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V. M. POLTEROVICH AND G. M. KHENKIN

An Evolutionary Model of
Economic Growth*

1. Introduction

The mathematical theory of economic growth and the modeling of

the diffusion of innovations are currently viewed as two indepen-
dent research areas in different phases of their respective “life
g:ycles.” The topics that have been vigorously developed in econom-
ic growt.h theory during the last 20 years (optimality of infinite
trajectories, “turnpike” behavior) are apparently close to the point
of eghfiustlon, while the study of innovations is still primarily in the
emplr'lca‘l stage and has not produced finished models. The obvious
organic interrelationship between growth processes and the emer-
gence of new technologies suggests that the two research areas
should be synthesized into one. In line with this view, we have
modeled the innovation process in terms of the evolution of the ef-
ﬁmency-distribution curve of different technologies [1].

Analysis of the corresponding differential-difference equation has
shown that the curve should eventually acquire a standard form, in-
dependent of the initial conditions. This result is qualitatively con-
sistent with empirical observations.

The next natural step in the development of this topic should ex-
amine the interaction of spontaneous innovation and imitation
against the background of the quantitative growth of capacity. The
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main goal of the present paper is the implementation of this pro-
gram for a one-commodity model. The first attempt to move in this
direction was made by Iwai [2], who used a set of different, and in
our opinion more artificial, assumptions.

Sec. 2 derives the generalized evolution equation of the efficiency
distribution curve of capacities and presents a theorem on asymp-
totic solutions, analogous to the main theorem of [1]. Sec. 3 devel-
ops the proposed growth model and the basic results. The main
result (Theorem 2) claims that under certain conditions the evolu-
tion of the distribution of capacities in the process of exponential
growth approximately follows the globally stable evolution equa-
tion of Sec. 2. This provides a better substantiation for the observed
stability of the form of the distribution curve. Sec. 4 discusses some
modifications of the model. All the proofs are collected in Sec. 5.

2. Evolution of the Efficiency Distribution Curve of Technologies

Consider a production system (e.g., a sector of the economy) with
many producers, each assigned to one or another efficiency levels.
The notion of efficiency can be defined in different ways, e.g., as the
value added or the profit per unit capacity. In this section, the par-
ticular form of the efficiency index is immaterial, and the only
relevant assumption is that each producer strives to move to a level
with a higher value of this index.

Denote by F_(t) the proportion of producers that at time t oc-
cupy efficiency levels with index not exceeding n. Here t € [0,), and
n may take any integer values. The sequence F = {F_} as a func-
tion of time describes the evolution of the distribution curve of the
producers by efficiency levels. We assume that the proportion
T(F,) of producers move in unit time from level n to level n + 1;
jumping over several efficiency levels is not allowed. The number of
producers is assumed constant.” The proportion F - F__, ofall
producers are found on level n, and this proportion decreases in
unit time by the amount T(F,)(F,- F,_,). In this way, we arrive at a
system of differential-difference equations that describe the evolu-
tion of the efficiency distribution curve of the producers

dF /dt = o(F,)(F,__, - F,). 1)
Natural initial conditions for (1) are the following:

0<F (0)<1, n=1,..,N,
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F,(0)=0, N<0, ()
F,(0)=1, n>N.

In our study, however, we will use more general initial conditions
of the form

0<F,=1, F(0) =0 ns0, limF,0) =1 3)

Throughout the paper, we adopt the following assumption:

(i) the function T is Lipschitzian, positive, nonincreasing on the in-
terval [0, 1], and o(0) > ¢(1).

The assumption that T is decreasing corresponds to the notion
that the intensity of imitation increases with the increase of the pro-
portion 1-F_ of technologically advanced producers. The most ef-
ficient firms occupy levels where E, is close to 1. They cannot bor-
row the technology from anyone else. Their efficiency, however,
can increase through innovation, and we accordingly assume that
@(1) > 0. Let

o(F) = [z (o) dy, Felo,1].
Then Eq. (1) is rewritten in the form
d®(F )/dt = F_-F,_,.

