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Abstract 
Prediction is difficult. In this paper we use panel data methods to make reasonably accurate short-

term ex-post predictions of house prices across 353 local authority areas in England. The issue of 

prediction over the longer term is also addressed, and a simple method that makes use of the 

dynamics embodied in New Economic geography theory is suggested as a possible way to 

approach the problem.  
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Introduction 

 

 Recently we have seen considerable interest in the causes of spatial variation in house 

prices, and the inclusion of  real estate within contemporary spatial economics theory 

(Helpman, 1998,  Hanson, 2001, 2005, Brakman et. al, 2004, Glaeser, 2008).  As Behrens 

and Robert-Nicoud(2009) observe, writing in the context of the New Economic Geography 

(Fujita et. al., 1999),  ‘housing represents the single most important expenditure item and 

asset for households throughout the world’. This paper continues this theme by estimating a  

panel data model with network dependence (Anselin, 1988, Elhorst, 2003,  Baltagi, 2005, 

Baltagi et. al. 2003, Anselin et. al. 2007, Kapoor et. al., 2007, Fingleton 2008b), checking the 

model using ex post prediction methodology  (Baltagi and Li, 2006, Baltagi et. al, 2007, 

Fingleton 2009).  The present paper maps out one simple way in which one might approach 

the problem of the long-run evolution of house prices that combines estimates from the panel 

data model with the dynamics embodied within New Economic Geography (NEG) theory.  
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 Over the period  from the mid-1980s to the start of the present millennium UK house 

prices
1
 gradually increased relatively slowly and unevenly from an index value of 99.9 in 

1983Q2 to 278.3 by 2000Q4. However from  about 2000Q4 the index increased continuously 

and dramatically to reach a peak of 649.3 by  2007Q3 (see Figure 1). This changing pattern 

has a counterpart in an evolving spatial distribution, which is the main focus of the house 

price model elaborated below.   
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Figure 1 The evolution of UK house prices  

   

 

The house price model 

 

The estimated house price model is a simplified version  Fingleton(2008a), predicting house 

prices jtp  for location 1,...,j R=  at time 1...t T=  on the basis of a reduced form derived 

from equilibrium housing supply and demand levels . On the demand side, assume that 

 depends on income level ;this is equal to the sum of income

jtq

jtq c
jtY 2

 within j plus income 

weighted by commuting distance ( ) between  k (job)  and  j (home)  summing across all 

R UALAD

jkD

3
’s, so that  

 

                                                 

o
jt jt

1 The Halifax house price index 
2 observed mean wage levels w  times number of workers λ  

3 Unitary Authority and Local Authority Districts, which are small administrative areas of which there are 353 covering 

England.  
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1

exp( ) , 0,
R

c o
jt jk kt kt jk

k

Y D w Dδ λ
=

j k= − =∑ =
                                   (1) 

 

 It seems not unreasonable as a simplifying first approximation to assign a value 

0.05δ =  , since this has the effect of giving approximately zero weight beyond 100 miles
4
, 

and with  within-area commuting is assumed to be costless.  0jjD =

 Assume also that demand for housing in j depends negatively on  j’s price level  ( tp ) 

and positively on prices ‘nearby’, since relatively high prices  ‘nearby’ , at k, will suck  

demand  into lower price j. Denote the weighted average of prices near to j as the relevant 

cell of the vector given by the matrix product  ,  in which  is a weighting matrix. 

This is defined by contiguity, so that W

1 ln tW p

*

1 1ij

1W

=  if i and j share a boundary, and 

otherwise. The matrix  is subsequently normalised to give  so that *

1 0ijW = *

1W 1W 1ij
j

W 1=∑ . 

 Additionally, demand quantity depends on some  covariates   and on some 

unmeasured variables represented by random disturbances 

tΔ

tϕ . Hence, assuming that the  

relationship between prices and quantities is linear in natural logarithms
5
,  the demand 

function is  

0 1 2 1ln ln lnc
t t t t tq a a Y a p W p tν β ϕ= + − + + Δ +                                   (2)                       

 

The supply function   

0 1 2ln ln lnt t t tq b b p W p tη γ ς= + − +Λ +                                               (3) 

 

assumes  that the level of housing supply  increases in tp  but  is negatively related to 

‘nearby’ prices  because relatively high  k  prices will pull supply out from j in to k, 2 ln tW p

                                                 
4 Fingleton(2008a) has a more elaborate procedure by which the decay function is specific to each of the 353 districts, 

 as a result of calibration using commuting data. These data show few commuters travel in excess of 100 miles.  

For simplicity, in this paper we use an ‘average’ value for the distance decay parameter, which limits most  

commuting to within this distance.  
5 This produces a better fit to the data that a  linear relationship, gives a constant elasticity and avoids negative prices. 
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with a weights matrix  equivalent to . Other covariates are represented by the n by k 

matrix and unmodeled effects are captured by the disturbances  

2W 1W

tΛ tς .  

