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Abstract

This paper develops methods for automatic selection of variables in fore-

casting Bayesian vector autoregressions (VARs) using the Gibbs sampler. In

particular, I provide computationally efficient algorithms for stochastic variable

selection in generic (linear and nonlinear) VARs. The performance of the pro-

posed variable selection method is assessed in a small Monte Carlo experiment,

and in forecasting 4 macroeconomic series of the UK using time-varying para-

meters vector autoregressions (TVP-VARs). Restricted models consistently im-

prove upon their unrestricted counterparts in forecasting, showing the merits

of variable selection in selecting parsimonious models.

Keywords: Forecasting; variable selection; time-varying parameters; Bayesian

JEL Classification: C11, C32, C52, C53, E37, E47

�Department of Economics, University of Strathclyde, and the Rimini Center for Economic Analy-
sis. Address for correspondence: 130 Rottenrow, G4 0GE - Glasgow, United Kingdom. Tel: (+44)
141 41.63.555.

1



1 Introduction

Since the pioneering work of Sims (1980), a large part of empirical macroeconomic

modeling is based on vector autoregressions (VARs). Despite their popularity, the

flexibility of VAR models entails the danger of over-parameterization which can

lead to problematic predictions. This pitfall of VAR modelling was recognized early

and shrinkage methods have been proposed; see for example the so-called Min-

nesota prior (Doan et al., 1984). Nowadays the toolbox of applied econometricians

includes numerous efficient modelling tools to prevent the proliferation of para-

meters and eliminate parameter/model uncertainty, like variable selection priors

(George et al. 2008), steady-state priors (Villani, 2009), Bayesian model averaging

(Andersson and Karlsson, 2008) and factor models (Stock and Watson, 2005), to

name but a few.

This paper develops a stochastic search algorithm for variable selection in lin-

ear and nonlinear vector autoregressions (VARs) using Markov Chain Monte Carlo

(MCMC) methods. The term “stochastic search” simply means that if the model

space is too large to assess in a deterministic manner (say estimate all possible

model combinations and decide on the best model), the algorithm will visit only

the most probable models. In this paper the general model form that I am studying

is the reduced-form VAR model, which can be written using the following linear

regression specification

yt+1 = Bxt + "t+1 (1)

where yt+1 is anm�1 vector of t = 1; :::; T time series observations on the dependent

variables, the vector xt is of dimensions k � 1 and may contain an intercept, lags

of the dependent variables, trends, dummies and exogenous regressors, and B is a

m � k matrix of regression coefficients. The errors "t are assumed to be N (0;�),
where � is anm�m covariance matrix. The idea behind Bayesian variable selection

is to introduce indicators 
ij such that

Bij = 0 if 
ij = 0 (2)

Bij 6= 0 if 
ij = 1

where Bij is an element of the matrix B, for i = 1; ::;m and j = 1; :::; k.

There are various benefits of using this approach over the shrinkage methods

mentioned previously. First, variable selection is automatic, meaning that along

with estimates of the parameters we get associated probabilities of inclusion of

each parameter in the “best” model. In that respect, the variables 
ij indicate which

elements of B should be included or excluded from the final optimal model, thus

implementing a selection among all possible 2m�k VAR model combinations, with-

out the need to estimate each and everyone of these models. Second, this form

of Bayesian variable selection is independent of the prior assumptions about the

parameters B. That is, if the researcher has defined any desirable prior for her pa-
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rameters of the unrestricted model (1), adopting the variable selection restriction

(2) needs no other modification than one extra block in the posterior sampler that

draws from the conditional posterior of the 
ij ’s. Finally, unlike other proposed

stochastic search variable selection algorithms for VAR models (George et al. 2008,

Korobilis, 2008), this form of variable selection may be adopted in many nonlinear

extensions of the VAR models.

In fact, in this paper I show that variable selection is very easy to adopt in the

non-linear and richly parameterized, time-varying parameters vector autoregres-

sion (TVP-VAR). These models are currently very popular for measuring monetary

policy, see for example Canova and Gambetti (2009), Cogley and Sargent (2005),

Cogley et al. (2005), Koop et al. (2009) and Primiceri (2005). Common fea-

ture of these papers is that they all fix the number of autoregressive lags to 2 for

parsimony. That is because marginal likelihoods are difficult to obtain in the case

of time-varying parameters. Therefore, automatic variable selection is a convenient

and fast way to overcome the computational and practical problems associated with

models where parameters drift at each point in time. Although the methods de-

scribed in this paper can be used for structural analysis (by providing data-based

restrictions on parameters, useful for identifying monetary policy for instance), the

aim is to show how more parsimonious models can be selected with positive impact

in macroeconomic forecasting.

In particular, the next section describes the mechanichs behind variable selection

in VAR and TVP-VAR models. In Section 3, the performance of the variable selection

algorithm is assessed using a small Monte Carlo exercise. The paper concludes by

evaluating the out-of-sample forecasting performance VAR models with variable

selection, by computing pseudo-forecasts of 4 UK macroeconomic variables over

the sample period 1971:Q1 - 2008:Q4.

2 Variable selection in vector autoregressions

2.1 The standard VAR model

To allow for different equations in the VAR to have different explanatory variables,

rewrite equation (1) as a system of seemingly unrelated regressions (SUR)

yt+1 = zt� + "t+1 (3)

where zt = Im 
 x
0
t is a matrix of dimensions m � n, � = vec(B) is n � 1, and

"t � N (0;�). When no parameter restrictions are present in equation (3), this

model will be referred to as the unrestricted model. Bayesian variable selection

is incorporated by defining and embedding in model (3) indicator variables 
 =
(
1; :::; 
n)

0
, such that �j = 0 if 
j = 0, and �j 6= 0 if 
j = 1. These indicators


 are treated as random variables by assigning a prior on them, and allowing the
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data likelihood to determine their posterior values. We can explicitly insert these

indicator variables multiplicatively in the model1 using the following form

yt+1 = zt� + "t (4)

where � = ��. Here � is an n � n diagonal matrix with elements �jj = 
j on its

main diagonal, for j = 1; :::; n. It is easy to verify that when �jj = 0 then �j is

restricted and is equal to �jj�j = 0, while for �jj = 1, �j = �jj�j = �j, so that

all possible 2n specifications can be explored and variable selection in this case is

equivalent to model selection.

The Gibbs sampler provides a natural framework to estimate these parameters,

by drawing sequentially from the conditional posterior of each parameter. In fact,

sampling the restriction indices 
 just adds one more block to the Gibbs sampler of

the unrestricted VAR model2. For example, the full conditional (i.e. conditional on

the data and �) densities of � and � are of standard form, assuming the so-called

independent Normal-Wishart prior. For the restriction indicators we need to sample

the n elemenst in the column vector 
 = (
1; :::; 
n)
0
, and then recover the diagonal

matrix � = diag f
1; :::; 
ng only when computations require it. Derivations are

simplified if the indicators 
j are independent of each other for j = 1; :::; n, i.e.

p (
) =
Qn
j=1 p

�

j
�
=
Qn
j=1 p

�

jj
n�j

�
, where n�j indexes all the elements of a

vector but the j � th, so that a conjuagate prior for each 
j is the independent

Bernoulli density. In particular, define the priors

� � Nn (b0; V0) (5)


jj
n�j � Bernoulli (1; �0j) (6)

��1 � Wishart
�
�; S�1

�
(7)

where b0 is n � 1 and V0 is n � n, �0 = (�
0
01; :::; �

0
0n) is n � 1, 
 is a m �m matrix,

and � a scalar. Note that the algorithm presented below does not depend on the

asumption about the prior distribution of (�;�). The Normal-Wishart form is used

here only for illustration and because it is a standard conjugate choice in Bayesian

analysis which makes computations of the conditional posteriors easier (see Koop

and Korobilis, 2009a). Extensions to other prior distributions are straightforward

and not affected by variable selection.

