
Munich Personal RePEc Archive

Discrimination between deterministic

trend and stochastic trend processes

Caiado, Jorge and Crato, Nuno

2005

Online at https://mpra.ub.uni-muenchen.de/2076/

MPRA Paper No. 2076, posted 09 Mar 2007 UTC



Discrimination between deterministic trend

and stochastic trend processes

Jorge Caiado1 and Nuno Crato2

1 Escola Superior de Ciências Empresariais,
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Abstract. Most of economic and financial time series have a nonstationary be-
havior. There are different types of nonstationary processes, such as those with
stochastic trend and those with deterministic trend. In practice, it can be quite
difficult to distinguish between the two processes. In this paper, we compare ran-
dom walk and determinist trend processes using sample autocorrelation, sample
partial autocorrelation and periodogram based metrics.
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1 Introduction

There are different types of nonstationarity processes. One can consider a
deterministic linear trend process yt = a+bt+εt (with εt a white noise term),
that can be transformed into a stationary process by subtracting the trend
a + bt, and a stochastic linear trend process such as the so-called random
walk model (1−B)yt = εt or yt = yt−1 + εt. An interesting, but some times
difficult problem is to determine whether a linear process contains a trend,
and whether a linear process exhibits a deterministic or a stochastic trend.
In particular, it is useful to distinguish between a random walk plus drift
yt = µ + yt−1 + εt and a deterministic trend in the form yt = a + µt + εt.

The problem of classifying and clustering time series has been studied by
Piccolo (1990), Tong and Dabas (1990), Shaw and King (1992), Kakizawa,
Shumway and Taniguchi (1998), Maharaj (2000, 2002), Caiado, Crato and
Peña (2005), Xiong and Yeung (2004), among others. In this paper, we
use sample autocorrelation, sample partial autocorrelation and periodogram
ordinate based metrics to compare deterministic trend and stochastic trend
processes.
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2 Classification Methods

A fundamental problem in clustering and classification analysis is the choice
of a relevant metric. We know that the Euclidean distance is not a good
metric for classifying time series since it is invariant to permutation of the
coordinates and so it does not take into account the information about the
autocorrelations.

Let X = (x1,t, . . . , xk,t)
′ be a vector time series and ρ̂i = (ρ̂i,1, . . . , ρ̂i,m)

be a vector of the sample autocorrelations of the time series i for some m such
that ρ̂k

∼= 0 for k > m. A distance between two time series x and y can be de-
fined by d(x, y) =

√
(ρ̂x − ρ̂y)′Ω(ρ̂x − ρ̂y), where Ω is some matrix of weights

(see Galeano and Peña, 2000) . Caiado, Crato e Peña (2004) proposed three
possible ways of computing a distance by using the sample autocorrelation
function (ACF). The first uses the Euclidean distance between the sample
autocorrelations coefficient vectors with uniform weights (ACFU metric),

dACFU (x, y) =

√√√√
L∑

j=1

(ρ̂j,x − ρ̂j,y)2, (1)

where L is the number of autocorrelations. The second uses the Euclidean
distance with geometric weights decaying with the lag (ACFG metric),

dACFG(x, y) =

√√√√
L∑

j=1

fj(ρ̂j,x − ρ̂j,y)2, (2)

where fj = pqj for i = 1, 2, ..., L, p = 1 − q and 0 < p < 1. The third uses
the Mahalanobis distance between the autocorrelations (ACFM metric),

dACFM (x, y) =
√

(ρ̂x − ρ̂y)′Ω−1(ρ̂x − ρ̂y), (3)

where Ω is the sample covariance matrix of the autocorrelation coefficients
given by Bartlett’s formula (see Brockwell and Davis, 1991, p. 221-222).
A metric based on the sample partial autocorrelation function (PACF) is
defined by

dPACF (x, y) =

√
(φ̂x − φ̂y)′Ω(φ̂x − φ̂y), (4)

where φ̂ii are the sample partial autocorrelations and Ω is also some matrix
of weights.

A measure based on the Kullback-Leibler (KL) information for time series
classification can be defined by

dKL(x, y) = tr(RxR−1

y ) − log
|Rx|
|Ry|

− n, (5)
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where Rx and Ry are the sample autocorrelation matrices of time series x
and y. Since dKL(x, y) 6= dKL(y, x), one can define a symmetric distance or
quase-distance (KLJ metric), known as the J divergence, as,

dKLJ(x, y) =
1

2
dKL(x, y) +

1

2
dKL(y, x), (6)

which satisfies all the usual properties of a metric except the triangle inequal-
ity.