                       

Normalizing the supply function with respect to p thus 

0
2

1 1 1 1 1

1
ln ln ln t t

t t t

b
p q W p

b b b b b

Λ γ ςη
= − − −

t

+                                             (4) 

and substituting for l   gives  n tq

1

c
t ta Y1 0 3 1 0 2 4[ ln ln ] lnt t t t t tp c a a p W p c p c3c Wln ν β ϕ ξ= + − + + Δ + − −Λ −         (5) +

 

Simplifying by assuming that 1 2W W W= =   and writing in matrix terms gives  

 

 t t tP WP H d teρ= + +                                                      (6) 

 

in which and  the  endogenous spatial lag  are R  by 1 vectors,  is an R by k  

matrix with  of covariates, d is a k by 1 vector of  parameters, 

lntP = tp tWP tH

ρ is a scalar parameter and  

represents unmodeled heterogeneity across R areas. Matrix W is a simple contiguity matrix 

standardised so that rows sum to 1.0.   

te

 

Data 

 

 

The house price data
6
 give rtp , which is the average selling prices (all property types) by 

UALAD (r) for each of the years (t) 2000 to 2007. Income by district for each year ( ) is 

calculated by multiplying the mean wage rate ( ) by the employment level (

rtY

o
rtw rtλ ). The s 

were taken from the annual  New Earnings Survey carried out by the UK’s Office of 

National Statistics. These are workplace-based survey data of gross weekly pay for male and 

female full-time workers irrespective of occupation. These and employment levels are 

available on the Nomis
 

o
rtw

7
  website.  

                                                 
6 Provided by the UK’s Land Registry. 
7 Nomis is a service provided by the UK’s Office for National Statistics, ONS, to give free access to labour market 

statistics from official sources. 
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 The  covariates
8
 which are assumed to affect demand comprise indicators of 

amenity within each area, namely the geographical surface area  (square km) per district  A, 

the square of the distance of the area from London  L, and the level of educational attainment 

S .  Variable  A  is included to represent the  effects of a spacious environment (rural amenity, 

lack of congestion) so we would expect a positive relationship between A and house prices. 

The variable L represents the effect of differential access to the amenities of London, 

represented as the square of km distance. We anticipate that the relationship between L and 

house prices will be negative.  The variable  S  is a measure of the level of educational 

attainment (see Appendix for definition) with good schooling increasing housing demand in 

an area. We anticipate a positive relationship between S and house prices.  

rΔ

On the supply side, simply comprises the variable O which is equal to the number of 

owner-occupier households in each district r as  reported in the 1991 Census of Population

rΛ

9
.  

We take the variable O as a measure of  the stock of properties, a proportion of which are 

offered for sale. At any moment,  one would expect the number of properties for sale to be 

larger in large cities than in small towns, thus increasing the supply and, ceteris paribus, 

reducing house prices.   

 

 

 

Estimation 

 

 

 There are two issues of prime concern, whether we should used a fixed effects or 

random effects specification, and whether we should use 2SLS/GMM
10

 or some other 

estimation method such as  ML
11

. Regarding fixed versus random effects, we opt to control 

for individual (district)  heterogeneity using (spatially correlated)  random effects
12

.  These 

                                                 
8 These are constant over time. 
9 Local Base Statistics, Table L20 Tenure and amenities: Households with residents; residents in households. This is 

available in the Nomis database. 
10 Two Stage Least Squares combined with Generalised Method of Moments. 
11 Maximum Likelihood. 
12 Typically random effects are adopted when the data comprise a sample, but we can  consider the data in this  

case to also be one of many realisations from a superpopulation since the spatial partitions giving the areal units  

are just one of a infinite number of possible sets that could  have occurred. 
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are preferred to fixed effects
13

 to allow the explicit presence of time constant covariates in 

the model, to allow more degrees of freedom, and to control for two distinct forms of spatial 

interactions involving the dependent variable and the disturbances. One, the endogenous 

spatial lag, is dictated by the theoretical specification of our house price model, but failing to 

additionally model a significant spatial error process can lead to biased inference because of 

bias  in the estimated standard errors.   One extra advantage of random effects estimation is 

that, because it takes account of  permanent cross-sectional or between-variation, it picks up 

long-run effects, whereas within-unit fixed effect estimation  focuses on short-run variation 

(Partridge, 2005, Baltagi, 2005,  Elhorst, 2009).  

 With regard to the estimation method, there are some computational advantages in 

using 2SLS/GMM.  Typically this approach is  robust, for example according to Larch and 

Walde(2009) ‘GMM estimators are preferable when the error distribution is not assured to be 

normal’. Although Kapoor et al(2007) only give  formal large sample results, Larch and 

Walde(2008) demonstrate that the relative small sample performance of GMM is superior to  

ML when applied to skewed or fat-tailed distributions. Also ML can pose significant 

computational problems, for instance Kapoor et al (2007) note that ‘even in its simplest form, 

ML estimation of Cliff-Ord type models entails substantial, and even forbidding, 

computational problems if the number of cross sectional units is large’. An ML estimator that 

takes account of both an autoregressive  spatial lag and either an autoregressive or moving 

average error process is also not  an achievable or  practical option at this point in time. 

