sh ≤ sk ≤ sn for all k with the
same contradiction again.

The case of s ∈ S \ Σ∞ such that s < sk for all k is treated dually. Thus, Σ∞ = S and
the theorem is proven.

5.3 Proof of Theorem 3

We argue rather similarly to the proof of Theorem 2. The main difference is that the
recursive process now is, generally, transfinite. This fact entails several complications; first
of all, we cannot maintain (11h) any longer.

Let ∆ be a well ordered set of a cardinality greater than that of S. By (transfinite)
recursion, we construct a chain of subsets Σ(α) ⊆ S (α ∈ ∆) such that Σ(β) ⊆ Σ(α)
whenever β < α, with an equality only possible when Σ(β) = S; we also construct increasing
mappings (“partial monotone selections”) rα : Σ(α + 1) → X such that rα(s) ∈ R(s) for
every s ∈ Σ(α+1) and rα|Σ(β+1) = rβ whenever β < α. Since the cardinality of ∆ is greater
than that of S, there must be ᾱ ∈ ∆ such that Σ(ᾱ) = Σ(ᾱ + 1) = S hence rᾱ : S → X is
a monotone selection from R.

We start with Σ(0) := ∅. The recursive definition of Σ(α) ⊆ S for α > 0 uses a
number of auxiliary constructions recursively defined whenever Σ(α) ⊂ S, namely σ(α) ∈
S, S(α) ⊆ S, ξ(α) ∈ X, and ϑ(α) ∈ {−1, 0, 1} such that:

σ(α) ∈ S(α); (12a)

S(α) is an interval; (12b)

∀s ∈ S(α)
[

ξ(α) ∈ R(s)
]

; (12c)

∀β < α
[

S(α) ∩ S(β) = ∅
]

; (12d)

∀s ∈ S
[

[ξ(α) ∈ R(s) & s < S(α)] ⇒ ∃β < α [s ∈ S(β) or s < σ(β) < σ(α)]
]

; (12e)

12



∀s ∈ S
[

[ξ(α) ∈ R(s) & s > S(α)] ⇒ ∃β < α [s ∈ S(β) or s > σ(β) > σ(α)]
]

; (12f)

∀β < α
[

[σ(α) < σ(β) ⇒ ξ(α) < ξ(β)] & [σ(α) > σ(β) ⇒ ξ(α) > ξ(β)]
]

; (12g)

ϑ(α) ≤ 0 ⇒
∀β < α

[

ξ(α) ≻σ(α) ξ(β) or σ(β) > σ(α) or ∃γ < β
(

σ(γ) ∈ [σ(β), σ(α)]
)]

; (12h)

ϑ(α) ≥ 0 ⇒
∀β < α

[

ξ(α) ≻σ(α) ξ(β) or σ(β) < σ(α) or ∃γ < β
(

σ(γ) ∈ [σ(α), σ(β)]
)]

; (12i)

ϑ(α) = −1 ⇒ ∀s < S(α)∃β < α [ϑ(β) ≤ 0 & s < σ(β) < σ(α)]; (12j)

ϑ(α) = 1 ⇒ ∀s > S(α)∃β < α [ϑ(β) ≥ 0 & s > σ(β) > σ(α)]. (12k)

To start with, we pick σ(0) ∈ S and ξ(0) ∈ R(σ(0)) arbitrarily, and set ϑ(0) := 0 and
S(0) := {s ∈ S | ξ(0) ∈ R(s)}. Now (12a), (12c), (12e) and (12f) for α = 0 immediately
follow from the definitions; (12b), from Lemma 5.2.1; (12d), (12g), (12h), (12i), (12j), and
(12k) hold by default.

Let α ∈ ∆ \ {0}, and let σ(β) ∈ S, S(β) ⊆ S, ξ(β) ∈ X, and ϑ(β) satisfying (12) have
been defined for all β < α. First of all, we define Σ(α) :=

⋃

β<α S(β). For every s ∈ Σ(α),
there is a unique, by (12d), κ(s) ∈ ∆ such that κ(s) < α and s ∈ S(κ(s)). By (12c),
r := ξ ◦ κ is a selection from R on Σ(α). The conditions (12b) and (12g) imply that r is
increasing. If Σ(α) = S, then we already have a monotone selection, so we effectively finish
the process, setting S(α) := ∅, hence S(β) = ∅ and Σ(β) = S for all β > α; there is no
need to define σ(α), ξ(α), and ϑ(α) in this case.

