
Munich Personal RePEc Archive

The Semantic Web Paradigm for a
Real-Time Agent Control (Part II)

Mazilescu, Vasile

Dunarea de Jos University Galati, Romania

17 February 2010

Online at https://mpra.ub.uni-muenchen.de/20760/

MPRA Paper No. 20760, posted 17 Feb 2010 23:47 UTC



 

The Semantic Web Paradigm for a Real-Time Agent Control (Part II) 

 
Vasile  MAZILESCU 

 
Department of Accounting and Economic Informatics 

University Dunărea de Jos of  Galati 
vasile.mazilescu@ugal.ro 

 
Abstract. This paper is the second part of The Semantic Web Paradigm for a Real-
time Agent Control, and the goal is to present the predictability of a multiagent 
system used in a learning process for a control problem (MASLCP). 
   

Keywords: learning process, fuzzy control, agent predictability 
Jel code: C63, C 88 

 
1. Introduction 
 

Learning can be informally defined as follows: the 
acquisition and the incorporation of new 
knowledge and cognitive skills in the future 
system dynamical properties, provided that this 
acquisition and incorporation is conducted by the 
system itself and leads to an improvement in its 
performance. Machine learning (ML) dealt with 
the computational aspects of learning, as a 
centralized and isolated process that occurs in 
intelligent stand-alone systems. The main concern 
in most cases of learning is the incremental 
acquirement, the modification, consolidation and 
adjustment of the knowledge models for a specific 
domain [1,2]. In a large sense, the learning 
process could be divided in to two categories: i) 
supervised learning, for every training instance is 
assigned a valid classification; ii) unsupervised 
learning, there are no training instances, and then 
the learning algorithms must find significant 
classifications [6].  
In section 2 the control characteristics of  
MASLCP are presented. In section 3 the learning 
problem in MASLCP is pointed out. In section 4 
is reflected the predictability in the proposed 
controlled process agent. Section 5 presents the 
predictability of the learning process in 
MASLCP. Section 6 presents the paper’s 
conclusions and future directions to develop new 
learning properties of MASLCP. 
 

2. The control characteristics of MASLCP 

In our MASLCP, the learning process is 
supervised by a control expert system agent and 
the goal of this problem is that human agent can 
assimilate in a gradual way the planning 
knowledge so that he becomes, as far as possible 
autonomous in a restricted learning time lT. The 
MASLCP consists of: the controlled process 
agent (CPA) defined by a certain class of discrete 
event system, with a precisely goal; this represents 

the problem domain; the control expert system 
agent (CESA) of the plant and learning process, 
which includes more fuzzy knowledge models; 
the diagnosis agent (DA) used in the generation 
of plausible explanations. The DA activates a 
certain intern knowledge model of the CPA that 
will be used by the CESA. Based on the 
generated explanations, the observer learns the 
used knowledge model of the CPA. If these 
explanations are valid, then they represent the 
sum of knowledge that permit the observer 
advance in the learning process; the observer or 
the human agent (HA) [4]. 
It is assumed that the CPA can be represented 

with the following model: CPA=(X, E, fe, δe, g, 
Ev), that can represent certain class of discrete 
event systems, where X is the set of CPA states 
denoted by x, E is the set of all events, fe are the 

state transition map, fe: X→X, ek∈ P(E), k∈T, δe 
are the output maps, g is the enable function, 

g:X→ P(E), and Ev is the set of all valid event 
trajectories (that are physically possible). Note 
that E is the union of the command-input events 
(Eu), the disturbance input events (Ed) and the 
output events (Eo) of the plant. When discussing 

the states and events at time k, k∈T or k is a fuzzy 

instant or a fuzzy time interval, xk∈X is the CPA 

state, euk∈Eu is a command input event of the 

plant, edk∈Ed is a disturbance input event of the 

plant, eok∈Eo is an output event of the plant, that 

is equal to input event epk∈Ep for CESA. Each ek 

⊂g(xk) is an event that is enabled at time k, and it 
represents a set of command and disturbance input 

events of the plant. If an event ek∈E occurs at 
time k and the current state of CPA is xk, then the 
next state is xk+1 = fek(xk) and the output is eok= 

epk= δek(xk). Any sequence {xk} such that for all k, 

xk+1 = fek(xk), where ek ⊂ g(xk) is called a state 
trajectory. The CESA has two inputs: the 