Moreover, For ML, one typically needs to compute the log determinant  of the inverse 

covariance matrix, and in general this is time intensive and difficult for large N. However Le 

Sage and Pace ( 2009) do provide approximations, and large N is not such an issue in this 

particular study.   

 In our estimates in Table 1 and 2, we use the spatial lags of the exogenous variables as 

instruments for the endogenous spatial lag, as advocated by Kelejian and Prucha (1998). 

Variables A, L and O seem to be more clearly exogenous, but variable S  arguably could be 

endogenous in that high house prices may cause good parents, teachers and schools to locate 

in an area. However we also treat S  as exogenous  partly because it relates to the start of the 

                                                 
13 The assumption that the random effects estimates are not significantly different from comparable fixed effects estimates, 

which are assumed to be consistent, is supported by a Hausman test, as  demonstrated subsequently.   
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period of analysis and can be shown
14

 to be exogenous via Hausman tests of cross-sectional 

versions of this model estimated by 2SLS
15

. This may be because there are many causes of 

educational attainment variation, so that would weaken any direct feedback response due 

simply to house prices.  One potential but unrealised disadvantage of  2SLS/GMM is  that the 

parameter space for the spatial lag parameter ρ is unrestricted, leading to potential problems 

such as non-stationarity or spurious regression arising from estimates outside the known 

stable range given by the inverse of the maximum and minimum eigenvalues of the W matrix 

(Fingleton, 1999), whereas in the typical cross-sectional model estimated ρ   is restricted to a 

stable continuous parameter space via the presence of a penalty term in the likelihood 

function.  

 The preferred model  is therefore  that of Kapoor  et. al. (2007) extended to include 

both an endogenous spatial lag and a moving average error process (Fingleton, 2008b). 

Extending (6) to panel notation,    

  

( )

(( ) , )

( , )

T

T

P I W P Hd e X

X I W P H

d

eρ β

β ρ

= ⊗ + + = +
= ⊗
′ ′=

                                        (7) 

P is a TR x 1 vector of observations obtained by stacking  for t = 1…T,  X is a TR x (1 + k)  

matrix of regressors, comprising the TR x 1 vector (

tP

TI W⊗ )Y,   and H which is a TR  x k 

matrix of  regressors. Also β  is the  k+1 x 1 vector of parameters. In addition, given that  TI  

is a T x T diagonal matrix with 1s on the main diagonal and zeros elsewhere, and RI  is a 

similar R x R diagonal matrix, then TR T RI I I= ⊗    is a  TR x TR diagonal matrix with 1s on 

the main diagonal and zeros elsewhere.  

 While one form of spatial interaction is modelled by the endogenous spatial lag 

( T )I W Pρ ⊗ , the second source involves a spatial error process, either an autoregressive 

process or a moving average process. Equation (8a) is an autoregressive process, so that  

 1( TR T ce I I W )λ ξ−= − ⊗                                                       (8a) 

                                                 
14 Evidence supporting exogeneity is given in Fingleton(2008a). 
15 Two stage least squares. 
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 in which λ  is an unknown parameter, and ξ  is an RT x 1 vector of innovations. The 

alternative moving average error process specification is 

 ( )TR T ce I I Wγ ξ= − ⊗                                                         (8b) 

 Both (8a) and (8b) entail time dependency, which is introduced into the innovations ξ  

via a permanent error componentμ , thus 

 

2

2

~ (0,

~ (0, )

iid

iid

)μ

ν

μ σ

ν σ
                                                       (9) 

( )T RIξ ι μ ν= ⊗ +                                                     (10) 

in which  μ  is an R x 1 vector of area-specific errors. The component ν , the transient error 

component, comprises an RT x 1  vector of errors specific to each area and time. Also  Tι  is a 

T x 1  matrix with 1s , and T RIι ⊗  is a TR x R matrix equal to T stacked NI  matrices.   The 

result is that the TR x TR innovations variance-covariance matrix  ξΩ  is nonspherical.  Also 

2 2

1

2Tν μσ σ σ= + .   

 The autoregressive specification for the disturbances e means that  

1 1( ) ( ) (( ) ) ( )TR T c TR T c T R TR T ce I I W I I W I I I W 1λ ξ λ ι μ λ− −= − ⊗ = − ⊗ ⊗ + − ⊗ ν−      (11) 

So that the permanent and transient error components have identical autoregressive processes 

(c.f. Baltagi, Eggar, Pfaffermayr, 2009, Baltagi and Li, 2006, Anselin, 1988). Both 

autoregressive and moving average errors  lead to a simple forecasting equation  (Baltagi, 

Bresson and Pirotte, 2007, Goldberger, 1962).  Appendix C gives more detail of the 

estimation process.  