Caiado, Crato and Peña (2004) introduced also a periodogram-based
metric. Let x and y be observed time series with periodograms, Px(wj) =
n−1|∑n

t=1
xte

−itwj |2 and Py(wj) = n−1|∑n

t=1
yte

−itwj |2 at frequencies wj =
2πj/n, j = 1, ...,m (with m = [(n − 1)/2]) in the range 0 to π, and let
NP (wj) = P (wj)/γ̂0 be the normalized periodogram (with γ̂0 the sample
variance). Since the variance of periodogram ordinates is proportional to the
spectrum value at the corresponding frequencies, Caiado, Crato and Peña
(2004) proposed a metric based on the logarithm of the normalized peri-
odograms (LNPER metric),

dLNPER(x, y) =

√√√√
m∑

j=1

[log NPx(wj) − log NPy(wj)]
2
. (7)

3 Monte Carlo Simulations

For the Monte Carlo simulations we chose the determinist trend and random
walk plus drift models studied by Enders (1995, p. 252),

yt = 1 + 0.02t + εt

and

yt = 0.02 + yt−1 + εt/3,

with εt a zero mean and unit variance white noise. These processes were
discussed by Enders since it is quite difficult to distinguish between them, as
we can see in Figure 1. We performed 250 replicated simulations of five deter-
ministic trend models and five random walk models with those specifications,
with sample sizes of 50, 100, 200, 500 and 1000 observations. We used the
previously discussed metrics to compute the distance matrices among the 10
time series and to aggregate them into two clusters (determinist trend and
stochastic trend) using an hierarchical clustering algorithm (complete linkage
method).
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Fig. 1. Simulated stochastic trend and deterministic trend processes.

Table 1 presents the percentage of sucesses obtained in the comparison
between the two processes, where n is the sample size, L is the autocorre-
lation lenght, the sample autocorrelation and sample partial autocorrelation
metrics (ACFG and PACFG metrics) uses a geometric decay of p = 0.05, in
the LNPER metric F for low frequencies corresponds to periodogram ordi-
nates from 1 to

√
n and F for high frequencies corresponds to periodogram

ordinates from
√

n + 1 to n/2.

The ACF based metrics can discriminate quite well between the deter-
ministic trend models and random walk models. This is particularly evident
for the first few autocorrelations, since the ACF of the random walk process
is close to unity and the ACF of the deterministic trend tends to approach
to zero. Because the PACF of the random walk has a very large first lag
and cuts off after lag 1, while the PACF of the deterministic trend exhibits
a pattern of a white noise process, the discrimination between the two mod-
els based on the first partial autocorrelations is striking. The KLJ metric
perform quite well for all data sample sizes and the LNPER metric seems
to perform better for periodogram ordinates dominated by high frequencies,
which concerns the short-term information of the processes.
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n L ACFU ACFG ACFM PACFG KLJ F LNPER

50 5 97.28 97.60 99.31 99.27 97.87 low 85.04

10 92.12 94.88 99.56 99.46 98.53 high 95.24

25 92.12 91.52 98.01 64.00 97.33 all 94.48

100 5 99.28 98.92 100.0 100.0 98.47

10 95.68 97.28 99.73 100.0 98.93 low 92.48

25 88.16 89.84 96.44 100.0 99.47 high 99.04

50 85.08 91.80 94.67 70.73 98.53 all 98.72

200 5 99.56 99.36 100.0 100.0 99.72

10 95.40 97.36 96.55 100.0 99.49 low 96.08

20 87.80 91.20 92.22 100.0 99.60 high 99.28

50 72.76 81.80 87.79 100.0 99.47 all 99.20

100 70.56 82.56 na 94.37 99.20

500 5 97.68 97.64 100.0 100.0 98.13

10 89.52 92.12 99.28 100.0 99.15 low 94.32

20 78.00 81.28 96.32 100.0 98.81 high 98.56

50 68.24 70.32 82.58 100.0 98.13 all 98.16

125 68.72 70.04 80.97 100.0 99.20

250 67.92 70.12 na na na

1000 5 94.48 94.60 100.0 100.0 98.31

10 83.04 83.56 95.26 100.0 98.81 low 90.40

20 72.52 73.92 94.21 100.0 99.32 high 96.72

50 67.36 68.65 72.97 100.0 97.12 all 93.92

100 67.52 67.86 70.18 100.0 96.27

500 65.12 67.36 na na na

Table 1. Percentage of sucess in the comparison between random walk plus drift
and deterministic trend processes.

4 Discussion

In this paper we use different dependence metrics for comparison of a par-
ticular type of nonstationary time series models. Simulation results show
that the metrics based on the sample autocorrelations, the sample partial
autocorrelations, the Kullback-Leibler information measure and the normal-
ized periodogram can distinguish quite well between deterministic trend and
stochastic trend processes. In particularly, we point out the performance of
the sample partial autocorrelation metric in this type of comparison. For
the autocorrelation-based metrics we note that short lags L provide better
results. This can be explained by the structure of these models, since the
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main differences arise for the first ACF and PACF values. Contrarily to
what could be expected, the performance of ACF methods decreases with
sample size. This does not happen with the PACF method. Kullback-Leibler
method shows a remarkable good performance and stability across sample
sizes and ACF orders considered. The periodogram-based metric compares
well to Kullback-Leibler and is computationally simpler.
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