Exact expressions for the conditional densities of the parameters are provided

in the appendix. Here I provide a pseudo-algorithm which demonstrates that the

algorithm for the restricted model (4) actually adds only one block which samples


, in the standard algorithm of the unrestricted VAR model (3).

1See for example the formulation of variable selection in Kuo and Mallick (1997).
2See Koop and Korobilis (2009a) for a review of priors and estimation approaches in Bayesian

vector autoregressions.
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Bayesian Variable Selection Algorithm

1. Sample � as we would do in the unrestricted VAR in (3), but conditional on

data being Z�t , with Z�t = Zt�.

2. Sample each 
j conditional on 
n�j, �, � and the data from


jj
n�j; �;�; y; z � Bernoulli (1; �0j)

preferably in random order j, j = 1; :::; n, where e�j = l0j
l0j+l1j

, with

l0j = p
�
yj�j;�; 
n�j; 
j = 1

�
�0j (8)

l1j = p
�
yj�j;�; 
n�j; 
j = 0

�
(1� �0j) (9)

3. Sample � as in the unrestricted VAR in (3), where now the mean equation

parameters are � = ��.

In this type of model selection, what we care about is which of the parameters

�j are equal to zero, so that identifiability of �j and 
j plays no role. In a Bayesian

setting identifiability is still possible, since if the likelihood does not provide infor-

mation about a parameter, its prior does. When �j = 0 then 
j is identified by

drawing from its prior: notice that in this case in equations (8) - (9) it holds that

p
�
yj�j; 
n�j; 
j = 1

�
= p

�
yj�j; 
n�j; 
j = 0

�
; so that the posterior probability of the

Bernoulli density, e�j, will be equal to the prior probability �0j. Similarly, when


j = 0 then �j is identified from the prior: the j-th column of z�t = zt� will be zero,

i.e. the likelihood provides no information about �j, and drawing from the poste-

rior of �j collapses to getting a draw from its prior, i.e. ebj = b0j and eVjj = V0;jj
3.

Nevertheless, in both of the above cases the result of interest is that �j = 0, whether

because �j = 0 or because 
j = 0, and the respective parameter is restricted.

There are several other approaches to automatic Bayesian model selection for

regression models which can be generalized to VAR models. Most of them are

based on introducing and sampling indicator variables 
 as we saw above. For the

specific case of the simple VAR the restriction search proposed in Algorithm 1 is

computationally more intensive than other approaches, like the variable selection

algorithm of George et al. (2008); see also Appendix D. Nevertheless, Algorithm 1

can easily be adopted in the case of nonlinearity in the parameters, or specifications

which admit non-conjugate priors. In that respect, the remainder of this paper

develops a usefull extension, namely model selection in time-varying parameters

3This holds when V0 is diagonal, which is usually the case in practice. If V0 is a full n� n matrix,
then the prior variance of �j is obviously detemined by the j-th row and j-th column of V0. However
the basic result stays unaffected, i.e. when 
j = 0 taking a draw from the posterior of �j collapses
to taking a draw from its prior.
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VARs. Since a different value of the parameters at each time period t occurs in

these models, they tend to be non-parsimonious representations of macroeconomic

data. Additionally, marginal likelihood calculations may be difficult to obtain (at

least in terms of computer time). In this case, variable selection offers a very easy

and fast method for selection of lag length and/or exogenous predictors.

2.2 Time-varying parameters VAR model

Modern macroeconomic applications increasingly involve the use of VARs with

mean regression coefficients and covariance matrices which are time-varying. Nonethe-

less, forecasting with time-varying parameters VARs is not a new topic in economics.

During the “Minnesota revolution” efficient approximation methods of forecasting

with TVP-VARs were developed, with most notable contributions the ones by Doan

et al. (1984) and Sims (1989); for a large-scale application in an 11-variable

VAR see Canova (1993). However, the developement of accurate Bayesian sam-

pling methods through the ’90s (Gibbs sampler), combined with modern computing

power has resulted in a recent rising interest in forecasting structural instability us-

ing time-varying parameters models. Canova and Ciccarelli (2004), Clark and Mc-

Cracken (2010) and D’Agostino et al. (2009) are examples of forecasting multiple

time-series using TVP-VAR’s, while Stock and Watson (2007), Groen et al. (2009)

and Koop and Korobilis (2009b) are focusing on univariate predictions but with the

use of a large set of exogenous variables.

A time-varying parameters VAR with constant covariance (Homoskedastic TVP-

VAR) takes the form

yt+1 = zt�t + "t+1 (10)

�t = �t + �t (11)

where zt = Im 
 x
0
t is an m � n matrix, �t is an n � 1 vector of parameters for

t = 1; :::; T , "t � N (0;�) with � anm�m covariance matrix, and �t � N (0; Q) with

Q an n�n covariance matrix. Models of the form described above, and variations of

it, have extensively been used for structural analysis (cite papers) and forecasting

(cite papers). Obviously, the model in (10) is not a parsimonious representation

of our data, and in practice most of the studies mentioned rely on quarterly data

while using 2 lags of the dependent variable in order to prevent the proliferation of

parameters and the estimation error.

Variable selection in this model is a simple extension of the VAR model with
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constant parameters4. For that reason replace (10) with

yt+1 = zt�t + "t+1 (12)

where, as before, �t = ��t and � is the n� n matrix defined in (4). For this model,

the priors on � and 
j are the same as in the VAR case, i.e. ��1 � Wishart (�; S�1)
and 
jj
n�j � Bernoulli (1; �0j) respectively. For the time varying parameters, a

prior on the initial condition is necessary which is of the form �0 � Nn (b0; V0). The

random walk evolution of �t, it would be desirable to restrict their prior variance

in order to avoid explosive behavior. The (implied) priors for �1 to �T are provided

by the state equation (11), and they are of the form �tj�t�1; Q � N
�
�t�1; Q

�
. The

covariance matrixQ is considered to be unknown, so it will have its own prior of the

form Q�1 � Wishart (�; R�1). A Gibbs sampler for the unrestricted TVP-VAR model

exists, so that sampling from the TVP-VAR with model selection, requires only one

extra block which samples 
, in the spirit of Algorithm 1 of the previous section.

Full details are provided in the appendix.

Due to the random walk assumption on the evolution of �t, it is imperative

need to restrict its covariance Q otherwise draws of �t will enter the explosive re-

gion which might affect forecasting negatively. Primiceri (2005, Section 4.4.1.),

who gives a detailed description of this issue, proposes prior hyperparameters for Q
based on the OLS quantities obtained from a constant-parameters VAR on a train-

ing sample. D’Agostino et al. (2009) adopt this idea in forecasting with TVP-VAR

models, and following Cogley ad Sargent (2005) and Cogley et al. (2005) they also

request that only stationary draws of �t are accepted. Stationarity restrictions in

TVP-VAR models are satisfied if the roots of the reverse characteristic VAR polyno-

mial defined by �t lie outside the complex unit circle for each and every t = 1; :::; T .

This restriction can hardly be satisfied in VARs with more than 3 variables and 2

lags (see also Koop and Potter, 2008). Additionally, in many cases a training sample

might not be available due to shortage of observations.

In that respect, in this forecasting exercise I use a Minnesota-based prior to elicit

the prior hyperparameters of the TVP-VAR model. This results to an Empirical Bayes

prior that can be tuned using the full sample, without the need to waste useful ob-

servations in a training sample. In order to avoid explosive draws, I subjectively

choose the hyperparameters for the initial condition �0 and the covariance matrix

Q, in order to get a very tight prior. This prior allows to overcome stationarity

restrictions which make the MCMC sampler inefficient. The reader should note

that I use only a single choice of hyperparameters for the Minnesota prior, without

searching and comparing other choices for the TVP-VAR model. The main purpose

4Note that variable selection is parsimonious and implies that a coefficient �jt will either be
selected or discarted from the “true” model at all time periods 1; ::; T . For different approaches
which allow different coefficients to enter or exit the “true” model at different points in time, see
Koop and Korobilis (2009b) and Chan, Koop and Strachan (2010).
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of the paper is to compare the unrestricted to the restricted (with variable selec-

tion) model, so only one benchmark prior is used for the shake of this comparison.