To each sequence of functions F = {F,}°_ we associate the ex-
pression

B,(t) = icb(Fn(t)-t.

‘We now introduce an additional assumption.
(ii) The initial conditions are such that B(0) < «.

It can lze shown (see [2]) that in cases (i) and (ii) the solution F
= {F,(0)};-, of the problem (1), (3) exists, is unique, and for any t
satisfies the conditions F_ (t) =0 for n<0, F t)+1 for n+e,

Moreover, B,(t) = B;(0), because B, is the first integral of Eq.
(1). IfF_(0) > F,_,(0) for all n, then F () =F,__,(t) foralln,t, so
that (1) indeed describes an evolution of the distribution curve.
Theorem 1. Let condition (i) hold. Then for any solution F = {F_}

of the problem (1), (3) that satisfies (ii) there exists a constant a
such that
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Sl:lpIFn(t)-F*(n-ct-a)I — 0, t e
where F"(x) is the solution of the equation
o(dFidx) = o[FOHF®-FG-D}, <= a(0),

satisfying the conditions
0

0<F<1, ) (%(0)- SF(m)}<w, Y. 8(F(n) <.
n=-a n=1

The function F;(t) =F'(n-ct-a) for any a is the solution of
Eq. (1). It depends only on a linear combination of the variables n
and t and is often called a traveling wave, because its graph moves
along the n-axis with constant velocity c. For a linear T, the function
F"(x) was derived in explicit form in [1]: it was found to be the
logistic probability distribution.

The constant a in Theorem 1 is computed from the value of the
first integral on the solution F = {F_} using the equation

0

Be(0) =) ((F (m-a)-(0)) + § &(F"(n-2)).
n=-o n=

Theorem 1 shows that, as a result of the interaction between im-
itation and innovation, the shape of the efficiency distribution curve
of the technologies eventually stabilizes; this curve moves with al-
most constant velocity along the abscissa axis; neither the shape
nor the velocity asymptotically depend on the initial conditions.
The model thus explains the stability of the shape of the empirically
observed distribution curve.

For the case of a linear ¢, Theorem 1 constitutes the main result
of [1]. Its proof in the general form presented in this paper relies on
entirely different constructs (see [3]) and is omitted for reasons of
space.

3. Evolution Model of Economic Growth

So far, we have assumed that the number of firms remains constant
and ignored the differences in productivity across firms. In this sec-
tion, we describe a simple model that allows simultaneously for
qualitative improvement of production capacity through imitation
and innovation, as well as for quantitative growth.

Consider a certain sector, and let M, be the total production ca-
pacity that returns a profit A_ per unit capacity in unit time. The
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index X will be used as the efficiency measure of the technology of
level n. We assume that efficiency increases with the increase of n,
i.e., A4, > A,. We further assume that the profit is reinvested in the
expansion of capacity, so that nonproductive distributions of the
profit are ignored in our model.?
We define the distribution function F = {F_} of capacities by ef-
ficiency levels,
I
fm ()

M, ) it i =2

it~ls

0

assuming that the expression in the right-hand side is meaningful.

We postulate that the profit A M earned on level n-m is split
into two capital investment streams. The proportion ¢ (F,) of this
profit is channeled to formation of capacities of the next level n+1,
while the remaining part (1-¢,(F )A_M_ is spent to expand the
production of level n. Here ¢ is a given function. In the
Schumpeterian paradigm, firms of level n can create capacities on
level n+1 through a process of imitation; the intensity of imitation
increases with the increase in the proportion 1-F, of greater
capacities. We accordingly assume that the function ¢, is decreas-
ing in F_. If there is no imitation, then technological improvement
is possible through innovation. Thus, ¢ (1) must be positive.

Summarizing these arguments, we obtain the economic growth
equation

‘:lN[n‘,'dt = (1°(pU(Fn))AnMn i ?U(Fn-l)xn-an- 1’ (4)

where the function ¢, satisfies the assumptions (i) of Sec. 2, and the
boundary and initial conditions have the form

1]

My =0, M (0)>0, } M(0)>0, M(0)=0, n>N (5

n=1

where N is a positive integer.