reference input events  erk∈ ECES,r (user inputs) 

and the output events of the CPA eok=epk, erk∈ 



ECES,p. Based on its fuzzy state and these inputs, 
the CESA generates enable command input 

events to the CPA 
CES

k
e0 ∈ECES,0. Hence the 

CESA models how the observer in the loop 
coordinate the use of feedback information from 
the CPA, reference and user inputs (modeling the 
current control fuzzy objectives), and information 
in its memory (the fuzzy CESA state). This 
inference loop constitutes the core of the CESA 
where the knowledge is interpreted by the 
inference engine, actions are taken, the fuzzy 
factbase is updated and the process repeats. 
Usually, the fuzzifier may transform the measured 
value (epk) of the sensor measurement into a 
corresponding universe of discourse for each 
input variable, as an input fuzzy fact. Fuzzy rules 

Ri∈R, are used to express knowledge. Three kinds 
of variables are used: input, output and 
intermediate variables. The defuzzification 
process decides for each output variable a single 
value. The CESA is modeled by:  CESA = 

(XCES,ECES,fCES,e,δCES, gCES, ECES,v), where XCES 
=XbxXint  is a set of fuzzy CESA states xCES,k (Xb 
is the set of fuzzy factbase states and Xint is the set 
of possibilistic inference engine fuzzy states), 
ECES is the set of events of the CESA (reference 
inputs EPES,r user inputs, output CESA events 

CESE0
, the set of fuzzy rules R and the CPA output 

events CES

pE ), so that: ECES⊂ P( CES

pE ∪ CES

rE  ∪ UI ∪ 

R ∪ CESE0
∪HC), gCES is the enable function, CES

ef , 

ek∈P(ECES)-{∅} are the state transition maps, δCES 

is the output map of CESA and CES

vE  is the set of 

all valid inference loop trajectories that are 
possible. It is assumed that an occurrence of a 

command input event to the CESA, eCES∈ECES is 
always accompanied by a firing of enabled 

instantions rules Ri∈R, i=1,...,n, so that the fuzzy 
inference loop can be updated accordingly. 
Similarly, the firing process of fùzzy rules cannot 
be active alone, because the inference loop is 
updated only if there is a change in the CPA 
reflected via its outputs, or a change in the 

reference input event er∈ CES

rE , or user inputs. It 

can control the hypothesis/conclusions for the 
user decision or the enabling of the command 
input events of the CPA (eok=euk). The input 
events inclusion in the fuzzy knowledge model 
(FKB) allows the CESA designer to incorporate 
the CPA feedback and the reference input 
variables directly as parts of the FKB. This is 
analogous to the use of variables in conventional 
rule-based expert systems [3].  
It is important to note here that the consequent 
formulas of the rules represent how the fuzzy state 
xb  in the fuzzy factbase changes, based on the 
occurrence of input events, and they can be 

defined in a recursive manner. We can define the 
conclusions on XbxECES or in XbxECESxXint so that 
the fuzzy rules could characterize changes made 
to the inference strategy. An event 

ek={Ri∈ECES}⊂ gCES( CES

kx ) can possibly occur if 

the full premise of Ri  evaluates satisfactory at 

time k, for the given state b
kx ∈Xb and the 

command input event euk. Then, after the event's 
occurrence, the next state CES

kx 1+
= CES

ek
f  ( CES

kx ) is 

given by the application of the conclusion (taking 
into account their time of truth) to the fuzzy state 

b
kx ∈Xb to produce b

1kx +  and by updating the 

inference engine state xint. In this way it is evident 
that fuzzy decision-making capabilities of the 
CESA are more sophisticated than those of the 
standard fuzzy control systems. The CESA has to 
be designed so that it can eliminate the 
undesirable closed-loop system behaviors. There 
is a need to specify the initial state of the closed-
loop system to reduce the insignificant state 
combinations that may unnecessarily complicate 
the model.The operation of the CESA, at the 
inference level, proceeds by the following steps 
[10]: acquiring the CPA outputs and reference 
input events at time k; forming the conflict set in 
the fuzzy match phase from the compiled set of 
rules in the fuzzy knowledge-model MKF based on 
euk , the current status of the truth of various fuzzy 
facts, and the current values of variables in the 
knowledge-base; using conflict resolution 
strategies (refraction, recency, distinctiveness, 
priority, and arbitrary) in the select phase, find 
one rule r' to fire; executing the actions 
characterized by the consequent of rule r' in the 
act phase. 