Otherwise, we pick s∗ ∈ S\Σ(α) arbitrarily and define ∆− := {β ∈ ∆ | β < α & σ(β) <
s∗} and ∆+ := {β ∈ ∆ | β < α & σ(β) > s∗}. Since α > 0, both ∆− and ∆+ cannot
be empty; if one of them is empty, everything related to it in the following should be just
ignored. We also define I := {s ∈ S\Σ(α) | ∀β′ ∈ ∆− ∀β′′ ∈ ∆+ [σ(β′) < s < σ(β′′)]} [∋ s∗];
(12a) and (12b) ensure that I is an interval.

Supposing ∆− 6= ∅, we define x− := sup{ξ(β)}β∈∆− (its existence is ensured by the
completeness of X), ∆↑ := {β ∈ ∆− | ∀γ ∈ ∆− [γ ≥ β or σ(γ) < σ(β)]}, and X↑ :=
{ξ(β)}β∈∆↑ .

Lemma 5.3.1. ϑ(β) ≤ 0 whenever β ∈ ∆↑.

Proof. Immediately follows from condition (12k) for β and s∗.

Lemma 5.3.2. For every γ ∈ ∆−, there is β ∈ ∆↑ such that σ(β) ≥ σ(γ).

Proof. We define B := {γ′ ∈ ∆− | γ′ < γ & σ(γ′) > σ(γ)}. If B = ∅, then γ ∈ ∆↑.
Otherwise, min B ∈ ∆↑.

Lemma 5.3.3. x− = sup X↑.
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Proof. Immediately follows from Lemma 5.3.2 and (12g).

Lemma 5.3.4. For every s ∈ I, there holds x− ≻s ξ(β) for every β ∈ ∆↑, except β =
max ∆↑ if it exists (then x− = ξ(max ∆↑) ).

Proof. Let β, β′ ∈ ∆↑ and β′ > β; then σ(β′) > σ(β) by definition and ξ(β′) > ξ(β) by
(12g). Lemma 5.3.1 and (12h) for β′ imply ξ(β′) ≻σ(β′) ξ(β) because the third disjunctive
term in (12h) is incompatible with β ∈ ∆↑. Therefore, ξ(β′) ≻s ξ(β) by (9a). We see that
condition (7a) applies to X↑ and ≻s, hence x− ≻s ξ(β).

Supposing ∆+ 6= ∅, we define x+ := inf{ξ(β)}β∈∆+ , ∆↓ := {β ∈ ∆+ | ϑ(β) ≥ 0 & ∀γ ∈
∆+ [γ ≥ β or σ(γ) > σ(β)]}, and X↓ := ξ(∆↓).

Lemma 5.3.5. ϑ(β) ≥ 0 whenever β ∈ ∆↓.

Lemma 5.3.6. For every γ ∈ ∆+, there is β ∈ ∆↓ such that σ(β) ≤ σ(γ).

Lemma 5.3.7. x+ = inf X↓.

Lemma 5.3.8. For every s ∈ I, there holds x+ ≻s ξ(β) for every β ∈ ∆↓, except β =
max ∆↓ if it exists (then x+ = ξ(max ∆↓) ).

The proofs are dual to those of Lemmas 5.3.1, 5.3.2, 5.3.3, and 5.3.4.

Lemma 5.3.9. x− ≤ x+ (if both are defined).

Proof. Whenever β ∈ ∆+ and γ ∈ ∆−, we have ξ(β) ≥ ξ(γ) by (12g) for max{β, γ} < α.
Therefore, x− = sup X↑ ≤ inf X↓ = x+.

Lemma 5.3.10. Let s ∈ I and y ∈ X. If y ≻s x−, then y > x−. If y ≻s x+, then y < x+.

Proof. Let y < x−; by Lemma 5.3.3, there is β ∈ ∆↑ such that y < ξ(β). If y ≻s x−, then,
by Lemma 5.3.4, y ≻s ξ(β), hence y ≻σ(β) ξ(β) by (9b), which contradicts (12a) and (12c)
for β. The case of y > x+ is treated dually.