We naturally assume that the efficiency is bounded. Therefore in
what follows we use the following conditions.
(a) The sequence A is positive, increasing, and convergent to a
limit A .

Assuming that the series M =k§1Mk can be differentiated term
by term, we rewrite (4) in the variables F_. Note that
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1 dF 1 adM, 1dM

Il
— = -——. 6
F odt =M &1 d M dt @
n k=1
Taking M /M -+ as n-«, we obtain from (4)
(/M) dM/dt = (lfM)kzl)‘kMk = kzl,\k(Fk -F_,) ™

Combining this result with (4) and (6) and noting that M(t) =0,
we obtain

dF,/dt = -po(F)A(F, - Fo) - 7y ®)
where
L= ;;E—:]_Ak(Fk -Fe) + Fﬂkglkk(Fk -Feoy) ®)

Apply the Abel transformation,
n-1

kE__:lAk(Fk “By) = L F, +k§1(’\k ) Fee

Clearly lim F, = 1. Therefore

n @ @
kzllk(Fk = Fk-1) = kzn()‘ku & A1;) + An -kle(z\m = )‘k) Fk-

Substituting these expressions for the sums in (9), we obtain after
simple manipulations

r=(1 -Fn):z;l O A Fnkz:n Gar-A)(A-F). (10)

Conditions (5) are obviously equivalent to the following:

0 < F,(0) =... = F(0),
(11)
F,()=0, F(0)=1,n>N.
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The Cauchy problem (8), (11) is the subject of the following
analysis. We will first state a proposition which confirms that the
problem is well-posed.

Proposition 1. Let conditions (i) and (a) hold. Then the problem
(8), (10), (11) is uniquely solvable. Its solution F = {F, } satisfies the
relationships

0=F(f) 8 215 (12)
F (t)+1 as n~« forany t,
F,(t)+0 as t+= foranyn.

The proofs of all the propositions are collected in Sec. 5.
Proposition 2. Under the conditions of Proposition 1, the problem
(4), (5) is uniquely solvable on the set of functions {M,(t)} for

which the series Ean(t) is convergent and allows term-by-term

differentiation.

We can naturally assume that if the proportion of capacities on
all low-efficiency levels < n becomes small, then the corresponding
capacities are liquidated and the released resources are channeled to
the development of more efficient assets. This process can be con-
sidered in the framework of our model by defining the function T,
so that its value at zero is greater than 1. Then, as it follows from

Proposition 3, not only the proportions but also the absolute

capacities will rapidly decay to zero over time.
Proposition 3. Under the conditions of Proposition 1, lgrré

oM ()t = A If ¢,(0) <1, then léﬂ(.ﬂnMn(t)/t) = 2 (1 - ¢4(0)).
If ¢5(0) < 1, then lgﬂ AnM_(0)/t = X, (1 - ¢4(0)) .
We will need yet another assumption that restricts the rate of

convergence of A_ to the limit A.
(b) The sequence n satisfies the inequality

ik(A-Ak) < o

Theorem 2. Let conditions (i), (a), (b) hold and let F = {F_} be the
solution of the problem (8), (10), (11). Then there exists a constant
d such that

sup |E_(t) - F'(n-ct-d)| »0, t-w, (13)
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where F" is the function introduced in Theorem 1 for ¢ = Ag,,

¢ =8(0) = J, (o)) "0

Theorem 2 asserts that eventually the residual term r, in (8) can
be ignored and X can be replaced with its limit value ), all this
without causing substantial changes in the evolution of the distribu-
tion curve.

Hence it follows that the evolution of the distribution curve for a
“mature” industry (when the increase of efficiency is slow) is ap-
proximately described by an equation of the form (1); this is the
asymptotic equation of the trajectories in our model.

