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Abstract  

A model of regional convergence is developed in which the pattern of convergence is 

attributed to the rate of technological adoption across regions.  If absorptive abilities vary 

across regions, convergence is constrained within a certain group of regions that share 

common structural characteristics.  Whether regions exhibit a pattern of convergence 

depends on the degree to which infrastructure conditions are appropriate for the adoption 

of technological improvements.  The model is tested using data for the NUTS-2 regions of 

the EU-27 during the time period 1995-2006. The results suggest that adoption of 

technology has a significant effect on regional growth patterns in Europe, and hence the 

analysis has important implications for the direction of regional policy in Europe.  
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1. Introduction  

The debate on regional convergence has bred, and continues to do so, dozens of empirical 

studies (e.g. Button and Pentecost, 1995; Neven and Gouyette, 1995; Martin, 2001; Puga, 

2002).  Although technological progress has been acknowledged, in this literature, to be 

of paramount importance in promoting convergence across regions, the impact of the 

adoption of technology has received less attention.  Indeed, Bernard and Jones (1996) 

claim that empirical studies on convergence have over-emphasised the role of capital 

accumulation in generating convergence at the expense of the diffusion of technology. 

‘[T]o the extent that the adoption and accumulation of technologies is 

important for convergence, the empirical convergence literature is 

misguided’. (Bernard and Jones, 1996, p. 1037)     
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Some attempts have been made to capture the impact of technology adoption (e.g. de la 

Fuente, 2000; Rogers, 2004), but this issue remains a fruitful area of research, especially 

for regional economists, given that the adoption of technology is more clearly manifest 

across regions and is accelerated by geographical proximity.  

 

It is the intention of this paper to develop and apply a model that incorporates technology 

adoption in an extensive regional context, namely that of the NUTS-2 regions of the EU, 

widening thus the range of empirical studies on European regions.  This effort is organised 

as follows.  The following section provides an extension to a general model in order to 

analyse the impact of technological diffusion and adoption in the process of economic 

growth and convergence.  The subsequent section presents the empirical context within 

which the propositions are tested, considering both the data to be employed and the 

empirical methodology.  The remaining two sections provide a discussion of the results 

and some concluding remarks. 

 

2. A Model of Regional Convergence with Technology Creation and Adoption  

In the standard neoclassical model, a factor that promotes, and accelerates, regional 

convergence is technological progress.  If there is instantaneous diffusion of technology in 

conjunction with movement of factors of production, then convergence in levels of labour 

productivity (or in per-capita output) is an inevitable outcome in the neoclassical model.  

Technological progress is also highlighted by several models within Endogenous Growth 

Theory and New Economic Geography.
1
  According to these models growth, and 

subsequently any possibilities of convergence/divergence, depend upon the degree to 

which regions are able to innovate.  However, less emphasis is placed upon the process of 

technology absorption, where the ability of a regional economy to catch-up may 

substantially depend on its capacity to imitate and adopt innovations developed in more 

technologically advanced regions.   

 

A process of technology adoption is not a simple and automatic process. Instead, it 

requires that lagging economies should have the appropriate infrastructure or conditions 

to absorb technological innovations.  Abramovitz (1986) recognises this possibility by 

arguing as follows:  

                                                
1 Martin (1999), Martin and Sunley (1996, 1998) provide a survey together with a critical assessment of 

these models.  
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‘Countries that are technologically backward have a potentiality for 

generating growth more rapid than that of more advanced countries, provided 

their social capabilities are sufficiently developed to permit successful 

exploitation of technologies already employed by the technological leaders’ 

(p. 225)  

 

In other words, if infrastructure conditions are not ‘sufficiently developed’ then it cannot 

be presumed that there is an ‘advantage of backwardness’ associated with a high 

technological gap.
2
   

 

Although the importance of technology adoption has been acknowledged, it is frequently 

the case that, empirically, only specific aspects of the infrastructure conditions are 

examined within this context.  Rogers (2004), Howitt and Mayer-Foulkes (2005), for 

example, approximate the absorptive ability of an economy in terms of human capital 

measures.  This paper takes a more general approach, addressing the questions of how 

overall infrastructure conditions affect the absorptive ability of a regional economy, and 

furthermore, what the implications of a poor infrastructure are for regional convergence.   