Nevertheless, examining the forecasting performance of different priors in models

with time-varying parameters is a challenging, but very important idea for future

research.

2.3 Prior elicitation for variable selection

The performance of the variable selection is affected by the hyperparameters which

affect the mean and variance of the mean equation coefficients � or �t. In the case

of the VAR, we already discussed that when 
j = 0 and a parameter �j is restricted

we just take a draw from each prior. That means that the prior variance V0 cannot

be very large (to go to1) because this would imply that no predictors are selected.

Kuo and Mallick (1997) propose to set b0 = (0; :::; 0)0 and V0 = d � In, where In
is the identity matrix of dimensions n � n. Then reasonable values for d would

be in the range [0:25; 25]. At first, this may seem like a restrictive assumption, but

for VARs where the variables are approximately stationary, a prior variance on the

regression coefficients of the form V0 = 10 � In is fairly uninformative. In TVP-

VARs, as explained previously, it is common practice to use an Emprical Bayes prior

on the variance Q. These priors are by definition informative. For the purpose of

comparison, I use a benchmark Minnesota-type prior.

Finally, it should be noted that variable selection is also affected by the hy-

perparameter of the Bernoulli prior of 
j. The hyperparameters �0j can be tuned

according to the researcher’s beliefs about the number of expected restrictions in a

model. As a rule of thumb, if the researcher expects or wants to impose as many

restrictions as possible (for example, due to a degrees of freedom problem) then

she can set 0 < �0j � 0:55. Less restrictions are implied by setting �0j > 0:5. The

choice �0j = 0:5 is used in practice as the uninformative choice, although it implies

a priori that exactly 50% of the predictors should be included; see Chipman et al.

(2001) for more details.

3 Simulated numerical examples

In order to assess the performance of the model selection algorithm, this section

presents the results of two examples using simulated datasets.

Example 1: Constant parameters VAR. The first exercise is the one considered

in George, Sun and Ni (2008). Consider a 6-variable VAR with a constant and one

5An insightful application of Bayesian variable selection by imposing many restrictions a priori,
can be found in Brown, Vanucci and Fearn (2002). In this paper, the authors forecast with regression
models using more predictors than observations.
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lag and constant parameters6

B =

0
BBBBBBBB@

1 1 1 1 1 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1
CCCCCCCCA

, 	 =

0
BBBBBB@

1 0:5 0:5 0:5 0:5 0:5
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1
CCCCCCA
: (13)

where it holds that � = (		0)�1. 100 samples of size T = 50 are generated, using

a random initial condition for the dependent variables y�1 � U (0; 1). Hence 100

VAR models are estimated using the generated samples, saving 30.000 draws from

the posterior of the estimated parameters after discarding an initial 20.000 draws

to ensure convergence. The prior hyperparameters (see equations (5) - (7)) are set

to be uninformative: b0 = 0n�1, V0 = 9� In, �0j = 0:5 for all j = 1; :::; n, � = 0 and

S = 0� Im. The intercepts are always included in each model, so that the variable

selection applies only to lags of the dependent variables.

The unrestricted VAR is just a special case of variable selection, where we im-

pose all 
j = 1. Thus, a fully unrestricted estimate of B can be obtained using

the variable selection priors and imposing always � to be the identity matrix I of

dimensions n� n. The average over the 100 samples of the posterior mean (poste-

rior standard deviations of non-zero parameters are in parentheses) of B using the

unrestricted prior is

bBUN =

0
BBBBBBBBBBBBBBBBBBBBBB@

1:05
(:51)

1:06
(:56)

1:07
(:57)

0:91
(:56)

0:79
(:56)

0:96
(:56)

0:81
(:08)

:12 :10 :11 :10 :09

:05
0:71
(:12)

:05 :01 :03 :05

:04 :02
0:74
(:11)

:01 :01 :06

:00 :06 :06
0:75
(:12)

:05 :02

:06 :01 :00 :05
0:69
(:12)

:03

:00 :06 :08 :03 :07
0:72
(:12)

1
CCCCCCCCCCCCCCCCCCCCCCA

6The SUR transformation requires to estimate � and 
 which are the parameters in vectorized
form. For clarity in presentation, the parameters in these simulation study are given in their usual
VAR matrix form (B and 
, where it holds that � = vec (B) and 
 = vec (
)).
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The posterior means of the unrestricted model are identical to the MLE estimate.

Now define 
 to be the k � m matrix obtained from the column vector 
, which

also includes the unrestricted constants. The average, over the 100 samples, of the

posterior mean of the variable selection indices (in matrix form) b
 are:

b
 =

0
BBBBBBBB@

1:00 1:00 1:00 1:00 1:00 1:00
1:00 :09 :09 :05 :06 :07
:05 1:00 :05 :09 :05 :04
:06 :09 1:00 :14 :10 :08
:07 :11 :06 0:99 :15 :05
:05 :13 :05 :11 1:00 :10
:03 :06 :07 :08 :06 1:00

1
CCCCCCCCA

and the average of the variable selection posterior mean, bBV S are

bBV S =

0
BBBBBBBBBBBBBBBBBBBBBB@

0:99
(:32)

1:10
(:40)

1:05
(:43)

1:02
(:42)

0:98
(:42)

1:00
(:41)

0:98
(:03)

:01 :00 :00 :01 :00

:00
0:93
(:06)

:04 :05 :04 :01

:01 :01
0:94
(:06)

:03 :01 :02

:01 :02 :03
0:92
(:07)

:04 :02

:01 :02 :01 :01
0:87
(:10)

:01

:00 :02 :03 :01 :03
0:96
(:04)

1
CCCCCCCCCCCCCCCCCCCCCCA

:

The elements of the b
 matrix can be interpreted as "probabilities of inclusion" of

a certain parameter. The top row of b
 is 1 by default, since it refers to the VAR in-

tercept which was left unrestricted. Variable selection picks the correct restrictions

in small samples, resulting in more accurate estimates of the VAR regression coef-

ficients (compare bBUN and bBV S). This is true also for the unrestricted intercepts,

which are much closer to their true values. Additionally, the covariance matrix

resulting from the variable selection is also more accurate than the MLE of the co-

variance matrix (results not reported here).

George et al. (2008) have used the exact same setup to evaluate the efficiency of

the SSVS algorithm described in Section 3.1. Comparing the matrix of restrictions,
b
, reported above, with their equivalent matrix it is obvious that their reported

probabilities of inclusion of the parameters are more decisive. In their case, the

highest probability which a paramter which should be restricted gets is equal to

10



0:5 in only a few cases. This happens because the SSVS restricts a parameter if

it is too low7, while variable selection in this paper requires a parameter to be

restricted exactly to zero. However, using both algorithms model selection implies

that the optimal predictive model is the one which has parameters with probability

of inclusion higher than 0.5 (see Barbieri and Berger (2004) for a proof).