 

Although every occurrence of an input event of 
the CPA always affects the CESA, the occurrence 
of an input event of the CESA does not 
necessarily immediately affect the CPA state. In 
qualitative analysis of our CESA, we focus 
especially on testing if the closed-loop CESA 
satisfy certain properties, as follows: reachability, 
cyclic properties and stability [9]. 

 
3. The learning process in MASLCP 
  

There are several major paradigms, or approaches, 
to ML. These include supervised, unsupervised, 
and reinforcement learning. In addition, many 
researchers and application developers combine 
two or more of these learning approaches into one 
system. How the training data is processed is a 
major aspect of these learning applications [1]. 
The most important learning paradigms are [4]: 
1. Supervised learning is sometimes called 
programming by example. The learning agent 
makes a prediction based on the inputs and if the 



output differs from the desired output, then the 
agent is adjusted to produce the correct output. 
This process is repeated over and over until the 
agent learns to make accurate classification or 
predictions.  
2. Unsupervised learning is used when the 
learning agent needs to recognize similarities 
between inputs or to identify features in the input 
data. The clustering or segmenting process 
continues until the agent places the same data into 
the same group on successive passes over the 
data. An unsupervised learning algorithm 
performs a type of feature detection where 
important common attributes in the data are 
extracted.  
3. Reinforcement learning is a type of supervised 
learning used when explicit input/output pairs of 
training data are not available. This process of 
identifying the relationship between a series of 
input values and a later output value is called 
temporal credit assignment. Another important 
distinction in learning agents is whether the 
learning is done on-line or off-line.  
4. On-line learning means that the agent is sent 
out to perform its tasks and that it can learn or 
adapt after each transaction is processed. On-line 
learning is like on-the-job training and places 
severe requirements on the learning algorithms. It 
must be very fast and very stable. 
5. Off-line learning is more like a business 
seminar. After a suitable training period, it is 
possible to apply newfound knowledge and skills. 
In an intelligent agent context, this means that we 
would gather data from situations that the agents 
have experienced. 

 
The intersection of DAI and ML constitutes an 
important area of research and application. The 
DAI and the ML communities largely ignored 
this area for a long time. There are two major 
reasons for this attention, both showing the 
importance of bringing DAI and ML together [4]: 
i) There is a strong need to equip multiagent 
systems with learning abilities, because these 
systems act in complex – large, dynamic, and 
unpredictable – environments. For such situations 
it is very difficult to correctly specify these 
systems a priori, that is, at the time of their design 
and prior to their use. ii) An extended view of 
multiagent learning reflects the insight that 
learning in multiagent systems is not just a 
magnification of learning in stand-alone systems, 
and not just the sum of isolated learning activities 
of several agents. It is useful to distinguish two 
principal categories of learning in multiagent 
systems: centralized learning (isolated learning); 
decentralized learning (interactive learning).  

The two learning forms described above are of a 
rather nature, and they cover a broad variety of 
categories of learning that can occur in multiagent 
systems. Centralized and decentralized learning 
are best interpreted as two appearances of learning 
in multiagent systems that span a broad range of 
possible forms of learning. In the following we 
describe several differencing features of learning 
forms in multiagent systems, for structuring this 
variety. 
1. The degree of decentralization (concerns 

distributedness and parallelism);  
2. Interaction-specific features, required for 

realizing a descentralized learning process (e. 
g. planning, inference or decision steps, that 
are executed to achieve a particular learning 
goal); 

3. Involvement-specific features (the relevance 
of involvement and the role played during 
involvement); 

4. Goal-specific features; 
5. The learning method; 
6. The learning feedback. 

 

These features characterize learning in multiagent 
systems from different points of view and at 
different levels. Agents having a limited access to 
relevant information run the risk of failing in 
solving a given learning task. This risk may be 
reduced by enabling the agents to explicitly 
exchange information, to communicate with each 
other. Generally, the following two forms of 
improving learning by communication may be 
distinguished: 
1. learning based on low-level communication, 
that is, relatively simple query-and-answer 
interactions for the purpose of exchanging 
missing pieces of information (knowledge and 
belief);  
2. learning based on high-level communication, 
that is, more complex communicative interactions 
like negotiations and mutual explanation for the 
purpose of combining and synthesizing pieces of 
information. 