Now we consider several alternatives.

A. Let there exist s ∈ I such that neither x−, nor x+ belong to R(s). Then we pick
one of them as σ(α), set ϑ(α) := 0, and, invoking (4), obtain ξ(α) ∈ R(σ(α)) such that
ξ(α) ≻σ(α) x− and ξ(α) ≻σ(α) x+. Finally, we set S(α) := {s ∈ I | ξ(α) ∈ R(s)} ∋ σ(α).

B. Otherwise, we set σ(α) := s∗ and consider two alternatives again. If x− ∈ R(s∗),
then we set ϑ(α) := −1, ξ(α) := x−, and S(α) := {s ∈ I | x− ∈ R(s)} ∋ σ(α). If
x− /∈ R(s∗), then x+ ∈ R(s∗) because the alternative A does not hold; we set ϑ(α) := 1,
ξ(α) := x+, and S(α) := {s ∈ I | x+ ∈ R(s)} ∋ σ(α).

Let us check conditions (12). First, (12a), (12c), and (12d) immediately follow from the
definitions; (12b), from Lemma 5.2.1.
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If s ∈ S satisfies the conditions in the left hand side of (12e), then s /∈ I, hence there
is β ∈ ∆− such that s < σ(β); obviously, the right hand side of (12e) holds with that β.
Condition (12f) is checked dually.

Invoking Lemma 5.3.10 if the alternative A holds, we see that x− ≤ ξ(α) ≤ x+; there-
fore, (12g) holds whenever ξ(β) < x− or ξ(β) > x+. Let β < α and x− ≤ ξ(β) ≤ x+. If
β ∈ ∆−, we have ξ(β) = x− and σ(β) = max{σ(γ)}γ∈∆− , hence x− /∈ R(s∗) by (12f) for β
and s∗, hence ξ(α) > x−. The case of β ∈ ∆+ is treated dually.

To check (12h), let us assume ϑ(α) ≤ 0, hence ξ(α) ≻σ(α) x− or ξ(α) = x−. In the latter
case, the existence of β∗ ∈ ∆↑ such that ξ(β∗) = x− would imply a contradiction with (12f)
for β∗ and σ(α) exactly as in the previous paragraph. Therefore, ξ(α) ≻σ(α) ξ(β) for every
β ∈ ∆↑ by Lemma 5.3.4 and (9a). Finally, the set ∆− \ ∆↑ consists of β ∈ ∆− for which
there exists a γ < β as in the last disjunctive term in (12h). Condition (12i) is checked
dually.

Let us check (12j). If ϑ(α) = −1, then ξ(α) = x− ∈ R(σ(α)). If s ∈ I \ S(α), then
x− /∈ R(s). By (3), there is y ∈ R(s) such that y ≻s x−; by Lemma 5.3.10, y > x−.
If s < σ(α) then y ≻σ(α) x− by (9a), which is incompatible with x− ∈ R(σ(α)). Thus,
s < S(α) is only possible if s < I. Then there is γ ∈ ∆− such that s < σ(γ); Lemma 5.3.2
implies the existence of β ∈ ∆↑ such that σ(β) ≥ σ(γ); Lemma 5.3.1 implies that ϑ(β) ≤ 0.
Condition (12k) is checked dually.

The theorem is proven.

5.4 Proof of Theorem 4

The key role is played by the following recursive definition of a sequence xk
N ∈ XN (k ∈ N)

such that xk+1
N ≥ xk

N and xk+1
i ∈ Ri(x

k
−i) for all k ∈ N and i ∈ N . By the latter condition,

xk
N is a Nash equilibrium if xk+1

N = xk
N . On the other hand, the sequence must stabilize at

some stage because of the strong acyclicity assumption.

We define x0
i := min Xi for each i ∈ N . Given xk

N , we, for each i ∈ N independently,
check whether xk

i ∈ Ri(x
k
−i) holds. If it does, we define xk+1

i := xk
i ; otherwise, we invoke

(3) and pick xk+1
i ∈ Ri(x

k
−i) such that xk+1

i ≻xk
−i

i xk
i . Supposing xk+1

i < xk
i (hence k > 0),

we obtain xk+1
i ≻xk−1

−i

i xk
i by (9b), contradicting the induction hypothesis xk

i ∈ Ri(x
k−1
−i ).