Example 2: Homoskedastic TVP-VAR. In the second example, 100 samples of

size T = 100 are generated from a 4-variable Homoskedastic TVP-VAR with one

autoregressive lag (no constant). The covariance matrix � is set equal to the upper

left 4x4 block of the covariance matrix specified in Example 1 (in equation (13)),

and �t = vec (Bt) is let to evolve according to the random walk specification (11),

by setting initial condition, B0 = fBtgt=0, and a simple diagonal covariance matrix

Q, of the form

B0 =

0
BB@

:7 0 :35 0
0 :7 0 0
0 :45 :7 0
:4 0 0 :7

1
CCA , Qj;j =

8
<
:
0 , if B0;ij = 0
0:01 , if B0;ij > 0:5
0 , if B0;ij < 0:5

:

This specification implies that the diagonal elements of Bt are time-varying with ini-

tial condition 0:7, while the non-zero non-diagonal elements 0:4; 0:45; 0:35 (which

are lower than 0:5) remain constant for all t (and, of course, the zero non-diagonal

elements remain zero for all t). The goal here is to examine the efficiency of vari-

able selection when in the true model the R.H.S. variables affect the dependent

variable through a combination of constant and time-varying coefficients, but the

(misspesified) model we are estimating assumes all coefficients to be time varying.

The usual practice in the TVP-VAR models is to use tight databased priors. How-

ever, for the purpose of this excercise realatively uninformative priors are defined

�0 � Nn (b0; V0)

Q�1 � Wishart
�
�; R�1

�


jj
n�j � Bernoulli (1; �0j)

��1 � Wishart
�
�; S�1

�

where the hyperparameters are set to the values b0 = 0n, V0 = 10In, � = 16, R = 1,
�0j = 0:5 for all j = 1; :::; n, � = 4 and S = 1 . Full details, like means and variances

of the posteriors of the parameters, are difficult to present here. However, the

average of the restriction indices is again very informative about the efficiency of

the the variable selection algorithm to find the correct restrictions:

7In particular, they set their prior hyperparameters in such a way, that parameters which are
lower than 0:5 should be restricted and shrunk towards zero (but as explained, never equal to zero).
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b
 =

0
BB@

1:00 :04 1:00 :04
:01 1:00 :04 :01
:02 1:00 1:00 :05
1:00 :04 :02 1:00

1
CCA :

As in the simple VAR case above, posterior means are more accurate and posterior

standard deviations are smaller (results available upon request).

4 Macroeconomic Forecasting with VARs

4.1 Data and set-up

The variable selection techniques described in Section 2 are used to provide fore-

casts of four macroeconomic series of the U.K. economy. In particular, the variables

included in these models are the inflation rate ��t (RPI:Percentage change over

12 months: All items), unemployment rate ut (Unemployment rate: All aged 16

and over, Seasonally adjusted), the annual growth rate of GDP gdpt (Gross Domes-

tic Product: Quarter on quarter previous year: Chain volume measure, Seasonally

adjusted) and the interest rate rt (Treasury bills: average discount rate). It is cus-

tomary in VAR models to include only one measure of economic activity, i.e. either

GDP or unemployment. The assumption here is that policymakers are interested

individually, at least in the short-run, in forecasts of both GDP and unemployment.

There are many reasons for having individual forecasts for unemployment and GDP

growth, for example as of January 2010 it is the case that many economies are out

of the global recession according to initial GDP growth rate estimates. However in

the same countries (including US) unemployment is not getting lower, and price

inflation is below its target level.

The data are obtained from the Office for National Statistics (ONS) website,

http://www.statistics.gov.uk/. The available sample runs from 1971Q1 to 2008Q4.

Inflation, unemployment and interest rates are measured on a monthly basis. Quar-

terly series are calculated by the ONS by taking averages over the quarter (for in-

flation), the value at the mid-month of the quarter (for unemployment), and the

value at the last-month of the quarter (for interest rate), respectively. The data are

plotted in Figure 1.

The VAR and Homoskedastic TVP-VAR models include a constant and a maxi-

mum of 2 lags of the dependent variables. One could argue that the use of variable

selection would allow to define a higher maximum lag length, say 4 lags, and then

let the data decide on the optimal number of lags in each VAR equation. However,

given the fact that the total observations are only 152, we would be asking too

much from the variable selection algorithm in a recursive forecasting exercise. The

forecast horizons used for comparison are h = 1,4 and 8. The sample 1971:Q1 -

12



Figure 1: Graph of the data for UK inflation, unemployment, GDP, and interest rate.

1988:Q4 is used for initial estimation, and the forecasts are computed recursively

with expansion of the estimation sample each quarter. Subsequently for the period

1989:Q1 - 2008:Q4 we obtain a total of 80-h forecasts.

Iterated forecasts are obtained by estimating the models (4) and (10), writing

the models in companion (VAR(1)) form, and iterating the forward up to h = 8 pe-

riods ahead in order to obtain [byT+1; :::; byT+h], where T is the last observation of the

sample. Direct forecasts are obtained from the VAR and the TVP-VAR specifications

in (4) and (10) respectively by estimating separately for h = 1,4 and 8 the models

with the dependent variable yt+1 replaced by yt+h, while the R.H.S. variables are

still measured up to, and including, time t. When h = 1 direct and iterated fore-

casts are exactly the same, since we are estimating and forecasting with exactly the

same specifications.

When forecasting, the parameters of the VAR model remain constant in the out-

of-sample period. However this is not the case for the autoregressive coefficients

of the TVP-VAR model. The iterative nature of the Gibbs sampler allows to easily

13



simulate the out-of-sample path of �t. At each iteration, conditional on obtaining a

draw of �T and the covariances Q, we can use the random walk evolution equation

(11) to simulate
h
b�T+1; :::; b�T+h

i
in a recursive manner. Then conditional on know-

ing these parameters, calculation of direct or iterated forecasts can be computed as

in the VAR case, separately for each out-of-sample period.

4.2 Forecasting models

Dependent on the model specification and the choice of prior hyperparameters,

there are 5 competing forecasting models. Common place in all models, in order to

evaluate the performance of variable selection of mean equation coefficients, is that

the covariance matrix is integrated out using an uninformative prior of the form

p (�) / j�j�(m+1)=2 which is equivalent to the Whishart prior defined in (7) with the

additional restriction that � = 0 and S�1 = 0m�m.

The 5 models are

1. VAR with variable selection (VAR VS)

The priors are 
jj
n�j � Bernoulli (1; 0:5) for all j = 1; :::; n, and �j �
N (0; 102) if �j is an intercept, and �j � N (0; 3

2) otherwise.

2. VAR with Minnesota prior (VAR MIN)

The Minnesota prior for � is of the form. � � N
�
bMIN ; V MIN

�
where

V MIN
i;l =

8
><
>:

g1=p for parameters on own lags

g3=s
2
i for intercepts

g2s2i
ps2
l

for parameters j on variable l 6= i; l; i = 1; ::;m
(14)

Here s2i is the residual variance from the p-lag univariate autoregression for

variable i. The prior mean vector bMIN is set equal to 0:9 for parameters on

the first own lag of each variable and zero otherwise. The hyperparameters

are set to the values g1 = 0:5, g2 = 0:005 and g3 = 100.

3. Benchmark VAR

The priors are the same as the VAR with variable selection (VAR VS), where

now we do not sample 
j (or equivalently, restrict 
j = 1 for all j)

4. TVP-VAR with variable selection (TVP-VAR VS)

The initial condition is set to �0 � N (0; 4
2VMIN), and 
jj
n�j � Bernoulli (1; 0:5).

The covarianceQ of the varying coefficients has the priorQ�1 � Wishart (�; R)
where � = n+1 and R�1 = 0:001 (n+ 1)V MIN , where V MIN is the matrix de-

fined in (14) above.
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5. Benchmark TVP-VAR

The priors are the same as in the TVP-VAR case with variable selection, but in

this case 
j = 1 for all j = 1; :::; n.