The proof of the main theorem, Theorem 2 (see Sec. 5), is fairly
complicated and not particularly intuitive. This natural result may
appear quite surprising if we look at the residual term r,: it is by no
means clear if this term is small or not. Let us explain why this is so.
Let n, be a sufficiently large number. Partition each sum in (10)
into two summands: the sum of the terms with k < n; and the tail
with k > n,. It can be proved that F (t) +0as t~ . Therefore, for
sufficiently large t, the first summands will be close to zero, and
smallness of the second summands ensures convergence of A ..

The decrease of 1, to zero of course does not necessarily imply
that Theorem 2 holds. We additionally must ensure that r, as a
function of time is integrable on the half-line. Condition (b) guar-
antees integrability, but perhaps it can be relaxed.

4. On Some Modifications of the Model

The growth model described in previous sections is purely theoreti-
cal and highly simplified. We hope that it will provide the basis for
the construction of more realistic, empirically testable models. This,
however, requires considerable additional effort. First, the notion of
capacity should be formalized. The most natural definition of ca-
pacity is the sum of fixed assets or the sum of fixed assets and work-
ing capital. The actual distribution of profit is of course more com-
plicated than the simple scheme assumed in the model, and A M,
only represents the part of the profit allocated to capacity forma-
tion and renovation. The hypothesis that sectoral growth directly
depends on profits is not obvious and requires further verification
and, possibly, refinement.

If profitability is used as an efficiency measure, then at a first
glance we run into an inconsistency between the modeled and the
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actual behavior of the growth trajectories in a number of industries
with diminishing profitability. Two modifications of the model can
be proposed, which are apparently free from this inconsistency.
The first modification allows for depreciation, so that the right-
hand side of (4) includes a term proportional to M,_,, (part of
capacities are downgraded from level n+1 to level n). The second
modification allows for the effect of the varying ratio between labor
and capital assets in the industry. The assets typically increase faster
than the number of employed persons, which may be one of the
possible reasons for the reduction of profitability. In this case, tech-
nological progress partially compensates for the relative “shortage”
of labor. A possible generalization of Eq. (1) allowing for this fac-
tor has the form

dM,/dt = g(LM)[(1-p(F)NM,, +o(F,_ DA, M, ;] (14)

where L = L(t) is the number of employed persons in the industry
(a given function of time) and g(*) is a nondecreasing function of a
single variable. Now X_ is a “conditional profitability,” with the
ratio L/M remaining fixed, and the “true” profitability is p_(t) =
A_g(L(t)/M(t)). Under natural assumptions, an analog of Theorem
2 holds for the trajectories of Eq. (14). The shift of the distribution
curve to the right along the X-axis is not in conflict with its shift to
the left along the p-axis. Note that the discretization of the ef-
ficiency parameter (i.e., the choice of the correspondence A =
A(n)) is also important for ensuring consistency between the model
and statistical data.

5. Proofs

We start with a lemma which is frequently used in what follows.
Lemma 1. Let F = {F_(t)} by the solution of the problem (8),
(10), (11) given the conditions (i) and (a). Then forany r,0 < r <
1, we have the bound

Sup, F () =< (ylfvt)e™™*

where v = X,¢(1), and the positive constants y and ¢ depend only
onr). .

Proof. Consider the functions {F_(t)} that satisfy the initial condi-
tions (11) and the linear equation of the form
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dF fdt = -v(F, - F,_,)- (15)
We will first prove the inequality
F_(t) <F,(0). (16)

To this end, consider the functions V, = F_ - F,.. By (8), (11),
and (15), they satisfy the equalities

AV fdt = v(V, -V, ) -1 Va(0) =0, a7

where v, are some nonnegative functions. Flixing L= 0, we define
the sequence W, (t) = max V (1), where k is an arbitrary natural

number. From (17) we directly obtain the inequality d\yk/dt <0
Therefore, W, (t) < W, (0) = 0. From this bound we obtain V_(t) <
W._(t) < 0. Hence follows inequality (16). : !