Therefore, xk+1
i > xk

i , hence xk+1
N ≥ xk

N .

Supposing that xk+1
N > xk

N for all k ∈ N, we denote xmax
−i := (max Xj)j 6=i ∈ X−i for

each i ∈ N . Whenever xk+1
i 6= xk

i , we have xk+1
i ≻xk

−i

i xk
i and xk+1

i > xk
i as was shown

in the previous paragraph; since xmax
−i ≥ xk

−i, we have xk+1
i ≻xmax

−i

i xk
i by (9a). Since N is

finite, there must be i ∈ N such that xk+1
i > xk

i for an infinite number of k. Clearly, the
elimination of repetitions in the sequence 〈xk

i 〉k makes it an infinite improvement path for

the relation ≻xmax
−i

i , which contradicts the supposed strong acyclicity.
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5.5 Proof of Theorem 5

Let ∆ be a well ordered set with a cardinality greater than that of XN . By (transfinite)
recursion, we construct a mapping ξN : ∆ → XN such that, for all β, β′, β′′ ∈ ∆, there hold:

∀i ∈ N
[

ξi(β + 1) ∈ Ri(ξ−i(β))
]

; (13a)

β′′ > β′ ⇒ ξN(β′′) ≥ ξN(β′); (13b)

β′′ > β′ ⇒ ∀i ∈ N [ξi(β
′′) = ξi(β

′) or ξi(β
′′) ≻ξ−i(β

′′)
i ξi(β

′)]. (13c)

First, we define ξi(0) := min Xi for each i ∈ N . Let α ∈ ∆ and ξN(β) have been
defined for all β ≤ α so that (13) hold for all β, β′, β′′ ≤ α. For each i ∈ N , we define
ξi(α+1) := ξi(α) if ξi(α) ∈ Ri(ξ−i(α)), ensuring (13a) for β = α as well as the continuation

of (13c). Otherwise, we pick ξi(α + 1) ∈ Ri(ξ−i(α)) such that ξi(α + 1) ≻ξ−i(α)
i ξi(α) (it

exists by Theorem 1 and (3)), thus ensuring (13c) for β′′ = α + 1 and β′ = α. Checking
(13b) for β′′ = α + 1, as well as (13c) for β′′ = α + 1 and β′ < α, is postponed till after the
definition of ξi(α) for limit ordinals.

Let α be a limit ordinal, and ξN(β) satisfying (13) have been defined for all β < α.
Then we define ξi(α) := supβ<α ξi(β) for each i ∈ N , ensuring (13b) for β′′ = α. By

(9a), (13b) and (13c), we have ξi(β
′) ≻ξ−i(α)

i ξi(β) whenever β′, β < α and ξi(β
′) > ξi(β).

If ξi(α) = ξi(β) for some β < α, then (13c) for β′′ = α is valid trivially; otherwise,

the chain {ξi(β)}0≤β<α satisfies the “left-hand-side” condition in (7a) for ≻ξ−i(α)
i , hence

ξi(α) ≻ξ−i(α)
i ξi(β) for all β < α, i.e., (13c) for β′′ = α holds again.

Now let us return to a “successor step.” If α itself is a successor ordinal, α = α′ + 1,

then the assumption that ξi(α + 1) < ξi(α) would imply ξi(α + 1) ≻ξ−i(α
′)

i ξi(α) by (9b),
contradicting (13a) for β = α′; therefore, (13b) continues to hold. If α is a limit ordinal,
the assumption ξi(α + 1) < ξi(α) would imply ξi(α + 1) < ξi(β) for some β < α, hence
ξi(α + 1) < ξi(β + 1), and a contradiction with the condition ξi(β + 1) ∈ R(ξ−i(β)) is
obtained in exactly the same way. In either case, (13c) for β′′ = α + 1 and β′ < α holds by
(9a).

The final argument is standard. We must have ξN(α) = ξN(β) for some β < α. Then
we have ξN(β + 1) = ξN(β) by (13b); therefore, ξN(β) is a Nash equilibrium by (13a).
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