In our MASLCP, the learning process is 
supervised and the goal of this problem is that 
human agent HA can assimilate in a gradual way 
the fuzzy planning knowledge so that he becomes, 
as far as possible autonomous in a restricted time 
lT (the learning time).  
 
4. The predictability in CPA 
An example for CPA is a fuzzy load balancing 
problem (FLBP) and it is described by a directed 
graph (C, A) where C={1,2,..., N} represents a set 

of machines that are numbered with i∈C, and A⊂ 
C x C is the set of connections between them 
({(1,2), (2,1), (1,3), (3,4), (4,3), (4,2), (3,5), (5,6), 

(6,5), (6,4)}). We require that if i∈C then there 



exists (i,j)∈A or (j,i) ∈A fore some j∈C (i.e., 

every machine is connected). Also, if (i,j)∈A and 

if (i,j) ∈A i≠j. Each machine has a buffer which 

hold load, given by xi, xi ≥ 0. Each connection 

(i,j)∈A allows for machine i to pass a portion of 
its load to machine j. It also allows machine i to 
sense the size of the load of machine j (for any 

two machines i and j such that (i,j)∉A, i may not 
pass load directly to j or sense the size of j's load). 
This problem appears also in the papers [9,11]. 
Below we consider first the discrete case when the 
load is in the form of fixed uniform-sized blocks 
that cannot be subdivided. In this case, the crisp 
control knowledge base contains twelve rules Ri, 
i=1,...,12, of  the following  type: 

Ri:  If (the charge of m1 >= the charge of m2) 
and (the charge of m1 >= the charge of m3) and 
(the charge of m1 >= the charge of m4) and (the 
charge of m1 >= the charge of m5) and the charge 

of m1 >= the charge of m6) and (xb[1] ≠0) and 

(xb[3] ≠ 0) and (the charge of m1 ≠  the charge of 
m2)  

Then in order conclude that xb[0] = 1 and 
inform the operator and infer that "[the name of 
this rule], xb1 [xb[1]], xb2 [xb[2]], xb3 [xb[3]], 
xb4 [xb[4]], xb5 [xb[5]], xb6 [xb[6]], xb7 [xb[7]], 
xb8 [xb[8]], xb9 [xb[9]], xb10 [xb[10]]" and start 
modify_charge (xb[0]) and conclude that xb[2] = 
1 and conclude that xb[4] = 1 and conclude that 
xb[6] = 1 and ?conclude that xb[8]=1 and 
conclude that xb[9] = 1 and conclude that xb[10] 
= 1 and conclude that xb[1] = 0 (this is in the G2 
formalism). 
In spite of its greater expressiveness, the present 
crisp model (knowledge base and the simulation 
results) for the discrete load balancing problem 
has several limitations: the load cannot be 
infinitely subdivided, so that not for any initial 
loads the problem has a good balancing, or 
acceptable. The CESA does not have as many 
ways to perform redistribution, so that only 
imperfect or inexact load balancing can be 
achieved. In conclusion, the embedding a 
metaknowledge was used, like fuzzy knowledge, 
represented in our formalism, so that the 
balancing problem will have good solutions in any 
initial load cases. This is similar with the 
continuous load-balancing problem, for which the 
qualitative analysis can be performed.  
It is obvious that the open-loop CPA has cyclic 
properties that may prevent the open-loop from 
achieving the desired control objective. When 
closed-loop fuzzy expert control is used, as in our 
example, the invariant set exists, by simple 
analysis of the CESA dynamics. Using a search 
algorithm, we show that there exists at least one 
path from any given initial part distribution in the 
FBLP. The reachability result (the FBLP 

described above is reachable for all initial states, 
because there exists a sequence of events to occur 
that produces a state trajectory, so that the end 
state of the CPA is in the invariant set). In our 
fuzzy CESA, any rule whose "partially matches" 
the current data can "fire" (i.e., contribute to 
specifying the control input). In the fuzzy 
compiled knowledge model we consider here, 
there may be more than one rule whose antecedent 
"exactly matches" the current data, but our 
inference engine allows only one rule to fire at a 
time. The fuzzy pattern-matching aims to 
determine the instantiations set of the causes. It is 
stronger than classic one because of its capacity of 
processing the fuzzy knowledge. It is a matter of 
evaluating the degree of this pattern-matching 
between a fuzzy cause and a fuzzy fact.  