The priors for the VAR are fairly uninformative, however the TVP-VAR prior is

quite tight. Althernatively we can assign to �0 a large variance, say 100I, on the

basis that this is a desirable uninformative choice. However doing so, means that

we increase the probability that the whole sequence of draws for �t will be in the

nonstationary region. This approach can be computationally cumbersome as many

draws may be required as in the case of Cogley et al. (2005) who use 100.000

draws, discard the first 50.000 and save every 10-th draw. Given the dimension

of the parameter space and the compuational demands of a recursive forecasting

exercise, the informative variance 42VMIN on the initial state is used here in order

enhance the efficiency of the Gibbs sampler. All models are based on a run of 20.000

draws from the posterior, discarding the first 10.000 draws.

The choice of the hyperparameter R�1 is based on the variance of the Minnesota

prior as well, with a scaling constant equal to 0:001 (n+ 1). This might not be the

optimally elicited hyperparameter of this prior for forecasting purposes, and other

choices exist which the researcher ought to examine. However the purpose of this

paper is, for a given prior, to compare the unrestricted model with the same model

with variable selection added. Subsequently, while a specific prior can be a subject

of critisism if the ulitmate purpose was to compare the performance of the TVP-VAR

with that of other models (like random walk, and nonlinear models like a Markov

Switching or Structural Breaks VAR), this critisism should not apply here.

4.3 Forecast evaluation

All models are evaluated using the Mean Squared Forecast Error (MSFE) and the

Mean Absolute Forecast Error (MAFE). In particular, for each of the 4 variables yi of

y and conditional on the forecast horizon h and the time period t, the two measures

are computed as

MSFEhi;t =

q�
byi;t+hjt � yoi;t+h

�2

MAFEhi;t =
��byi;t+hjt � yoi;t+h

��

where byi;t+hjt is the time t + h prediction of variable i (inflation, unemployment,

gdp or interest rate), made using data available up to time t. yoi;t+h is the observed

value (realisation) of variable i at time t + h. In the recursive forecasting exercise,

averages over the full forecasting period 1989:Q1 - 2008:Q4 are presented using
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the formulas

�
dMSFE

�h
i
=

1

� 1 � h� � 0

�1�hX

t=�0

MSFEhi;t

�
dMAFE

�h
i
=

1

� 1 � h� � 0

�1�hX

t=�0

MAFEhi;t

where � 0 is 1989:Q1 and � 1 is 2008:Q4.

4.4 In-sample variable selection results

Tables 1 and 2 present variable selection results for the VAR-VS and TVP-VAR-VS

models using the full sample. Entries in these tables are the means of the posterior

draws of the indices 
 for the two models. Draws from the posterior of 
 is just a

sequence of 1’s and 0’s, so that the mean can be simply interpreted as a probability

of inclusion of each variable. Note that while 
 is a column vector, results are

presented in the table in matrix form, where the dependent variables are in columns

and the R.H.S variables are in rows. For h = 1 the model for direct forecasts has the

same specification as the model for iterated forecasts, so columns 1-4 in the tables

refer to both models. However notice that for longer horizons we need to specify a

different model for direct forecasts and columns 5-12 in the tables refer only to the

this model specification, for horizons h = 4 and 8.
The first thing to observe from Tables 1 and 2 is that for both models and for all

horizons variable selection imposes many restrictions. This result is not surprising,

both from an empirical and thoeretical point of view. The most recent own lag of

each variable is important in most cases for all forecast horizons. Other than that,

variable selection indicates only a few extra variables as important in each VAR

equation, leading to quite parsimonious models. This pattern complies with the

empirical results of Korobilis (2008) and Jochmann et al. (2009) using the SSVS

algorithm for VAR models (see Section 3.1 above).

It is obvious that when the posterior mean of 
 is exactly equal to 0 or 1, then a

specific predictor variable should just respectively be exit or enter the best model.

An interesting question is how to decide and classify a predictor when the asso-

ciated probability is 0.6 or 0.3 for example. In fact, Barbieri and Berger (2004)

show that the optimal model in model/variable selection for prediction purposes is

the median probability model. Subsequently their proposed rule is only to select

variables which have probability of inclusion in the best model higher than 0.5.

A comparison of the parameters of the VAR models with the respective parame-

ters of the TVP-VAR models, reveals quite a few differences, but also many similar-

ities at the same time, as to which variables are selected to enter the "best" model.

For example, in the VAR strong (probability equal to 1) predictors for 1-quarter
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ahead inflation (��t+1) are current inflation (��t) and interest rate(rt), as well as

inflation in the previous quarter (��t�1). In the TVP-VAR it is only ��t and ��t�1
which are selected, and the current level of interest rate has only probability of

0.28. In the same equation, there is weaker evidence that gdpt, ut�1and rt�1 are

good predictors, which vanishes in the TVP-VAR case (for example rt�1 has a prob-

ability of 0.61 of entering the VAR model, but only a probability of 0.41 of entering

the TVP-VAR model). Similar inference can be made for the rest of variables and

equations.

An interesting question is whether any differences in the inclusion probabilities

of the predictors in the VAR and the same predictors in the TVP-VAR, are due to the

fact that the models are different or because of the different priors. This is a difficult

question to answer, since this would require to place exactly the same priors (for

instance a flat prior on all parameters) in both specification and do the comparison.

As explained in this paper, flat priors on all the hyperparameters of the TVP-VAR

model are not possible.
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Table 1. Average of posterior of restrictions 
, for h = 1; 4; 8 (VAR model)

��t+1 ut+1 gdpt+1 rt+1 ��t+4 ut+4 gdpt+4 rt+4 ��t+8 ut+8 gdpt+8 rt+8

Intercept 0.14 0.02 0.91 0.18 0.96 0.06 1.00 0.59 0.83 0.10 1.00 0.25

��t 1.00 0.00 0.06 0.02 1.00 0.01 0.22 0.10 1.00 0.04 0.10 0.20

ut 0.29 1.00 0.61 0.00 0.97 1.00 0.37 0.07 0.57 1.00 0.77 0.81

gdpt 0.61 0.05 1.00 0.06 0.47 0.52 0.03 0.47 0.14 0.04 0.06 0.08

rt 1.00 0 0.19 1.00 1.00 0.02 0.03 1.00 0.16 1.00 1.00 0.46

��t�1 1.00 0.00 0.02 0.03 0.07 0.00 0.69 0.55 0.06 0.34 0.03 0.84

ut�1 0.53 1.00 0.62 0.01 0.47 1.00 0.80 0.09 0.60 1.00 0.63 1.00

gdpt�1 0.38 0.00 0.04 0.47 0.07 0.01 0.03 0.28 1.00 0.03 0.72 0.97

rt�1 0.64 1.00 0.72 0.04 0.30 1.00 1.00 0.06 0.22 0.01 0.13 0.43

Table 2. Average of posterior of restrictions 
, for h = 1; 4; 8 (TVP-VAR model)

��t+1 ut+1 gdpt+1 rt+1 ��t+4 ut+4 gdpt+4 rt+4 ��t+8 ut+8 gdpt+8 rt+8

Intercept 0.25 0.51 0.94 0.82 0.86 0.32 1.00 1.00 1.00 0.42 0.91 1.00

��t 1.00 0.49 0.46 1.00 0.05 0.46 0.40 0.77 1.00 0.47 0.54 0.73

ut 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.02 1.00 0.24 1.00

gdpt 0.31 0.52 1.00 0.95 0.99 0.58 1.00 0.44 0.75 0.41 0.00 0.28

rt 0.28 0.50 0.30 1.00 0.50 0.50 0.44 1.00 0.17 0.57 0.38 0.18

��t�1 1.00 0.49 0.41 0.38 0.00 0.49 0.45 0.65 0.00 0.49 0.65 0.47

ut�1 0.00 1.00 0.00 0.00 0.00 1.00 0.06 1.00 0.00 1.00 0.17 1.00

gdpt�1 0.21 0.54 0.02 0.73 0.20 0.71 0.12 0.99 0.24 0.82 0.00 0.36

rt�1 0.41 0.43 0.77 0 0.87 0.75 0.39 0.00 0.56 0.48 0.29 0.00

1
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4.5 Out-of-sample forecasting results

In this subsection the restricted and unrestricted VAR models are evaluated out-of-

sample. Tables 3 to 5 present the MSFE and MAFE statistics over the forecasting

sample 1989:Q1-2008:Q4. Although the aim of this forecasting exercise is to assess

the gains from using variable selection in VAR models, for ease of comparison the

MSFE and MAFE of a naive forecasting model are presented. This model is the

random walk estimated for each individual time series, over the three different

forecast horizons. Note that in Table 3 there is one set of results for direct and

iterated forecasts, since for h = 1 the model specifications are exactly the same.