 

These issues are investigated by examining a model of regional convergence that 

encapsulates the role of infrastructure in the absorptive ability of a regional economy.  

Following de la Fuente (2000) in the first instance, the growth of technology (
i

Ag ) in a 

region i  is assumed to be a function firstly of ‘technological capital’, through the 

‘intentional creation of technology’, ( i ) and secondly the opportunities for ‘technological 

catch up’, as measured by the gap between the existing level of technology in a region and 

that of a ‘technological best-practice frontier’, ( ib ). Thus,           

iiA bg
i

 with 0,                (1) 

It is anticipated that the ability of a region to produce technological capital will have 

positive effects on the growth of technology in the region, and secondly, a high 

technological gap implies opportunities for adopting technological improvements from 

                                                
2 Although Gerschenkron (1962) is acknowledged as the initiator of this view, nevertheless, the basis of 

the argument is based on Veblen (1915). 
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more advanced regions.  In such circumstances, the further away a region’s technology is 

from that of the most advanced region, the faster will be its rate of technological progress.  

The logic behind this hypothesis is that technology transfer will be relatively cheap for 

lagging regions, when compared to regions which are already employing the most modern 

technologies and which cannot therefore simply imitate existing production techniques in 

order to promote further growth.  Specific resources must be allocated to innovation 

activities, and hence innovation is a much higher cost activity for leading regions.  Low 

technology regions can therefore experience faster growth provided, of course, that they 

possess the necessary infrastructure to facilitate the adoption of technology from the more 

technically advanced regions.  

 

Given that i  approximates the level of innovation in a region, then the parameter  

measures the productivity of that innovation in augmenting technology whilst ε represents 

the rate of diffusion of technology and, hence, reflects the opportunities for technological 

catch-up.  The technological distance ( ib ) is defined as the difference between a best-

practice frontier ( x ), which is determined exogenously, and the prevailing level of 

technology in a region, represented by some index ia , i.e. xab ii ; a measure which 

can be conceived as an approximation of ‘technological proximity’.  Assuming that an 

economy is divided into two regions, (leader and follower, fli , ), then the 

technological distances are given by: xab ll  and xab ff , respectively.  Thus, the 

growth of technology in the two regions may be represented as follows:  

lll ba                            (2) 

fff ba                           (3) 

 

The growth rate for the technology gap between the two regions ( lfb
 ) is therefore:   

flflfllf bbaab                          (4) 

 

Defining lflf bbb  and fllf , equation (4) can be written as follows: 

lflflf bb                           (5)         
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An implicit assumption of this model is that all economies are capable of absorbing 

technology to the same degree (constant ), so that the higher the technological gap the 

greater the impact on growth, ceteris paribus, and the smaller the growth of any gap with 

the leading economy.   

 

However, as argued above, large gaps do not necessarily promote convergence in this way 

because underlying conditions are not favourable for technology adoption.  This possibility 

is currently not reflected in equations (3) and (5) and we therefore extend the analysis to 

take account of this.  Our point of departure is to assume that the rate of diffusion of 

technology ( ) is a function of the initial technological gap as follows:  

0,i
lf

i
b

                           (6)   

where 0,  are parameters.  

 

The parameter  can be interpreted as a constant underlying rate of diffusion, which 

would apply to all regions if there were no infrastructure/ resource constraints upon 

technological adoption.  However, the existence of such constraints causes the actual rate 

to diverge from , and the higher the technological gap, the slower the rate of 

technological diffusion ( ).  Of critical importance, therefore, is the parameter , which 

determines the extent to which the existing gap, and implicitly the existing infrastructure, 

impacts on the rate of diffusion.  

 

The implications of modelling the rate of diffusion in this way are seen by substituting 

equation (6) into equation (5) to yield an expression for the rate of change in the 

technological gap:  

1

lflflf bb                            (7) 

In equilibrium, the rate of change in the gap 0lfb  so that:  

1

lflf b                             (8) 

which gives an equilibrium value for the technological gap: 

1

1

lf

*

lfb                           (9) 
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It is interesting to consider the implications for a regional economy when its gap with the 

leading economy is not at this equilibrium level.  The outcome turns upon the value of the 

parameter .  If 0 , then according to equation (6) 
i

 and the diffusion of 

technology occurs at a constant autonomous rate equal to  implying a linear process of 

convergence, while if 1 the size of the gap becomes irrelevant in the process of 

technological diffusion.  Two distinct patterns of convergence arise, however, when 1  

and when 1 .     