Tet us prove the bounds of the lemma for the functions F_(t).
The solution {F_(t)} of the linear problem (11), (15) can be ob-
tained in explicit form as

F()=¢e" nil (Wt F__ (0)(k)™
k=0

From this representation we obtain the following inequalities
form n<7vt:

. n-1
F,(t) < exp(-v1) ), (ut)(k!)™
k=0
< exp(-v)(wt)*(nt) (1-(v)
< exp(-wt)(t)*@) (1~ )"

Now, using Stirling’s formula, we obtain

f"n(t) < (1-7) t xexp(rvt - vt)exp(- rutdnr)(2nt)/?
< (1-r) 'exp(vt[r(1-£n7) - 1]) x Qrrvt) 2
< 'y(ut)—l"zexp(%yt),

where v = (1-r) (2xr) Y% e =1-r(1-fnr).

This combined with (16) proves Lemma 1.
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Proof of Proposition 1. Take a natural number £ and consider an
auxiliary finite system of equations

dF,fdt = - p(FA(F,Fyp) -1, n=1....4, (18)

where
2-1
Z:_ ey = M- F). (19)

n-1
1 = (1F)Y (s~ MWF +F,
k=1 -

As before, take (11) as the initial conditions and assume that
I>N. Let {F}" .., = Fbe the solution of (11), (18), (19). We will
show that F_(f) <1 forall t>0, n<l.

Assume that this is not so, then by (11) there is a time t, > 0 and
an index n, such that F_,(t;) < 1,t < t, F_o(ty) = L, F o,(t) < 1.t
<t,. But by (18), (19) in this case r;(t) = 0, dF,,(to/dt < 0, which
is impossible.

. We will now show that F_(t) is nondecreasing in f, = E.-E 4
foranyt.Let f =F_-F__,. From (18), (19) we obtain

df /dt = - Po(FA L, + ?o(F,- Dp-1fnor - £.0-20)

2-1
i O R R
k=1

(20)

where f(t) =0.

If £ (t) < O for some t, then seeing that f = (0), there exists an
interval (t,, t,) such that £ (t)) =0, f,(t) < 0 for te(ty t,). Then
for some a we have from (20)

df /dt=af +e (1), €, (t) = oo(F,- 1O f - (D).
Let f =e®*V,. From the last inequality we obtain
dv_/dt > ¢ (e ™" (21)

Let n = 1. Since ¢,(t) = 0, then dV,(t)/dt = 0 for all t € (t,, t,);
therefore, f,(t) = 0. We have thus obtained a contradiction for n =
1. Since f,(t) = 0, then ¢,(t) = 0, and from (21) we obtain V,(t) =0,
f,(t) = 0, which contradicts the starting assumption for n = 2, and
so on. Thus, F,, is nondecreasing in n. Since F,(t) =0, then F_(t) is
nonnegative for any n, t.
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Let {F;b} = F®) be the solution of (18), (19). In view of the
above, the derivatives dF‘*’/dt are uniformly bounded in £, t. Let-
ting £ go to infinity, we find functions F,(t) that satisfy (8), (11) and
the inequalities 0 < F,(t) <... 1.

Fix tand let 6(t) = lzilﬂ F_(t). From (8), (10) we have

t
dofdt = -(1-8)( Y, (Agsq - 2)Fie
ktl

Viewing F, as given functions of time, we can consider the last
equation as linear in 8(t) with the initial condition #(0) = 1. This
equation has a unique solution, 6(t) = 1. That F (t)»0 as t»=
follows from Lemma 1.

The proof of uniqueness of the solution of the problem (8), (10),
(11) is standard. Let F = {F } and F = {F_} be two solutions.
Then

F(t) - F(t) = [5(G(F) - G(F))dt,

where G(F) is the right-hand side of the system (8). By (i) the
function G satisfies the Lipschitz condition with the norm of F
defined as s#QFn(t). Hence for small we have F(t) = F(t). Con-
tinuing in the same way, we prove uniqueness of the solution on
the entire line.

Remark. The Lipschitzian property of the function ¢, in addition
to its continuity, was needed only in the proof of uniqueness of the
solution.