 

Results 

 

 

 The autoregressive error process estimates for the 2000-2007 data given in  Table 1 

are appropriately signed, although one variable is insignificant using typical inferential rules 

for one-tailed tests. The variable O (housing stock ) has a 0.05321  exceedence probability in 

the lower tail of the approximating N(0,1) distribution, which is greater than the usually 

acceptable Type I error rate of 0.05, however it is acceptable using a more liberal 0.10 rate 

 8



for a one-tailed test. The endogenous lag ( ), income within commuting distance( ), 

schooling (S), rural amenity (A) and distance from London (L)  are all significant using 

conventional inferential rules.  

lnW p C
jY

 As stated above, a key assumption of random effects specifications is a lack of 

correlation between the unobserved effects and the observed variables. This assumption is 

required for consistency of random effects estimates. The standard Hausman test of 

consistency relies upon a comparison of random effects and fixed effects estimates. There is 

a very limited literature on the Hausman test applied to spatial random effects and consistent 

spatial fixed effects models, apart from  Mutl and Pfaffermayr(2009), which is clearly at an 

experimental stage.  The approach, as with Hausman per se,  relies on using appropriate 

estimated covariance matrices from spatial models. In this paper  we are interested in random 

effects with either an autoregressive or a moving average error process, both with an 

autoregressive spatial lag, . We compare  random effects estimates lnW p ˆ( )rβ  given in 

Table 1 with presumably consistent maximum likelihood estimates ˆ( )fβ of a model with an 

autoregressive spatial lag  (Elhorst, 2003), given in Table 3. The appropriate test statistic is 

 1( ) ( ) (r f r f r fH )β β β−′= − Σ −Σ − β                                                                (12) 

 

in which the  denotes the respective covariance matrices from our spatial models. In our 

case the 

sΣ

β̂  vectors  comprise the estimates of parameters ρ  and  relating to  and 

 respectively, and the  are the relevant variances and covariance for these two 

parameters  (other variables being constant over time and therefore not identified in the fixed 

effects panel). For the model with autoregressive errors, using the Table 1 and Table 3 

estimates, the test statistic H is equal to 4.5533 which is insignificant when referred to the 

1d lnW p

C
jY

2

2

sΣ

χ  distribution. We therefore do not reject the null of no difference between the parameters 

ρ  and estimated via the fixed and random effects specifications. Under the moving 

averages error process, test statistic H is equal to 5.3966  which is quite close to the upper 

5% point of 

1d

2

2χ  equal to 5.99.  This is one reason to confine further analysis to the 

autoregressive errors specification.  
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Table 1 : parameter estimates  AR error process 

  

Dependent 

variable 

ln p  

 2000-2007  2000-2006  

regressor β
 

estimate t ratio estimate t ratio 

constant 
0d

 

-0.0932611 -0.157237 -0.115493 -0.193142 

lnW p
 

ρ
 

0.574458 5.53414 0.569511 5.41471 

C
jY  1d

 

0.212315 4.54955 0.212227 4.51994 

O  -0.000887957 -1.6145 -0.000883734 -1.58684 

S 
2d

 

0.563291 4.33377 0.571198 4.33047 

A 
3d

 

0.105225 3.03076 0.105379 2.99923 

L 
4d

 

-0.00112568 -2.62359 -0.0012043 -2.69181 

 λ
 

-0.154777  -0.147882  

 2

νσ
 

0.0271298       0.0252159  

 2

1σ
 

0.412741       0.369946  

instruments  C
jY , O, S ,A, 

L 
W ,WO, 

WS, WA, ,WL 

C
jY

 

   

RSS  187.921  164.842  

R-sq*  0.707993  0.699514  

Schwarz  4.97609  5.10499  

Akaike  4.90658  5.15908  

* squared correlation between fitted and actual  

RSS = sum of squared residuals 
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Table 2 : parameter estimates  MA error process 

 

Dependent 

variable ln p  

 2000-2007  2000-2006  

regressor β
 

estimate t ratio estimate t ratio 

constant 
0d

 

0.0663453 0.0999311 0.00883076 0.01351 

lnW p
 

ρ
 

0.537082 4.81306 0.540883 4.85818 

C
jY  1d

 

0.230243 4.54798 0.225994 4.50978 

O  -0.000799869 -1.40475 -0.000818268 -1.42591

S 
2d

 

0.567628 4.29107 0.573686 4.28234 

A 
3d

 

0.113341 3.06913 0.112134 3.0309 

L 
4d

 

-0.00118452 -2.45784 -0.0012561 -2.5695 

 λ
 

-0.0413532  -0.00222417  

 2

νσ
 

0.0211296 0.019604  

 2

1σ
 

0.417313 0.375008  

instruments  C
jY , O, S ,A, L

W ,WO, 

WS, WA, ,WL 

C
jY

 