 

Figure 1 portrays the pattern of convergence implied by 1 .  

 

As illustrated in Figure 1, the process of convergence is a non-linear one.  When the gap 

between leader and follower is below 
*

lfb , the dynamics of the system cause the gap to 

grow towards its steady-state value, since the rate of innovation investment outweighs the 

effect of technology diffusion and, hence, ]0[0 *

lflf bib
i

 .  Conversely, when the gap 

is greater than 
*

lfb , there is movement towards equilibrium since lfb  is negative, i.e. 

][0 *

lflf bib
i

 .  Assuming, further, that the leading region maintains its leading 

position over a given time period, then economies with a large technology gap, i.e. above 

*

lfb , converge towards equilibrium but at slower rates compared to those regions where 

the gap is below 
*

lfb . Thus, when 1  convergence towards a single equilibrium is 

possible but regions with unfavourable infrastructure conditions reflected in a large 

technological gap move towards equilibrium at a slower pace.  

 

In circumstances where 1 , then convergence towards a unique equilibrium for all but 

the leading region is no longer the case, and 
*

lfb  represents a threshold value now.  In this 

case technology diffusion is represented by a convex function implying that following 

regions converge towards different equilibria, depending upon their starting point.  

 

As Figure 2 shows, economies on either side of the threshold 
*

lfb  move in different 

directions.  This pattern of convergence and divergence can be illustrated using a simple 

example.  Consider an economy divided into three regions, one leader )(l  and two 

followers, i.e. )2,1(i .  Assuming that the leading region is at the technological frontier 
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)0( xab ll
 so that steady-state equilibrium is, therefore, approximated by the 

leading region, then convergence with the leading region requires that the gap at a 

terminal time (T ) should be zero, i.e. 0,Tlfb .  However, as Figure 2 indicates, a zero 

gap with the leader is not feasible, since by definition the curve 1

lfb  is asymptotic to the 

axis of the graph.  Hence, a more realistic condition would be that the technological gap 

tends towards zero over a given time period, i.e. 00,Tlfb .  For simplicity assume that 

21
, so that 

21 lflf  and that 
21
.  It is also assumed that  is the same for both 

regions.  If the initial technological gap differs between these regions )(
21

*

lflflf bbb , 

then region 1 is able to close the technological gap with the leader, approaching zero 

asymptotically.  Despite a lower rate of innovation compared to the leader, this region is 

able to adopt technology from the leading region and it is this latter effect which 

dominates.  However, region 2, with a high gap and poor infrastructure conditions exhibits 

too slow a rate of technology absorption and, as a result, the gap with the leader increases 

over time.  Convergence, therefore, is a property apparent only for region 1 and the 

leading region.  These regions form an exclusive convergence-club which, more generally, 

would include any region with a technological gap in the range ],0( *

lfb , for which 0
ilfb .  

Thus, the technological advantages of particular regions would accumulate and militate 

against convergence for all.  In this context, 
*

lfb  does not represent an equilibrium, but 

rather a threshold, which distinguishes between converging and non-converging regions.   

 

These assumptions impose a non-linear process of technological diffusion (i.e. 1) that 

depends on infrastructure conditions as embodied in the size of the gap at a point in time. 

To be more precise, if the adoption of technology is related in a particular way to the size 

of the initial technological gap and associated infrastructure conditions, then two groups 

of regions can emerge; one which is a convergence club while a second group that does 

not exhibit an ‘equilibrium’. Whether a region belongs to the convergence club depends on 

its capacity to adopt technology, and this capacity declines the higher the initial technology 

gap.   
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In the preceding example it was assumed that 
21

~~
lflf

. A more complicated picture 

arises if this assumption is relaxed, i.e. when 
21

~~
lflf

3
.  