 

At the end of the fuzzy condition/fact pattern-
matching stage for the cause C and the fact F, if 
the degrees of the pattern-matching satisfy the 
chosen thresholds and if there is a consistent 

substitution σ, then pattern-matching is 

successful. The substitution σ is a particular case 
when the variables in the causes can be associated 
to some fuzzy constants present in the facts. The 

instance σ⋅C obtained through the application of 

the fuzzy substitution σ to the condition C is not 

totally equal with F, i.e. the expresion F=σ⋅C is 

not always true then σ is fuzzy. Knowing the 

significance of the four parameters Π, N, θ, K, we 
can take into account the problem of finding the 

proper thresholds of the measures Π and N in 
order to determine the facts that do not filter the 
causes at all. The choice is not made at random, as 
between the two parameters of GMP it must be a 
tight link. Because of all these remarks and in 
order to correctly solve the problem, there are the 

links between Π,N,θ,K. 
 

The fuzzy condition/fact pattern-matching 
constitutes the first stage in the running of the 
inference engine which takes into account the 
imprecision. After this stage, it results a lot of 
instantiations of the causes. Each instantiation of 
reason will be associated to a fuzzy substitution 

and to the four parameters Π,N,θ,K. The fuzzy 
unification aims at verifying the consistence of the 
fuzzy substitutions where the variables can be 
associated to fuzzy sets.  

 
It is interesting to note that the fuzzy binary 
relation R, can be interpreted in various ways. For 
example, the equality relation my be regarded as a 
particular case of relation R. A last important 
problem is the parameters propagation [5]. Figure 
1 shows a test simulated example for the evolution 
of the distribution in the fuzzy LBP, based on 



CESA functioning (NI=Inference Number, CS=Conflict Set, ER=Executed Fuzzy Rule). 
 

IN μx1 μx2 μx3 μx4 μx5 μx46 xb1 xb1 CSk ER Event ge 
0 77.000 88.000 205.00 382.00 166.00 0.00 0 00000000000 6,7 7 e43 229.00 