   

RSS  195.325  169.372  

R-sq*  0.698913  0.692945  

Schwarz  5.01474  5.1321  

Akaike  4.94522  5.18618  

 

  
* squared correlation between fitted and actual  

RSS = sum of squared residuals 
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Table 3 : Fixed effects estimates  

  

Dependent 

variable 

ln p  

   

regressor β
 

estimate t ratio 

lnW p
 

ρ
 

0.756997 56.281634 

C
jY  1d

 

0.124556 2.154820 

Time and 

individual 

dummies 

2 360....d d

 

360 estimates 360 t ratios 

    

 2σ
 

0.0015  

diagnostics RSS  4.30071  

 R-sq* 0.982524  

* squared correlation between fitted and actual  

RSS = sum of squared residuals 

 

 

 The presence of a negative autoregressive error  process is 

suggestive of  an unmodeled variable(s),  driven by ‘alternating’  urban and rural locations 

consistent with a central place model  producing a ‘checkerboard’ pattern for the residuals.  

ˆ( 0.154777)λ = −
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Prediction methodology 

 

 

Given the model t t tP WP H d teρ= + +

t tL

, the variable , together with the other regressors 

  are the columns of matrix H , and given together with 

,

C
j tY

., , , ,t tconst O S A ˆˆ ˆ, ,d eρ ϖ  and Ω̂ , 

we obtain the predicted log house price via the prediction equation  ˆ ˆlnP = p

1ˆ )−
                                                             (13) 

1 ˆˆ ˆ ˆ( ) (P I W Hd eρ ϖ− ′= − + Ω

 

In (13)  is exactly the BLUP correction initially given by Goldberger(1962). In this  

the  RT by RT error  covariance matrix  

1ˆ êϖ −′Ω

Ω  is    

 1[( ) ( )]TR T c TR T cI I W I I Wξ λ λ −′Ω = Ω − ⊗ − ⊗                               (14) 

and iϖ  is an RT by 1 vector of covariances of the prediction disturbance at location  i  

with the estimate of the RT by 1 vector of residuals . ê
 

It turns out (Baltagi, Bresson and Pirotte, 2007)  that  

( )
2 2

1

2 2 2

1 1

1

ˆ ˆ ˆ ˆ

ˆ ˆ

T i

T

t
t

T T
e l e e

T

e e T

μ μ

μ υ

σ σ
ϖ ι

σ σ σ
−

=

′ ′ ′Ω = ⊗ = =
+

=∑

2

2
êμσ

σ
                                        (15) 

 

So, the correction  is simply equal to a proportion of the mean disturbance  averaging 

over T periods.  

1ˆ êϖ −′Ω

 

 

 

 

Ex-post prediction 

 

 We use the parameter estimates  for 2000-2006 data, also given in Table 1, to  carry 

out ex-post predictions for out-of-sample house price levels for 2007. We carry out two 

predictions, one with the Goldberger correction (as in equation 13) and one without (using 

). The presence of the Goldberger correction is highly beneficial, as 1 ˆˆ ˆ( )P I W Hdρ −= −

 13



shown by Figure 2 and by the respective root mean square errors are 0.438914 ( no 

correction) and 0.366963 ( with correction). 
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Figure 2  Ex post predictions of log house prices in 2007 

 

 

 

Long-run prediction 

 

 While we have achieved reasonably accurate ex post predictions of house prices, the 

problem of ex ante long-run prediction is more difficult.  We do not carry this out in practice 

in this paper, but simply suggest one simple way in which it might be accomplished. This 

relies on predicting the level of  income within commuting distance, assuming everything 

else remains constant, basing our  prediction on the dynamics embodied within the NEG 

model, as outlined below.   

The NEG model reduces to a small set of simultaneous equations. As in Fujita, Krugman and 

Venables (1999, Chapter 7), we assume one competitive sector (C) and one under 
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monopolistic competition market structure (M), thus generalizing the basic specification to 

allow transport costs and wage and product differentiation for the C sector.  There is rapid 

short-term adjustment to equilibrium by firms, but only in the long-run are M workers 

responsive to across-region variations in real M wages, and C workers are assumed to be 

immobile.   

Preferences are the usual Cobb-Douglas form with a CES subutility function for M 

varieties.  Hence 1U M Cθ θ−= , in which θ   is equal to the proportion of expenditure of M 

goods out of  total (M + C) expenditure. The quantity of the composite good M is a function 

of the f = 1…x varieties m(f), where x is the number of varieties, so that  

 

/( 1) 1

( 1)/

1 1

( ) ( ) ( )
x x

f f

M m f m f x m f

μσ σ

σ σ μμ

−

−

= =

⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑ =  (16) 

This is because under monopolistic competition at equilibrium m(f) is a constant 

across all f varieties. Because of normalizations employed, θ  is also equal to the equilibrium 

number of workers per firm and to the equilibrium output per firm. 