Figure 4 shows a situation where 
21

~~
lflf . Point B represents the critical threshold for 

region 2, showing that a large technological differential requires a high rate of technology 

absorption in order to prevent the region moving further away from the leading region in 

terms of overall technology growth. On the other hand, point A is the threshold for region 

1, which has a lower technology differential compared to the leader. As a result, the rate 

of technology absorption that is required to prevent region 1 from following a divergent 

path, is lower compared to that of region 2. A diverging path for region 1 corresponds to 

movements to the right of point A. Hence, by imposing different abilities to create and 

absorb technology, two thresholds exist, one that corresponds to 
1lf

b , with low lf

~
 and 

another to 
2lf

b , with high lf

~
. 

 

To summarise, the non-linear process of technological diffusion outlined above provides a 

link between the rate of technology adoption and the size of the technological gap in a 

region.  Two distinct cases are identified depending on the value of the parameter .  If 

1 , then the model predicts a constant equilibrium gap between following regions and 

the leading region, with different equilibrium positions possible dependent upon whether 

lf  is the same or different across regions or, more generally, whether regions share the 

same characteristics.  The pattern of convergence implied by 1 is, however, the most 

interesting.  Here, two outcomes are possible, even when all regions share the same 

characteristics.  The important condition is the size of the technological gap compared to 

the leader, and whether this is above or below a key threshold value.  It is this 

characteristic that distinguishes whether a region follows a convergent path as a member 

                                                
3 Such a situation might also occur if region 1 develops a ‘technology-producing’ sector in a subsequent 

time period (
1

t ) due to the combined effect of a relatively low initial technological gap and high 

absorptive ability. In particular, assume that 
1101 ,, tlftlf

bb , which signifies that conditions in region 1 are 

favourable as to allow adoption of technology, that leads to 
1101 ,, tlftlf . If this sequence continues, 

providing of course that the adoptive ability of this region remains, at least, the same in future periods, 

then convergence towards the leader is feasible. Thus, we may express this process as: 0
, ni tlf

b  and 

0
, ni tlf

, as 0n .  

 



 9 

of a convergence club, or whether the path is a divergent one.
4
  A further complication is 

introduced if regions also differ with respect to their structural characteristics (in terms of 

lf  or the values of parameters  and , for example).  Then the membership of the 

convergence-club is more complex to establish, but fundamentally there is still one 

convergence-club, which is most likely to include regions with structural characteristics 

similar to the leader.   

 

Overall, the model suggests that convergence towards the leading region(s) is feasible only 

for regions with sufficient absorptive capacity.  There is the distinct possibility that only 

regions with low technology gaps are able to converge towards a steady-state equilibrium 

growth path, relative to the growth rate of the leading region.  Regions with large 

technology gaps may fall progressively behind.  

 

3. The Empirical Context  

The NUTS-2 regions of the European Union provide the context for an assessment of the 

role of the technology gap in growth and convergence.  Prior to a discussion of the 

measurement of the technology gap variable, and the data, we provide a brief overview of 

the methodology and empirical models to be employed. 

 

The empirical literature on regional convergence (e.g. Martin, 2001; Barro and Sala-i-

Martin, 1992) makes extensive use of two alternative tests for convergence, namely 

absolute and conditional convergence:  

iii ybag 0,1                                     (10)  

iii bybag iX Xi0,1                                   (11) 

 

where iy typically represents per-capita output, or output per worker, of the i
th
 economy 

(in logarithm form), 0,, iTii yyg  is the growth rate over the time interval T,0 , and 

i  is the error-term, which follows a normal distribution.  

 

                                                
4 This outcome is in accordance with a fast growing literature on club convergence (e.g. Galor, 1996, 

Galor and Tsiddon, 1997; Corrado, et al., 2004; Martin and Sunley, 2006). Our view on club 

convergence implies that this pattern might be permanent unless lagging regions improve their abilities 

to absorb technology.  
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Absolute or strong convergence occurs if 01b  while the speed at which regions move 

towards the same steady-state level of per-capita output, or productivity, is calculated 

as Tb 1ln 1
.  Conditional convergence requires that 01b  and 0

iXb .  If 

different economies have different characteristics, captured by the vector (
iX ) in equation 

(11), then convergence is conditional on these, giving rise to different steady states.  It 

follows, therefore, that a test for conditional convergence is more suitable for the 

empirical application of the model developed in Section 2, with variable(s) representing 

technology the principal focus.    