Proof of Proposition 2. By Proposition 1, formulas (9) and (10)
are equivalent. From the equations dM/dt = Mkzil)\k(Fk -F-1)s
M_=M(F_-F,_,), we obtain M and M_. Since M;/M - 0, then,
as is easily checked, the series M(t) = Ean(t) can be differentia-
ted term by term, and the problem (8), (9), (11) for {F_} is equiva-
lent to the problem (4), (5), for {M_}. Proposition 2 therefore fol-
lows from Proposition 1.

Proof of Proposition 3. By (4), (6)

(1I/M)(dM/dt) = (I/M) f AM =
k=1

Fix € =0 and let n be such that A_= X-e. Then

AM)AMAD) = (M) T AM,
k=n+1
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> (A-o)(1-Y £), f=M/M.
k=1

By Lemma 1, there exists T(e) such that é f,<e for t=T(e).
Thus, X = d2nM/dt > x-¢(1+)) whence we obtarn the first assertion
of Proposition 3.

In order to prove the second assertion, rewrite the system of the

first n equations in (4) in the form
qu"’dt = (1- (02 M, + P(0) My, + ((0) - p(F )2 My
+ (p(Fy_,) - (02 M, 5, k=1,..,n,

where ¢ = @,.

By Lemma 1, the functions F,(t) and thus the functions (¢(0) -
o(F,))\, are exponentially decreasing, and therefore the asymp-
totic behavior of the functions M, (t) is defined by a system with
constant coefficients (Theorem 8.1 [4])

AM®/dt = AOM®,  M™ = (M,,...,M,).

The only nonzero elements in the matrix A" are the diagonal
elements ak(lf) = (1-¢(0))2, = p, and the elements ai“;_ll =
@(0)A,_,. Clearly, the numbers p, are the eigenvalues of A™

and therefore the last component of the solution M®™ is represent-
able in the form M_ = éﬁkeﬂkt (for simplicity, we assume that
all A, are distinct). It is easy to calculate that

nil { s 0 gok(O)An—l' i 'An—k
- k=°(— ) M“-k( ) (‘un—l N J“n)(“n-z N p’n) e (‘u'n-k - I,"’n) ’

P (1) ) VN
(.u']_ - .uz)(lu']_ - P’a) 4 wis (Ju']_ - F“n) '

a, = M,(0)

If p(0)<1, then s >p,_,, sothat a >0 and M a 'e™n"~1.
If (0)>1, then a,>0, and therefore M a;'e™1® - 1. Since
oM, (t)/2n M (t) » 1 as tow, this leads to the second assertion of
Proposition 3.

The proof of Theorem 2 relies on a number of lemmas.
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Lemma 2. Under the conditions of Lemma 1, the functions {r (1)}
(10) have bounds of the form r,(t) = O(t™"/%™**") if n=<7vt and

r®=<(-2)+ (A2 + O(t % **))(1-F,),

if n> rut, where 0<r<1 and v is the constant from Lemma 1.

If x -+ 0 or x -+ =, then O(x) will denote a function such that

O(x)x ' = const for sufficiently small x and sufficiently large x,
respectively. Denote by [x] the whole part of x.
Proof. The bound of r_(t) for n < ruvt follows from Lemma 1 and
the inequality r, = O(F,), which is a direct consequence of (9) and
the fact that F, 1s nondecreasing in k.

If n > rvt, then from (9) we obtain the inequality

[Tvt]

r,()=<(@1-F) kzl(Am OYF + (L-F)O -2 pep) + (-2

Hence, applying Lemma 1, we obtain the sought bound for r,(t)
forn= rvt.
Lemma 3. Let {F_(t)} be the solution of the problem (8), (10), (11)
given the conditions (i), (a), and the additional condition él(x-xk)
< «. Then the function s(t) = ;Eslsn(t), where s_(t) = (A-
2)eo(F)(F, - F,_,), is integrable overt, ie., f’s(t)dt < o,
Proof. By Lemma 1, we have the inequality

[rvt]

Z s,(t) = (x- A )ey(0)y exp (—eut)(vt)_” 2

n=1

whence we directly obtain
[Tvt]

il le,,(t)] dt < . 22)

n=

Now, by monotonicity of the sequence (A-),) and the inequality

L]