The results indicate that on average we are much better off when using vari-

able selection than when using the unrestricted models. For individual series it is

the case that variable selection would either offer large improvements or it would

give predictions similar to the unrestricted model. This would not be surprising as

soon as the restrictions imposed are the correct ones. That is, it is expected that a

correctly restricted model will perform at least as well as the unrestricted model.

However an incorectly restricted model will most probably give predictions which

are really worse than the unrestricted model (dependent on the importance of the

relevant variables which are incorrectly restricted). Subsequently, the improvement

in forecasting suggests that Bayesian variable selection picks correct restrictions,

which lead to useful parsimonious models.

For short-term forecasts (h = 1) the multivariate VAR models, whether restricted

or unrestricted, offer more accurate forecasts compared to the parsimonious naive

forecasts. However this picture is reversed for more distant forecasts and the perfor-

mance varies substantially for each variable, dependent on whether iterated or di-

rect forecasts have been calculated. Previous results (see for example Pesaran, Pick

and Timmermann 2009, and references therein) suggest that iterated forecasts may

dominate direct forecasts in small samples and for large forecast horizons, while di-

rect forecats may dominate when the dynamics of the model are misspecified. For 4-

and 8-step ahead forecasts of inflation it is obvious that the direct model performs

much better. It is well known that the dynamics of inflation are other than linear

which implies why the VAR model performs poorly for this variable (always com-

pared to the naive forecast). The nonlinear TVP-VAR model hugely improves over

the VAR forecasts for 4- and 8-step ahead horizons, however the direct model spec-

ification is more accurate. The reader should note that in this paper the assumption

is that the out-of-sample parameters have to be simulated (instead of, for instance,

fixing their values at the value estimated at time T ), which might explain an ac-

cumulated uncertainty in the parameters over longer horizons. Even though this

paper argues that stationarity restrictions are computationally inefficient in TVP-

VAR models for the estimation of the parameters [�1; :::; �T ], the applied researcher

might want to combine a tight prior on the estimated parameter with stationarity

restriction imposed in the out-of-sample simulated parameters
�
�T+1; :::; �T+h

�
.
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While MSFE and MAFE measures are very informative in our case, since the

purpose is just to evaluate point forecasts, full predictive densities can be compared

using predictive likelihoods. In fact predictive likelihoods averaged on all 4 de-

pendent variables suggest that the restricted models (whether VAR and TVP-VAR

variable selection or the Minnesota VAR prior) by reducing uncertainty about the

paramaeters, tend to also reduce the uncertainty regarding predictions. Finally,

note that in order to have a complete picture of the performance of variable se-

lection, we should additionally compare the restricted models with the respective

unrestricted models with one lag. The restricted models have a maximum lag of

two and it might be the case that the "true" data generating process is a model

with one lag which variable selection is not able to capture. It turns out that un-

restricted VAR and TVP-VAR models with only one lag consistently forecast worse

than the unrestricted models with two lags, at all forecast horizons. For the shake

of brevity results on predictive likelihoods, and VAR models with different lags are

not presented here but are available upon request8.

The reader can replicate the results in this paper using MATLAB code available

in http://personal.strath.ac.uk/gcb07101/code.html.

Table 3. Forecast evaluation, h = 1
MSFE MAFE

��t ut gdpt rt ��t u gdpt rt

Naive Model:

RW 0.576 0.108 0.501 0.394 0.624 0.262 0.594 0.484

VAR Models:

Direct/Iterated forecasts

VAR 0.285 0.027 0.247 0.239 0.423 0.132 0.406 0.355

VAR-MIN 0.300 0.029 0.267 0.241 0.432 0.135 0.419 0.356

VAR-VS 0.208 0.030 0.164 0.152 0.354 0.134 0.324 0.291

TVP-VAR 0.475 0.033 0.302 0.185 0.595 0.153 0.437 0.346

TVP-VAR-VS 0.419 0.035 0.273 0.157 0.542 0.149 0.360 0.318

8It turns out that among the unrestricted VAR and TVP-VAR models with up to four lags, the
specifications with two lags perform the best at all horizons and for both iterated and direct forecasts.
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Table 4. Forecast evaluation, h = 4
MSFE MAFE

��t ut gdpt rt ��t u gdpt rt

Naive Model:

RW 1.190 1.223 1.439 1.213 0.874 0.932 0.902 0.930

VAR Models:

Direct forecasts

VAR 9.714 1.382 1.374 2.761 2.695 0.989 0.874 1.421

VAR-MIN 3.674 1.307 1.347 2.928 1.696 0.966 0.864 1.465

VAR-VS 5.110 1.289 0.818 1.563 1.958 0.925 0.751 1.082

TVP-VAR 2.068 1.058 1.259 0.775 1.188 0.911 0.917 0.779

TVP-VAR-VS 1.965 1.046 0.903 0.675 1.150 0.912 0.814 0.644

Iterated forecasts

VAR 8.150 0.231 1.228 2.456 2.376 0.422 0.882 1.209

VAR-MIN 7.948 0.230 1.215 2.577 2.318 0.422 0.876 1.255

VAR-VS 7.730 0.208 1.263 1.303 2.025 0.361 0.697 0.843

TVP-VAR 3.157 1.243 1.715 1.983 1.388 0.896 1.082 1.106

TVP-VAR-VS 3.680 1.083 1.552 1.617 1.326 0.717 1.026 0.973

Table 5. Forecast evaluation, h = 8
MSFE MAFE

��t ut gdpt rt ��t u gdpt rt

Naive Model:

RW 2.011 3.730 1.752 3.545 1.258 1.558 1.076 1.547

VAR Models:

Direct forecasts

VAR 10.535 7.238 2.984 9.435 3.121 2.2579 1.303 2.626

VAR-MIN 8.800 4.419 2.525 9.648 2.336 1.8006 1.211 2.684

VAR-VS 2.957 4.604 2.255 6.270 1.655 1.9645 1.112 2.177

TVP-VAR 1.533 2.831 2.913 3.928 1.072 1.2794 1.578 1.748

TVP-VAR-VS 1.251 1.679 2.907 4.063 0.918 1.0735 1.561 1.757

Iterated forecasts

VAR 30.870 0.790 0.849 7.903 5.069 0.750 0.687 2.471

VAR-MIN 29.863 0.771 0.820 7.262 4.959 0.743 0.675 2.335

VAR-VS 22.996 0.727 0.866 2.570 3.619 0.706 0.681 1.326

TVP-VAR 13.822 1.457 1.298 5.124 2.642 0.982 0.945 1.826

TVP-VAR-VS 4.126 1.043 1.554 2.380 1.604 0.849 1.004 1.259
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5 Concluding remarks

Vector autoregressive models have been used extensively over the past for the pur-

pose of macroeconomic forecasting, since they can fit the observed data better than

competing theoretical and large-scale structural macroeconometric models. Nowa-

days, Bayesian dynamic stochastic general equilibrium (DSGE) models like the one

of Smets and Wouters (2003) have been shown to challenge the forecasting perfor-

mance of unrestricted VAR models, while at the same time having all the advan-

tages of being structural, i.e. connected to economic theory. While DSGE models

provide restrictions based on theory, this paper shows that Bayesian variable selec-

tion methods can be used to find restrictions based on the evidence in the data, and

at the same time improve over the forecasts of unrestricted VAR models as well.