 

As it stands, this approach neglects spatial factors.  The location of a region within a 

system of regional economies is a unique characteristic, and in the same way as other 

structural characteristics, has the potential to impact on growth.  The economic inter-

dependence of regions is partly a function of spatial inter-dependence. The processes 

underlying regional convergence depend upon the relative extent of mechanisms such as 

factor mobility, price flexibility and knowledge or technology spillovers.  Where such 

mechanisms exist, they are likely to be enhanced, rather than reduced, by spatial proximity, 

and in the light of recent literature it may be argued that any empirical test for regional 

convergence is misspecified if the spatial dimension is ignored (Rey and Montouri, 1999; 

Fingelton, 2001; Rey and Janikas, 2005). 

  

Following Rey and Montouri (1999) spatial dependence can be incorporated into 

convergence analysis through three models, namely the spatial-error, the spatial-lag and 

the spatial cross-regressive models.  The spatial-error model assumes that any effects 

from spatial interaction are captured in the error-term, abandoning the usual assumption 

of independent-error terms.  This is not implausible given the fact that regions are 

typically very open economies exhibiting a high degree of interaction with their 

neighbours.  In the case of the convergence model of equation (10) above, this leads to 

the following estimating equation: 

tuba 1)( WIyg i,0i                        (12) 

 

where W  is the nn  matrix of distance weights representing the spatial links between 

regions.  The elements of W  may be devised as follows:  
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w
d

d
ij

ij

ij
j

1

1

/

/
                         (13) 

Here, ijd  denotes the distance between two regions i  and j .  The denominator is the sum 

of the (inverse) distances from all regions surrounding region i , within a selected 

boundary.  Equation (13) implies that interaction effects decay as the distance from one 

area to another increases. 

 

In this model regions are a linked network in that the effects of a random shock on the 

growth rate of any one region will disperse beyond that region’s boundaries, impacting 

upon growth in surrounding regions and beyond. Such spillover effects will ripple 

throughout the national economy, their size and distribution determined by the elements of 

the spatial transformation matrix
1

WI .  

 

An alternative approach to spatial interaction, following Rey and Montouri (1999), is to 

introduce the spatial weights matrix directly, either via regional growth rates to produce 

the spatial lag model (equation 14) or via initial levels of output per capita/worker to 

generate the spatial cross-regressive model (equation 15):  

iba )( ii,0i Wgyg                             (14) 

icba )( i,0i,0i Wyyg                                                 (15) 

 

The conditional convergence model can be similarly amended to take account of spatial 

interaction. 

 

An interesting issue that emerges from the discussion of the three spatial econometric 

models regards the sign of the spatial coefficients , and c .  Although in the empirical 

literature this is not often of specific concern, both positive and negative spillover effects 

are possible.  More specifically, if growth in one region is enhanced by proximity to 

another successful region then a positive sign is expected for the coefficients.  On the 

other hand, a negative sign may be considered as an indication that successful regions are 

growing at the expense of surrounding regions.  However, the outcome is ultimately an 

empirical issue, and dependent upon particular circumstances. 
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Although it is important to take account of spatial interaction in the analysis, it is not the 

primary focus of this paper.  Our main purpose is to investigate the influence of 

technology, and particularly the technology gap, in promoting growth and generating 

potential for convergence. We turn our attention, therefore, to the question of appropriate 

measurement of the relevant technology variables.  Technical change in a region occurs as 

a result of indigenous innovation or via the adoption of innovations from other regions.  In 

the former case, technical change may be approximated by the ‘propensity to innovate’ 

( tiPI , ), as proposed by Pigliaru (2003), and can be measured in terms of the number of 

patents per-capita in each region.  