Z (Fn-F-l) = 1!

n=[rrt]+l

we obtain

@

8, = ‘pD(O)(A'A[TVt]‘l’l)'
[n=rrt]+l
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This combined with the condition of the lemma gives

J‘;[ ng()

TV
Lemma 3 now follows from (22) and (23).
Lemma 4. Let {F_(t)} be the solution of problem (8), (11) given

conditions (i) and (a), (b). Then the function A(t) = 2 (1 -F, (1)

has a bound of the form A(t) = O(t), t- .
Proof. Let U_= 1-F,. From (8) we obtain the inequality

s,)dt < L0y <. (23)

[n=Trt]+l

dU_/dt = o (F )2, (U,.,-U,) +1, < const(U__,-U) +r,
whence
dA(t)ldt < const + ), r™ (24)

n=1

Now, from the bounds of Lemma 2 and the condition Z(A-1))
< o,
L1, s const+A() (-2 pen) + O 2exp(-en))). (25)

Condltlon (b) and monotonicity of the sequence (A-1) lead to
the equality®

lim (\-3)n* = 0.
This combined with (24) and (25) produces the bound
dA(t)/dt =< const+ A(t)t™2 (26)
In order to obtain the bound A(t) = O(t) from (26), we make
the substitution A(t) = v exp(-1/t). Now (26) takes the form exp(-
1/t)(dv/dt) < const. Hence
v =< v(0)+ (const)t.

Thus, A(t) = O(t). Q.E.D.
Lemma 5. Under the conditions of Lemma 4, the function r(t) =

2 1,(t) is integrable, i.e., Ja(tdt < =,

|
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Proof. Using Lemmas 2 and 4, we obtain

[rvt] @« _
) =) r.+ ¥ r, =O0(t"%""
n=1 [Tvt)+l

@7)

@

+OMA -2+ Y (A2

n=[rvt]+1

Integrability over t of the second and third terms in the right-
hand side of (27) is a direct consequence of condition (b). Indeed,
let

o

A) = Y (A=)

[rvt]+l

Then
JoA(dt = lim (1/rv) z Z(A A)-

n=1k=1
Using the Abel transformation, we obtain

L o m-1
L LX) =mE (-a)+) KOy -2

By (b), the first term tends to zero as m -+ «, and the second
tends to a finite limit. Thus, [JA(t)dt <. Q.E.D.

We need another lemma, which is similar to the maximum prin-
ciple for parabolic equations. Its proof is given in [3] and is not
repeated here.

Lemma 6. Let the functions Q_(t) be defined forn > 0,t > 0, and

9, + [da/dt] = 40

for all n, t. Also assume that the following conditions hold:
a) da,/dt < 6(1)(Q,.,-Q,), where 0 >a, > b;

b) 0,(0)<0, for n>0;
c) ljﬂnn <0, 0y(t)<0 forallt.

Then Q (t) <0 foralln, t.
Let us now proceed directly to the
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Proof of Theorem 2. By Lemmas 3 and 5, we can choose T = T(e)
> 0 so that

W) 3 (5 1nON)dt < & p=s-ne O

where s, = (A-\)e,(F)(Fy- Fy_,), and r, is defined by the equali-
ty (10).

Consider the system of equations

AogF)F,,-F) + p, if t<T(e),
dF./dt = { g ' 5 (29)

Ap(F)(F,.,-F), if t=T(e).