We use the notation of Fingleton(2005), which extends Fujita, Krugman and 

Venables’ (1999, Chapter 7)  two-region representation to a multi-region specification, 

giving five simultaneous non-linear equations as a reduced form of the theoretical structural 

model. Equations (17) and (18) define  M and C wages ( M
iw  and ) for region i, equations 

(19) and (20) give M and C prices (

C
iw

M
iG and ), and equation (21) gives  income ( ). 

Nominal M wages and the M and C price indices determine real M wages (

C
iG iY

iω ) as in (22).  

The elasticities of substitution are denoted by  σ  and  η  for M and  C varieties respectively,  

and  rλ and rφ  which are  the respective shares of the total supply of M and C workers for r = 

1…R. 

 

 

1

1 1[ ( ) ]M M
i r r Mir

r

w Y G Tσ σ σ− −= ∑                                         (17) 

 

 15



1

1 1[ ( ) ]C C
i r r Cir

r

w Y G Tη η η− −= ∑                                                 (18) 

 

1

1 1( ) ][ Cir
C C
i r r

r

TG w η ηφ − −= ∑                                                 (19) 

 

1

1 1( ) ][ Mir
M M
i r r

r

TG w σ σλ − −= ∑                                             (20) 

 

(1 )r r
M C

r rY w rwθλ θ φ= + −                                                (21) 

 

 1( ) ( )M M C
i i i iw G Gθ θω − −=                                                    (22) 

 

 

 

The solution to equations (17 to 22) gives the short run equilibrium, which is not sustainable 

in the long run because of regional differences in real wages, which ultimately cause labour 

migration and affect  rλ  (C workers are immobile so that rφ  is constant). The dynamics in 

the original model (leading to one of several long-run equilibria) are a function of real wage 

differences, as follows 

 

( )

r r
r

r r

ω λ ω

rλ κ ω ω λ

=

= −

∑
&

                                                                             (23) 

The rationale for (23) is described by Fujita, Krugman and Venables (1999, page 62). They 

simply assume that M workers move towards regions offering higher real wages and away 

from those offering below average real wages, so that the employment change rλ&  is either 

positive or negative for region r, but 0rλΣ =&  so there are no new jobs generated or 

destroyed, but simply a reallocation.  In the current house price context, the migration 

criterion is slightly more complex, being a composite variable taking account of both real 

wages and house prices.  
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 House prices are treated separately from the prices of all other goods, which within 

the NEG model are given by  (19,20),  being simply a function of  wages or prices at the 

source of production which are increased to allow for (iceberg) transport costs, summing 

across all sources of production and weighted by the emissivity of each source of goods 

( rφ , rλ ).  Clearly this price determination mechanism would be inappropriate in the case of 

house prices, since a house is not a good that is transported to market. Our model elaborated 

earlier suggests factors responsible for house price variations, and we retain this model 

specification below. Consider next an adaptation of the labour reallocation mechanism (23) 

in which 

 

 

1

1

                                                                                         (24a)

( )                                                                          

a a
r r r

r

a a
r r r r

p

p

ω ω λ

λ κ ω ω λ

−

−

=

= −

∑
&         (24b)

 

 

In (24) we have a composite variable  1a a
r rpω −  in which rp  is r’s house prices and 0 1a≤ ≤  

determines the relative weight of real wages and house prices. We commence with an initial 

set of house prices rp   and real wages rω . The difference 1a a
r rpω ω− −  induces labour 

migration and hence via (24) a change rλ&  in the distribution of M sector activity, again with 

.  If real wages outweigh house prices, then workers will be drawn to high wages 

regions. If  house prices outweigh real wages, workers will move in the direction of low 

house prices.  For some a, workers can be attracted simultaneously to regions either because 

they have low prices or because they have high wages. The parameter determines the 

overall magnitude of the 

0rλΣ =&

κ

rλ&

1

s, which may be more or less sensitive to our real wage-house 

price variable  relative to its mean.  The solution to equations (17 to 22)  for iteration t using 

resulting vector , ,r t ,r t r t 1λ λ −= + λ& − t gives new sets of real wages ,r rω ω

C
j t

=

,

C
j Y=

t

 and income 

. In turn, this changes income within commuting distance Y  and hence house 

prices (using equation (13)), leading to a new set of  prices 

,r tr YY =

,rrp p= . Applying the migration 

decision rule embodied in  (24) using the iteration t values of rω , rp  and rλ  gives new rλ&  
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and thus a new allocation of workers rλ , so that we again need to iteratively solve (17 to 22) 

and consequently re-calculate prices using (13), and so on.  Thus we can track the dynamics 

of real wages and house prices and the distribution of labour as they interact through time.