Additionally, Bayesian variable selection methods for vector autoregressions can be

used for structural analysis, like measureing monetary policy shocks in identified

VARs. A different route for VAR variable selection algorithms would be to uncover

empirically the relationship between variables, which could potentially help in the

developement of new theoretical relationships.
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Technical Appendix

A Posterior inference in the VAR with variable selec-

tion

In this section I provide exact details on the conditional densities of the restricted

VAR model. For simplicity rewrite the priors, which are

� � Nn (b0; V0) (A.1)


jj
n�j � Bernoulli (1; �0j) (A.2)

��1 � Wishart
�
�; S�1

�
(A.3)

A.1 Algorithm 1

Given the prior hyperparameters (b0; V0; �0;	; �) and an initial value for 
, �, sam-

pling from the conditional distributions proceeds as follows

1. Sample � from the density

�j
;�; y; z � Nn

�
eb; eV

�
(A.4)

where eV =
�
V �10 +

PT
t=1 z

�0
t �

�1z�t

��1
and eb = eV

�
V �10 b0 +

PT
t=1 z

�0
t �

�1yt+h

�
,

and z�t = zt�.

2. Sample 
j from the density


jj
n�j; �;�; y; z � Bernoulli (1; e�j) (A.5)

preferably in random order j, where e�j = l0j
l0j+l1j

, and

l0j = p
�
yj�j; 
n�j; 
j = 1

�
�0j (A.6)

l1j = p
�
yj�j; 
n�j; 
j = 0

�
(1� �0j) (A.7)

The expressions p
�
yj�j; 
n�j; 
j = 1

�
and p

�
yj�j; 
n�j; 
j = 0

�
are conditional

likelihood expressions. Define �� to be equal to � but with its j � th element

�j = �j (i.e. when 
j = 1). Similarly, define ��� to be equal to � but with

the j � th element �j = 0 (i.e. when 
j = 0). Then in the case of the VAR
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likelihood of model (4), we can write l0j, l1j analytically as

l0j = exp

 
�
1

2

TX

t=1

(yt+h � Zt�
�)0��1 (yt+h � Zt�

�)

!
�0j

l1j = exp

 
�
1

2

TX

t=1

(Yt+h � Zt�
��)0��1 (Yt+h � Zt�

��)

!
(1� �0j) :

3. Sample ��1 from the density

��1j�; 
; y; z � Wishart
�
e�; eS�1

�
(A.8)

where e� = T + � and eS�1 =
�
S +

PT
t=1 (yt+h � zt�)

0 (yt+h � zt�)
��1

.

A.2 Algorithm 2

In modern matrix programming languages it is more efficient to replace "for" loops

with matrix multiplications (what is called "vectorizing loops"). This section pro-

vides a reformulation of the VAR, so that the summations in the Gibbs sampler

algorithm (A.4) - (A.8) are replaced by matrix multiplications. For example, com-

puting l0j and l1j requires to evaluate
PT

t=1 (yt � zt�
�)0��1 (yt � zt�

�) for t = 1; :::; T .

In practice, it is more efficient to use the matrix form of the VAR likelihood:

Begin from formulation (1), and let y = (y01; ::::; y
0
T ), x = (x01; :::; x

0
T ) and " =

("01; :::; "
0
T ). A different SUR formulation of the VAR takes the form

vec (y) = (Im 
 x
0) �b+ vec (") (A.9)

Y = W� + e (A.10)

where Y = vec (y) is a (Tn) � 1 column vector, W = Im 
 x is a block diagonal

matrix of dimensions (Tn)�m with the matrix x replicatedm times on its diagonal,

� = ��� is a m � 1 vector, �� = vec(B0) and e = vec (") � N (0;�
 IT ). To clarify

notation, vec (�) is the operator that stacks the columns of a matrix and 
 is the

Kronecker product. In this formulation,W = Im
x is not equal to z = (z01; :::; z
0
T ) =�

(Im 
 x1)
0 ; :::; (Im 
 xT )

0�
which was defined in (4). Additionally, note that while

� and b are both n � 1 vectors, they are not equal. It holds that � = vec(B) and

�� = vec(B0).
The priors are exactly the same as the ones described in the main text. The

conditional posteriors of this formulation are given by
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1. Sample b from the density

��j
;�; Y;W � Nn

�
eb; eV

�
(A.11)

where eV = V �10 +W �0 (��1 
 IT )W
� and eb = eV

�
V �10 b0 +W

�0 (��1 
 IT )Y
�
,

and W � = W�.

2. Sample 
j from the density


jj
n�j; �
�;�; Y;W � Bernoulli (1; e�j) (A.12)

preferably in random order j, where e�j = l0j
l0j+l1j

, and

l0j = exp

�
�
1

2
(Y �W��)0

�
��1 
 IT

�
(Y �W��)

�
�0j

l1j = exp

�
�
1

2
(Y �W���)0

�
��1 
 IT

�
(Y �W���)

�
(1� �0j) :

3. Sample ��1 from the density

��1j
; ��; Y; x � Wishart
�
e�; eS�1

�

where e� = T +� and eS�1 =
�
S + (Y � x�)0 (Y � x�)

��1
, where � is the k�n

matrix obtained from the vector � = ���, which has elements (�ij) = �(j�1)k+i,
for i = 1; :::; k and j = 1; :::; n.

This sampler has slight modifications compared to the one above because of the

different specification of the likelihood function, but the two SUR specifications are

equivalent and produce the same results. Posterior inference in the TVP-VAR model

is just a simple generalization of the VAR case and it is described in the next section.

Unfortunately it is not possible to formulate a TVP-VAR in the form (A.9), in order

to take advantage of matrix computations.

B Posterior inference in the TVP-VAR with variable se-

lection

The homoskedastic TVP-VAR with variable selection is of the form
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yt = zt�t + "t (B.1)

�t = �t�1 + �t (B.2)

where �t = ��t, and "t � N (0;�) and �t � N (0; Q) which are uncorrelated with

each other at all leads and lags. The priors for this model are:

�0 � Nn (b0; V0)


jj
n�j � Bernoulli (1; �0j)

Q�1 � Wishart
�
�; R�1

�

��1 � Wishart
�
�; S�1

�

Estimating these parameters means sampling sequentially from the following con-

ditional densities

1. Sample �tj�t�1; Q;�; yt; z
�
t for all t, where z�t = zt� and � = diag f
1; :::; 
ng,

using the Carter and Kohn (1994) filter and smoother for state-space models

(see below)

2. Sample 
j from the density


jj
n�j; �;�; y; z � Bernoulli (1; e�j) (B.3)

preferably in random order j, where e�j = l0j
l0j+l1j

, and

l0j = p
�
yj�j; 
n�j; 
j = 1

�
�0j (B.4)

l1j = p
�
yj�j; 
n�j; 
j = 0

�
(1� �0j) (B.5)

The expressions p
�
yj�1:Tj ; 
n�j; 
j = 1

�
and p

�
yj�1:Tj ; 
n�j; 
j = 0

�
are condi-

tional likelihood expressions, where �1:Tj = [�1;j; :::; �t;j; :::; �T;j]
0
. Define ��t to

be equal to �t but with its j � th element �t;j = �t;j (i.e. when 
j = 1). Sim-

ilarly, define ���t to be equal to �t but with the j � th element �t;j = 0 (i.e.

when 
j = 0), for all t = 1; :::; T . Then in the case of the TVP-VAR likelihood

of model (B.1), we can write l0j, l1j analytically as

l0j = exp

 
�
1

2

TX

t=1

(yt+1 � zt�
�
t )
0��1 (yt+1 � zt�

�
t )

!
�0j

l1j = exp

 
�
1

2

TX

t=1

(yt+1 � zt�
��
t )

0��1 (yt+1 � zt�
��
t )

!
(1� �0j) :
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3. Sample Q�1 from the density

Q�1j�; 
;�; y; z � Wishart
�
e�; eR�1

�
(B.6)

where e� = T + � and eR�1 =
�
R +

PT
t=1

�
�t � �t�1

�0 �
�t � �t�1

���1
.