1 77.000 88.000 293.50 293.50 166.00 0.00 7 00000010000 4,6 4 e35 153.00 

2 77.000 88.000 229.75 293.50 229.75 0.00 4 00010010000 6 6 e42 153.00 

3 77.000 190.75 229.75 190.75 229.75 0.00 6 00000100000 5,8 5 e34 153.00 

4 77.000 190.75 210.25 210.25 229.75 0.00 5 00001000000 8 8 e56 153.00 

5 77.000 190.75 210.25 210.25 114.88 114.88 8 00001001000 4,6,7 7 e43 76.000 

6 77.000 190.75 210.25 210.25 114.88 114.88 7 00001010000 4,6 4 e35 76.000 

7 77.000 190.75 162.56 210.25 162.56 114.88 4 00010010000 6 6 e42 76.000 

8 77.000 200.50 162.56 200.50 162.56 114.88 6 00000100000 3,7 7 e43 76.000 

9 77.000 200.50 181.53 181.53 162.56 114.88 7 00000010000 3 3 e21 76.000 

10 138.75 138.75 181.53 181.53 162.56 114.88 3 00100010000 4,6 4 e35 38.125 

11 138.75 138.75 172.05 181.53 172.05 114.88 4 00010010000 6 6 e42 38.125 

12 138.75 160.14 172.05 160.14 172.05 114.88 6 00000100000 5,8 5 e34 38.125 

13 138.75 190.75 166.09 166.09 172.05 114.88 5 00001000000 8 8 e56 38.125 

14 138.75 190.75 166.09 166.09 143.46 143.46 8 00001001000 4,6,7 7 e43 14.250 

15 138.75 190.75 166.09 166.09 143.46 143.46 7 00001010000 4,6 4 e35 14.250 

16 138.75 190.75 154.78 166.09 154.78 143.46 4 00010010000 6 6 e42 14.250 

17 138.75 163.12 154.78 163.12 154.78 143.46 6 00000100000 3,7 7 e43 14.250 

18 138.75 163.12 158.95 158.95 154.78 143.46 7 00000010000 3 3 e21 14.250 

19 150.93 150.93 158.95 158.95 154.78 143.46 3 00100010000 4,6 4 e35 9.5391 

20 150.93 150.93 156.86 158.95 156.86 143.46 4 00010010000 6 6 e42 9.5391 

21 150.93 154.94 156.86 154.94 156.86 143.46 6 00000100000 5,8 5 e34 9.5391 

22 150.93 150.93 155.90 155.90 156.86 143.46 5 00001000000 7,8 7 e43 9.5391 

23 150.93 150.93 155.90 155.90 156.88 143.46 7 00001010000 8 8 e56 9.5391 

24 150.93 150.93 155.90 155.90 150.16 150.16 8 00001011000 3,4 3 e21 2.9014 

25 152.94 152.94 155.90 155.90 150.16 150.16 3 00101010000 4,6 4 e35 2.9014 

26 152.94 152.94 153.03 155.90 153.03 150.16 4 00010010000 6 6 e42 2.9014 

27 152.94 154.42 153.23 154.42 153.03 150.16 6 00000100000 3,7 7 e43 2.8384 

28 152.94 154.42 153.73 153.73 153.03 150.16 7 00000010000 3 3 e21 2.8384 

29 153.68 153.68 153.23 153.73 153.03 150.16 3 00100010000 8 8 e56 2.8384 

30 153.68 153.68 153.23 153.73 151.60 151.60 8 00000011000  0 e≠e00 1.4034 
 

5. Predictability of the MASLCP learning 
process  
In the following, we will designate the learning 
process the synthesizing of structured knowledge 
models M0,…,Mk, specific to a fuzzy control 
strategy based on the observation of certain cases 
for CPA and CESA, that means supervised 
learning. The existence of a number of fuzzy 

knowledge models: M0 ⊂ M1 ⊂ …⊂ Mk , means a 
gradual and incremental learning process. The 
important elements of parsimonious covering 
theory who represents the conceptual base of the 
DA, are according [5]. The DA acts as a 
supervisor in a learning HA process. 

Definition 1. A diagnostic problem P is a 4-tuple  
<D,M,C,M+> where: 
1. D={d1,d2,…,dn} is a finite, non-empty set of 

objects, called disorders; 
2. M={m1,m2,…,mk} is a finite, non-empty set 

of objects, called manifestations; 

3. C⊆DXM is a relation with domain(C)=D and  
range(C)=M, called causation;  

4. M+⊆M is a distinguished subset of M which is 
said to be present.   

Definition 2. The set DI ⊆ D is said to be a cover 

of MJ ⊆ M if MJ ⊆ effects(DI).                  

Definition 3. A set E ⊆ D is said to be an 
explanation of M+ for a problem P=<D,C,M,M+> 

if and only if E covers M+ and E satisfies the 
given parsimonious criterion. An explanation 
consists of three conditions: 
1. the covering requirement (every manifestation 

in M+ must be associated with some of  E’s 
members); 

2. the covering must be parsimonious;  
3. the explanation must consist of disorders 

only. 

Definition 4. Let g1, g2, …, gn be non-empty pair 

wise-disjoint subsets of D. Then G={g1,g2,…,gn} 
is a generator. The class generated by GI, 

designated as [GI],is defined to be 

[GI]={{d1,d2,…,dn}|di∈gi, 1≤i≤n}. The generator-
set operations are: division , residual of a division 
, augmented residual of a division.  

Suppose that at some point during problem-
solving, a set of manifestations M1 are known to 
be present and generator-set G1 represents a 
tentative solution (all explanation of M1). If an 

additional manifestation mj∉M1 is discovered, 

then manifestation M2=M1∪{mj} are known to be 
present. Then the division div(G1,causes(mj)) 
results in a generator-set representing all 

explanations in [G1] that also cover mj and hence 
M2. Also, res(G1,causes(mj)) is a generator set 

representing all explanations in  [G1] that do not 
cover mj. By adding appropriate elements of 



causes(mj) to each set in res(G1,causes(mj)) to 
form an augmented residual, augres(G1, 
causes(mj)) we can convert each explanation for 