 While this has not yet been explored empirically, it is possible that one or more long-

run equilibria will emerge from this iterative process, and that such equilibria may differ 

from those based purely on real wage variations ( or equivalently when a = 1). Defining 

equilibrium as  1 0a a
r rpω ω− − = , then rλ& also is equal to zero and the  distribution of M 

activity rλ  is in steady state, but it is evidently possible that this equilibrium state may be 

achieved in the presence of permanent real wage and house price differences across regions. 

This is contrary to the long-run equilibria at which ( )r r rλ κ ω ω λ 0= − =&  implying equalized 

real wages across localities, given that that 0rω ω− =  for all r under the dynamics suggested 

by Fujita, Krugman and Venables (1999). The existence of multiple equilibria under  the set-

up proposed in this paper is an additional  possibility that warrants further investigation.  

  

Conclusion 

 

 As Danish physicist Neils Bohr once said, ‘Prediction is very difficult, especially 

about the future’.  The paper outlines one way in which long-run house price predictions may 

obtained  based on the dynamics of an  NEG model, and from this it is evident that any long-

run equilibria need not necessarily imply undifferentiated real wage rates or house prices. 

Rather, steady state, if it occurs, is when there is equalization  of a composite variable 

combining real wages and house prices. While we have mapped out a simple way in which 

we can integrate NEG dynamics and a static house price model, it is of course apparent that 

practical difficulties remain in turning these ideas into a realistic forecasting tool. At this 

juncture it would be more reasonable to treat model outcomes as simulations based on a set 

of assumptions, and to test the sensitivity of outcomes to different assumptions. Only with 

additional research will it be possible to establish whether we can make further progress with 

this line of analysis that  satisfies our need for realism as well as for theoretical  and 

econometric rigour.   

 

 18



 

 

References 

 

 

Anselin  L (1988) Spatial Econometrics: Methods and Models  Dordrecht   Kluwer. 

 

Anselin L, Le Gallo J, and Jayet J (2007) Spatial Panel Econometrics, Chapter 19  in Matyas 

L. and Sevestre P. (Eds.), The Econometrics of Panel Data, Fundamentals and Recent 

Developments in Theory and Practice (3rd Edition). Dordrecht  Kluwer. 

 

Baltagi B H (2005) Econometric Analysis of Panel Data 3rd Edition  Chichester  Wiley. 

 

Baltagi, B H,  Song S H  and Koh W (2003) Testing panel data regression models with spatial 

error correlation, Journal of Econometrics, 117 123-150 

 

Baltagi B H and Li D ( 2006) Prediction in the Panel Data Model with Spatial Correlation: 

The Case of Liquor, Spatial Economic Analysis  1  175-185 

 

Baltagi B H, Bresson G and Pirotte A (2007), Forecasting with Spatial Panel Data, ERMES 

Working Paper number 07-10, University of Paris II 

 

Baltagi, B H,  Egger P  and Pfaffermayr M (2008) A Monte Carlo Study for pure and pretest 

estimators of a panel data model with spatially autocorrelated disturbances, Annales 

d’Économie et de Statistique 97-98 11-38 

 

Behrens K, Robert-Nicoud F (2009) Krugman’s Papers in Regional Science : the 100 dollar 

bill on the sidewalk is gone and the 2008 Nobel Prize well-deserved, Papers in Regional 

Science 88 467-489 

 

Bowden R  J and  Turkington D A (1984) Instrumental variables  Cambridge   Cambridge 

University Press. 

 19



 

Brakman S, Garretsen H, and Schramm M (2004) The Spatial Distribution Of Wages: 

Estimating The Helpman-Hanson Model For Germany,  Journal Of Regional Science 44  

437–466 

 

Elhorst J P (2003)  Specification and Estimation of Spatial Panel Data Models International 

Regional Science Review 26 244 – 268 

 

Elhorst J P(2010) Spatial Panel Data Models, Chapter C2 pp. 377-405 in Fischer M M and 

Getis A (eds.) Handbook of Applied Spatial Analysis, Berlin Springer-Verlag. 

 

Fingleton B (1999) Spurious spatial regression: some Monte-Carlo results with a spatial unit root 

and spatial cointegration,  Journal of Regional Science, 39, 1-19 

 

Fingleton B (2005) Towards applied geographical economics: modelling relative wage rates, 

incomes and prices for the regions of Great Britain, Applied Economics 37 2417-2428 

 

Fingleton B (2008a) Housing supply, housing demand, and affordability, Urban Studies  45 

1545-1563 

 

Fingleton B (2008b) A Generalized Method of Moments estimator for a spatial panel model 

with an endogenous spatial lag and spatial moving average errors  Spatial Economic Analysis 

3 27-44 

 

Fingleton B (2009) Prediction  using panel data regression with  spatial random effects 

International Regional Science Review  32 173-194 

 

Fujita M, Krugman P R and Venables A (1999) The Spatial Economy : Cities, Regions, and 

International Trade  Cambridge Massachusetts  MIT press 

 

 20



Glaeser  E  L (2008) Cities, Agglomeration, and Spatial Equilibrium Oxford  Oxford 

University Press  

 

Goldberger A S  (1962)  Best linear unbiased prediction in the generalized linear regression 

model. Journal of the American Statistical Association   57  369-375.  