Let {F(T’} be the solution of equation (29), and {F_} the solu-
tion of (7) for the same initial conditions (11). Let

5, = kzzl(Q(Fk)-@(Ff’)),
where

®(F) = (1) J7 dff(py(£)-
By (29) for t > T(¢) we have the equality

dafdt =) ((da(E,)dt - (de(E )
k=1
=1§1 [(Fk Fd) - (B -F) - (o '\%)] (30)
=F-F," - i‘ (p/2e0)-
k=1

Since A_-A__, = &(F,) - ®(F."’), we also have the relationship

F, = a4, -4, +2(F")), (31)
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where & is the inverse of the function ®,.
From (30) and (31) we obtain the equality

da dt = 2V (a,, A, + $(FED)) - FP -kilpkf(x%(Fk)). 32)

The last relationship can be rewritten in the form

da/dt = 6(a,, A, F)(A, ., -4,) - kil P/ Oeo(F),  (33)

where -4 is the derivative of the functlon 8", at some point that
depends on the values of A ,A__,, n i 0<alsﬂ<b Let

0,0 = 8,0 - Wy J5 5 17,01 )
a, = p(1)A, b, = Apy(0).
From (33) we obtain for t>T = T(e)
do/dt = 6(a,_,-0)-w, (34)
where

0,® = Wa) Y 10 @] -3 pfO0oF) = 0. (35
k=1 k=1

Apply Lemma 6 to Eq. $34) taking T(e) as the initial time in-
stead of zero. Since F, = Fy"’ =0, we have 0,=<0.
From (8) we have

de(F_)/dt = F_-F__, - pIAe,(F,),
whence
} 8(F,(0) =1 8(F,(D) + [3 Fy(r)dr
§ ! . (36)
-f; [ len/ACPn(Fn)J dt,

e oUEEEEER
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where T = T(e).
Therefore, by Proposition 1,

3 9(F,(0) =5 oF,(D) + (D) I3 &, nf0ven(F))

Moreover, by (29) and conservation of the first integral, we ob-
tain

B, =5 (EP0)« = oF,M)-T=B,D. (37

n=

From the last two equalities it follows that

lima,(t) = -} [21 pul(\py(Fy) dt - (1a,) [kzl | (0] ) dt < 0.

Thus, condition c) of Lemma 6 is satisfied. Condition b) is ob-
vious, because F_(T) = F{"’(T). Condition a) follows from (34)
and (35). From (28), (36), and (37) it follows that |Q_(t)| can be
bounded by a linear function of time. The absolute value of the
right-hand side of (34) is also bounded by a linear function of Q,
Q,_,. From Lemma 6 we obtain thatQ (t) <Oforallt > T, ie.,

8 = (V) 5§ 1001 <
Similarly, applying Lemma 6 to
0,(T) = -A,(1) - (1/ay) 5 (kz'l | Py ()t

we can show that A_(t) = -e. Combining these bounds with (31), we
obtain

|F (1) -E{P(t)] <2bye,, t2T(e), b, =g (0. (39)

By Theorem 1, there exist constants a(e) and T, (¢) such that for
alln

|ESO(1) -F'(n-ct-a(e))| <€, t=T,(e), (39)
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where F is the solution of the equation
1 -1
( I, dyIp(y))  dFidx = Agy(F())(F(x) - F(x - 1)).

Hence it follows, in particular, that for e 1> €,>0,
|F'(n-ct -a(e)))-F'(n-ct- a(e,))| < e +e,.

for t=T,(e,) andalln.
Let x° be an arbitrary point where (dF"(x°))/dx = 0. Take n and t

so thatn - ct = a(e,) + x,. Then
|F'(°) -F'(x° + ae,) -a(e,))| <€, + ¢,

Hence for small ¢ 1 1 €, we have
lae,) -a(e,)| <2(e, + e,)/dF"(x°)/dx,

and so a(e) - a(0) as ¢ + 0. Combining this result with (38), (39),
we obtain that

sup |F,(t) - F'(n-ct-a(0)| =0, t-.

This completes the proof of Theorem 2. Q.E.D.

Notes

1. Since F_ is large, we may ignore the fact that it is discrete; a similar assumption is
made in [1 ?_’u]
2. This is done in order to simplify the presentation. If -y_ is the retention norm on
level n, then all the results of this paper remain valid under appropriate conditions
for the sequence An'y . In particular, we may take Yo=7>0.
3. It suffices to note that if £ ¢ = U™ for some r for nonincreasing positive & 1o then
% ké, 214
k=r

_——4——4
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