 

It is more difficult to measure the ability of regions to adopt technology.  A number of 

approaches have been adopted, such as in Peri and Urban (2006) for example, where 

technology adoption is approximated in terms of spillovers from foreign direct 

investment
5
.  Other approaches put emphasis on the role of dynamic, advanced technology 

sectors in driving the diffusion process, and measure this by the share of a region’s 

resources found in such sectors.
6
  This is the methodology adopted here, although 

modified to also incorporate the concept of a technology gap.  The first step is to identify 

technically dynamic sectors, which are perceived to be the most receptive to innovation 

and its subsequent utilisation.  A region’s level of technological development is then 

measured as the percentage of total employment in technologically dynamic sectors.  More 

formally, at time t: 

ti

m

j

j

ti

ti
L

ADP
,

1

,

,
                        (16) 

where 
j

ti ,  refers to personnel employed in ‘high-tech’ manufacturing and knowledge-

intensive high-technology services ( mj 1 ) and tiL ,  is the total employment in region 

i .  The technology gap is then defined as the distance between a region’s technology level 

and that of the most advanced region, which has the highest percentage of employment in 

‘high-tech’ sectors.  

                                                
5 Bode (2004) develops a model that distinguishes between spillovers from abroad and local spillovers. 

 
6 Alderman (2004) uses a similar approach in identifying sectors that are able to adopt technological 

innovations, although in a context other than of regional convergence.  
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titLti ADPADPTG ,,, lnln .                                         (17) 

This variable is used to approximate a region’s capacity to adopt technological 

innovations.  The further away a region’s technology is from that of the most advanced 

region, the greater the potential for technological progress, but the weaker the capacity to 

implement technical change, as argued in Section 2. 

 

A (non-spatial) conditional convergence model which incorporates indigenous innovation 

capacity and adoption capabilities would therefore appear as follows: 

 iiiii TGbPIbybag 0,30,20,1             (18) 

 

Introducing spatial terms to this conditional convergence model yields the following set of 

three equations: 

iii uTGbPIbba
1

0,30,21 WIyg i,0i                                                           (19) 

iii TGbPIbba ii,0i Wgyg 0,30,21                                                           (20) 

iii cTGbPIbba i,0i,0i Wyyg 0,30,21                                                          (21) 

 

It is important to note at this point that the technology variables are measured at time 

0t , that is to say, at their initial values for the period of analysis.  There are three 

reasons for adopting such an approach, the first being that current regional growth 

performance is the outcome of past efforts to enhance technology levels.  A second reason 

for using initial values is to reflect the hypothesis presented in Section 2, that initial 

conditions ‘lock’ regions into a particular position or pattern of growth.  As previously 

demonstrated, a divergent growth path can emerge when a region’s initial technology gap 

lies above a particular threshold.  Finally, from an econometric point of view, inclusion of 

variables dated at the start of the period of analysis helps to avoid the problem of 

endogeneity.
7
     

 

Equations (18) to (21) thus incorporate the potential impact on a region’s growth of both 

internally generated technological change and technology adoption.  The expectation is 

that the propensity to innovate will have a positive effect on growth ( 02b ) although this 

                                                
7 Pigliaru (2003) claims that models which include measures of technology require data on total factor 

productivity.  In the absence of such data, econometric estimation requires that the variables related to 

technology ought to be included as initial values. 
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does not automatically promote convergence.  If lagging regions have a low initial 

propensity to innovate, then no significant impacts on growth are anticipated and 

convergence with technologically advanced regions is unlikely from this direction. On the 

other hand, a value of 02b signifies a convergence effect, in the sense that the 

‘propensity to innovate’ in lagging regions is transformed into relatively higher growth 

rates.   

 

In the case of the technology gap variable ( 0,iTG ), the impact on growth may be either 

positive or negative since there are two factors working in opposite directions, namely the 

technological distance from the leading region, representing the potential for growth, and 

the degree to which existing (initial) conditions in a region facilitate adoption of 

technology.  If the first effect predominates, then the coefficient will be positive ( 03b ).  

If the latter effect dominates then the coefficient will be negative ( 03b ), and 

convergence between technologically lagging and technologically advanced regions is 

severely constrained, as suggested by the model in Section 2. 