M1 in [G1]  that does not cover M2 into a cover of 
M2. The set of explanations represented by div(G1, 
causes(mj)) plus the covers represented by 
augres(G1,causes(mj)) come close to representing 
a revised solution or hypothesis for M2. These 
operations define how to revise incrementally the 
existing generator-set when a new manifestation is 
discovered during sequential problem-solving. 
The BIPARTIT algorithm works in a sequential 
and constructive manner. It takes one present 
manifestation mj at a time, either from M+ or 
through an interactive question-answering 
process, and than incorporates causes(mj) into the 
existing hypotheses. This continues until all 
present manifestations are processed. Algorithm 
BIPARTIT represents tentative hypotheses 
(explanations) and the final solution in the 
generator-set form, and is based on the operations 
of generator division, residual, and augmented 
residual. A function called “revise” is defined to 
construct new hypotheses from the existing 
hypotheses using disorders evoked by a newly 

arrived manifestation: revise(G,H1)= F∪res(Q,F), 
where: G is the previous generator-set; H1= 
causes(mj); F=div(G,H1); Q=augres(G,H1); 
res(Q,F) is used to remove all duplicate and 

redundant covers from [Q]. 
To capture by the HA the control knowledge for 
solving the FBLP, the CESA uses at any time, an 
internal knowledge model of the CPA based on 
the level of the last knowledge model. The output 
of the CPA is compared with the reference (goal) 
and, if this output doesn’t satisfy the required 
criteria, it will represent a fuzzy qualitative error 
(i.e. a set of manifestations). This k+1 qualitative 
error represents the unique activated inputs in the 
diagnosis system DA, having the characteristics of 
a dynamic system CPA. 

 

We have developed MASLCP structure, and the 
actual significance is according [4]: 

1. εi, i=0,…,k - the calculated errors series in 
relation with the objective control function. The 
calculation is realized by identification all present 
manifestations in the CPA behavior, using the 
current knowledge model of CPA. The HA learns 
each of these knowledge control models, 

embedded in the CES. In short, εi represents the 
non-empty set of all manifestations which allow 
the DA to be activated for choosing the new 
control knowledge model. 
2. The DA has as inputs a set of manifestations 

and the outputs represent explanations of the 
existing manifestations (through of the generating 
reasoning hypotheses). The HA takes over the 
results of the DA (that represents the level of 

perception for the control problem solving), 
abstracts these results (classifies previous 
knowledge obtained by knowledge acquisition) 
and can select a certain fuzzy knowledge model.  

3. If there is i0, i0∈ {0, …, k} so that εi0 = 0, then 
the learning process ends and the HA is 
considered trained at the level Mi0. The learning 

process is predictable. For each s ≥ k, Mk=Ms (that 
means that the maximum level of knowledge is 
achieved at lT time). The last two remarks imply 
the finitude property of the learning process, using 
a given period of time lT. 

 

If for any 0≤i<k the HA (the learner) have used 
and tested the right model Mi, then the choice of 
the new knowledge model Mi+1 can be made by 

the necessary condition Mi+1⊃Mi, certainly. This 
means that any following fuzzy knowledge model 
must represent a reached knowledge control 
model. The learning process used in our 
MASLCP shows that the relationships and the 
analogy between expert and control system 
architectures are important problems for 
intelligent control. This is possible because both 
are problem solving systems with different 
problem domain (environment) the MASLCP 
reasons about and takes actions on.  
 

6. Conclusions 
The predictability of our MASLCP, from the 
practical point of view, simulates only the 
diagnosis component but include knowledge 
models of the considered planning problem in 
different stages of its development. The diagnosis 
model involve diagnostic entities (disorders, 
manifestations), causal associations relating these 
entities (the causal network), the notion of 
diagnostic explanation and the process of 
hypothesize reasoning. The algorithm works in a 
sequential and constructive manner. It takes one 
present manifestation for each time and than 
incorporates its causes into the existing 
hypotheses. The process continues until all 
present manifestations are processed and the 
learning time is less or equal with lT. The DA 
accept as inputs a set of manifestations and supply 
outputs that represents explanation in the presence 
of the manifestation.  
Considering the given MASLCP structure, the 
next conclusions can be pointed out: the DA 
works in a diagnostician manner (sequential and 
constructive); his learning process is supervised 
and the goal of this problem is in short the human 
agent HA can assimilate the planning knowledge 
so that he became, as far as possible autonomous 
[1]; a limitation is the dynamically loop closing, 
according to the conceptual structure of the 
MASLCP, that is carried out by the HA who 
learn. 



 

There are important another future directions for 
this work, investigating the dynamics of AI 
reasoning systems that utilize learning and 
planning capacities in various complex 
applications, studying the semantic knowledge 
representations on Web. 
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