4. Sample ��1 from the density

��1j�;Q; 
; y; z � Wishart
�
e�; eS�1

�
(B.7)

where e� = T + � and eS�1 =
�
S +

PT
t=1 (yt+h � zt�t)

0 (yt+h � zt�t)
��1

.

B.1 Carter and Kohn (1994) algorithm:

Consider a state-space model of the following form

yt = ztat + ut (B.8a)

at = at�1 + vt (B.8b)

ut � N (0; R) , vt � N (0;W )

where (B.8a) is the measurement equation and (B.8b) is the state equation, with

observed data yt and unobserved state at. If the errors ut, vt are iid and uncorrelated

with each other, we can use the Carter and Kohn (1994) algorithm to obtain a draw

from the posterior of the unobserved states.

Let atjs denote the expected value of at and Ptjs its corresponding variance, using

data up to time s. Given starting values a0j0 and P0j0, the Kalman filter recurssions

provide us with initial filtered estimates:

atjt�1 = at�1jt�1

Ptjt�1 = Pt�1jt�1 +W

Kt = Ptjt�1z
0
t

�
ztPtjt�1zt +R

��1
(B.9)

atjt = atjt�1 +Kt

�
yt � ztatjt�1

�

Ptjt = Ptjt�1 �KtztPtjt�1

The last elements of the recursion are aT jT and PT jT for which are used to obtain a

single draw of aT . However for periods T�1; :::; 1 we can smooth our initial Kalman

filter estimates by using information from subsequent periods. That is, we run the

backward recurssions for t = T � 1; :::; 1 and obtain the smooth estimates atjt+1 and
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Ptjt+1 given by the backward recurssion:

atjt+1 = atjt + PtjtP
0
t+1jt

�
at+1 � atjt

�

Ptjt+1 = Ptjt � PtjtP
0
t+1jtPtjt

Then we can draw from the posterior of at by simply drawing from a Normal density

with mean atjt+1 and variance Ptjt+1 (for t = T we use aT jT and PT jT ).

C Efficient sampling of the variable selection indica-

tors

In order to sample all the 
j we need n evaluations of the conditional likelihood

functions p
�
yj:::; 
j = 1

�
and p

�
yj:::; 
j = 0

�
which can be quite inefficient for large

n. Kohn, Smith and Chan (2001) replace step 2 of the algorithms above with step

2* below. For notational convenience denote S to be the total number of Gibbs

draws, and let the (current) value of 
j at iteration s of the Gibbs sampler to be

denoted by 
sj, and the (candidate) draw of 
j at iteration s + 1 to be denoted by


s+1j . An efficient acceptance/rejection step for generating 
j is:

2* a) Draw a random number g from the continuous Uniform distribution U (0; 1).

b) - If 
sj = 1 and g > �0j, set 
s+1j = 1.

- If 
sj = 0 and g > 1� �0j, set 
s+1j = 0.

- If 
sj = 1 and g < �0j or 
sj = 0 and g < 1 � �0j, then generate 
s+1j from

the Bernoulli density 
jj
n�j; b; y; z � Bernoulli (1; e�j), where e�j = l0j
l0j+l1j

and

l0j, l1j are given in equations (A.6)-(A.7) and (B.4)-(B.5), for the VAR and

TVP-VAR models respectively.

D Further extensions of the basic model

D.1 Alternative restriction search for VARs with constant para-

meters

George, Sun and Ni (2008) extend the stochastic-search variable selection (SSVS)

algorithm of George and McCullogh (1993) to VAR models. Their approach also

assumes the full model with all n parameters and restricts each parameter �j to
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be approximately zero when 
j = 0, for j = 1; :::; n, by restricting the prior of �j
towards (but not exactly equal to) a point mass at zero. Specifically, the indicators


 do not appear on the VAR equation, but enter in the priors of the VAR regression

coefficients in a hierarchical manner

�jj
j �
�
1� 
j

�
N
�
0; c21j

�
+ 
jN

�
0; c22j

�
: (D.1)

In this prior specification c21j ! 0 (or c21j = 0) while c22j ! 1, so that when 
j = 0

the prior for �j is N
�
0; c21j

�
which will shrink the posterior towards 0 (since c21j is

set very low). When 
j = 1, the prior for �j is N
�
0; c22j

�
which leaves its posterior

unrestricted. There are sensitivity issues arising with the choice of
�
c21j; c

2
2j

�
in this

prior, but these are easily addressed using Empirical Bayes methods, or assigning a

hyperprior on these parameters; see George and McCullogh (1997), Chipman et al.

(2001) and George and Foster (2000). Korobilis (2008) shows that in an 8-variable

VAR with 124 predictors, SSVS selects very parsimonious models which forecast

better than conventional model selection approaches based on information criteria.

Jochmann, Koop and Strachan (2008) also find that SSVS results in improvement

in forecasts coming from a 3-variable VAR with structural breaks.

D.2 Restrictions on the VAR covariance matrix

The idea to restrict the VAR regression coefficients can also be extended to finding

restrictions in the covariance matrix of a VAR. In fact, Smith and Kohn (2002),

take the Cholesky decomposition ��1 = A
A0 of an m � m covariance matrix,

and impose restrictions on the matrix A using indicator variables, say �. In this

decomposition 
 is a diagonal matrix and A is a lower triangular matrix with 1’s on

the diagonal. Hence model selection proceeds by setting

�i = 0 if �i = 0

�i 6= 0 if �i = 0

where �i is each of the m (m� 1) =2 non-zero and non-one elements of A. In a sim-

ilar attempt, Wong, Carter and Kohn (2003) use the SSVS prior (D.1) to implement

restrictions on the elements �i. George, Sun and Ni (2008) apply these methods to

the covariance matrix of a VAR. The Smith and Kohn (2002) algorithm however, is

not based on specific assumptions about the form of the prior in order to sample

the elements of A, T and �. Therefore, similarly to the case of variable selection

in the mean equation coefficients, their approach can be easily generalized to a co-

variance matrix which is time varying as in the popular Heteroskedastic TVP-VARs

of Primiceri (2005), Canova and Gambetti (2009) and Cogley and Sargent (2001,

2005).
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D.3 Selection between constant and time-varying parameters

Shively and Kohn (1997) show how to use Bayesian variable selection in the prob-

lem of determining which coefficients are time-varying or constant, in a univariate

regression problem. Their model can be written in terms of the TVP-VAR model

consisting of equations (10) and (11), where now the time-varying coeffiecients bt
are defined as

�t = �t�1 + �t (D.2)

�t � N (0;�0Q�) (D.3)

In this specification � is - similarly to the matrix � defined for selection of coeffi-

cients - an n � n diagonal matrix with elements �i, i = 1; :::; n. When �i = 0, the

i � th column and row of the covariance matrix of �t is zero, and the coefficient

in the i � th equation of (D.2) is updated each time-period as bit = bit�1, which

implies that the parameter remains constant over the full sample T . Note however

that in this specification - no matter how usefull it might be - analytical derivations

of the conditional posterior densities of � are not readily available. When �i = 0, �
(and subsequently the covariance�0Q�) is not invertible. Shively and Kohn (1997)

use numerical integration to evaluate the posterior. Nevertheless, this approxima-

tion might become cumbersome in multivariate forecasting models with large m,

while at the same time lacks the simplicity of the expressions used to restrict the

regression coefficients and the covariance matrix.
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