 

Greene W H (2003) Econometric Analysis  5th Edition New Jersey Prentice Hall 

 

Hanson G  H (2001) Scale Economies and the Geographic Concentration of Industry, Journal 

of Economic Geography 1 255–276 

 

Hanson G  H (2005)  Market potential, increasing returns and geographic concentration, 

Journal of International Economics 67  1 –24 

 

Helpman E (1998)  The Size of Regions, pp. 33–54 in D. Pines, Sadka E. and Zilcha I. (eds), 

Topics in Public Economics. Cambridge  Cambridge University Press  

 

Larch M and Walde J (2009) Finite sample properties of alternative GMM estimators for 

random effects models with spatially correlated errors Annals of Regional Science,  43 473 – 

490 

 

Kapoor M, Kelejian H H and  Prucha I (2007) Panel Data Models with Spatially Correlated 

Error Components  Journal of Econometrics, 140 97-130  

 

Kelejian H H and Prucha I (1998)  A Generalized Spatial Two-Stage Least Squares 

Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances 

Journal of Real Estate Finance and Economics, 17  99-121 

 

LeSage J and  Pace K R (2009) Introduction to Spatial Econometrics New York CRC Press  

 

 21



Mutl J and  Pfaffermayr M (2008) The Spatial Random Effects and the Spatial Fixed Effects 

Model: The Hausman Test in a Cliff and Ord Panel Model,   Economics Series 229 Institute 

for Advanced Studies, Vienna 

 

Partridge M (2005) Does Income Distribution Affect U.S. State Economic Growth?  Journal 

of Regional Science  45 363-394  

 

 22



 

Appendix 

 

 Estimating the house price model 

 

 The model is estimated by a combination of (robust) 2SLS and GMM, using an 

approach that is similar to that of Kapoor et al. (2007).  

 Simplifying to eliminate technical detail (see Fingleton, 2009), the first stage of 

estimation involves obtaining consistent estimates of  β and hence the disturbances using 

appropriate instrumental variables. These comprise a linearly independent subset of  

exogenous variables to give the TN x   matrix of instruments Z, and we assume 

matrices  X and Z are full column rank with . Following standard practice Z 

includes  the spatial lags of the exogenous variables. Given consistent residual estimates we 

apply GMM, using nonlinear least squares, to estimate 

( 1)f k≥ +

(f k≥ 1)+

2 , 2

μ νσ σ and λ , following the method 

of Kapoor et al. (2007), although for simplicity we do not use differential weighting
16

.  

 Finally, we first use the Cochrane-Orcutt transformation in order to eliminate  

(autoregressive) spatial error dependence, given that an estimate of λ  has been obtained, 

hence  

*

*

ˆ( ( ))

ˆ( ( ))

ˆ( ( ))

T N c

T N c

T N c

P I I W P

X I I W X

I I W e

λ

λ

ξ λ

= ⊗ −

= ⊗ −

= ⊗ −

 

We proceed using instrumental variables, but also take account of the non-sphericity 

of variance-covariance matrix ξΩ , which depends on 2

νσ  and 2 2

1 T 2

ν μσ σ σ= + , to obtain the 

final estimates of vector β   Hence  

 

1
* 1 * * 1ˆ ˆ ˆ( )( ) ( ) ( )( ) ( *)X Z Z Z Z X X Z Z Z Z Pξ ξβ

−
− −⎡ ⎤′ ′′ ′ ′= Ω Ω

⎣ ⎦
′

                                                

 

  

 The estimated parameter variance-covariance matrix is given by 

 
16 Kapoor et al (2007)  note that consistent estimates are obtained using  equal weight to all six moments equations. 
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*
1

* 1ˆ ˆ( )( ) ( )C X Z Z Z Z Xξ

−
−⎡ ⎤′ ′ ′= Ω

⎣ ⎦
 

following Bowden and Turkington (1984)  and Greene (2003). The quantities 
ˆ

ˆ
i

iiC

β
 are treated 

as ‘t-ratios’ for inferential purposes. For the moving average error process, the 

transformations are 

* 1

* 1

1

ˆ( ( ))

ˆ( ( ))

ˆ( ( ))

T N c

T N c

T N c

P I I W P

X I I W X

I I W e

λ

λ

ξ λ

−

−

−

= ⊗ −

= ⊗ −

= ⊗ −

 

 

and the relevant moments equations are given by Fingleton(2008b).  

 

D. Educational Attainment 

This is based on the 1998 key stage 2 tests  taken by 11-year-old pupils initially available for 

individual schools within smaller administrative areas nested within UALADs (these are 

known as wards, of which there are 8413 in England). The mean scores per Ward were then 

used to calculate mean scores for each of 353 English UALADs thus giving the regressor  S. 
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