 

4. Empirical Application  

Having outlined the empirical context in terms of the methodology and variables to be 

employed, the next step forward is to apply these to an investigation of the pattern of 

regional growth in Europe.  The spatial units used in this paper are those delineated by 

EUROSTAT and refer to 267 NUTS-2 regions of 27 member countries in the EU.  The 

EU uses NUTS-2 regions as ‘targets’ for convergence, defined as the ‘geographical level 

at which the persistence or disappearance of unacceptable inequalities should be 

measured’ (Boldrin and Canova, 2001, p. 212).  Despite considerable objections to the use 

of NUTS-2 regions as the appropriate spatial level for the assessment of convergence, 

they are nevertheless sufficiently small to be able to capture sub-national variations 

(Fischer and Stirböck, 2006).   

 

The growth of regional economies is measured using data on Gross Value-Added (GVA) 

per worker since this measure is a major component of differences in the economic 

performance of regions and is a direct outcome of the various factors that determine 

regional competitiveness (Martin, 2001).  The time period for the analysis extends from 

1995 to 2006.  This might be considered as rather short but Islam (1995), and Durlauf and 
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Quah (1999), point out that convergence-regressions are valid for shorter time periods, 

since they are based on an approximation around the steady-state and are supposed to 

capture the dynamics toward the steady-state.    

 

All results are presented in Table 1, and include the simple absolute convergence model 

(10) and the conditional convergence model (18).  The inclusion of spatial interaction 

yields a further six equations (12), (14), (15) and (19), (20), (21). 

 

In the case of the spatial-error models, estimation is carried out by the maximum 

likelihood (ML) method, as OLS may result in problems of bias.  The presence of spatial 

interaction in the error-term leads to the following non-spherical covariance matrix (Rey 

and Montouri, 1999, p. 149):  

1)()( 21 ζWIIζWIttE             (22) 

 

The presence of non-spherical errors results in unbiased OLS estimators but biased 

estimations of a parameter’s variance. Thus, all inferences based on that model are invalid. 

Hence, the recommended estimation method is through maximum likelihood (Anselin, 

1988). The spatial-lag model is also estimated by the ML method since the OLS 

estimators are inconsistent due to the simultaneity introduced through the spatial 

dimension.  In contrast, the spatial cross-regressive model treats the spatial variable as 

exogenous and, hence, estimation is possible through the OLS method. 

 

Considering first the case of simple absolute convergence, this is typically associated with 

an inverse relationship between growth and some initial level of output per-worker.  Thus, 

poor regions grow faster than rich regions.  In the context of the EU regions between 

1995 and 2006, the potential for absolute convergence is suggested by Figure 4, which 

shows a scatterplot of the average annual growth rate against the initial level of labour 

productivity.  This is confirmed by the estimation of equation (10).  As shown in Table 1, 

there is a statistically significant inverse relationship between growth over the time period, 

and the level of GVA per-worker at the start of the period.  Nevertheless, the rate of 

convergence of labour productivity is a slow one, estimated to be 0.65% per annum.   
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When spatial interaction is included (equations 12, 14 and 15), the rate of convergence 

ranges from 0.64% to 0.71% per annum.  In all cases, the spatial coefficient is statistically 

significant and positive and in two out of three cases the underlying rate of convergence is 

higher than in the non-spatial model, showing that spatial interaction plays a positive role 

in the convergence process.  The superiority of the spatial models is supported by both the 

criteria for model selection applied here, namely the Akaike (AIC) and the Schwartz-

Bayesian (SBC) information criteria.
8
  Further support is also provided by the value of the 

Log-likelihood (LIK), which increases, as anticipated, with the introduction of spatial 

interaction.  Overall, these results suggest a significant spatial dimension in the process of 

European regional convergence. 

 

Turning to the role of technology in growth and convergence, the estimation of equation 

(18) shows provides some interesting results.  The convergence coefficient is significantly 

negative and the rate of convergence is now estimated as 0.23% per annum.  The 

coefficient on the propensity to innovate is negative, suggesting that regions with a high 

propensity to innovate, normally high productivity regions, grow slower than 

technologically lagging regions. This might act as source of convergence, provided that 

the poor regions are able to absorb technology. However, this does not seem to the case. 

A negative sign is also estimated for the variable representing technology adoption.  The 

existence of a high technology gap and associated low capability for technology adoption 

is thus inhibiting growth and convergence.   

 

The spatial versions of the model, represented by equations (19), (20) and (21), again 

show statistically significant spatial effects and confirm the impact of spatial interaction 

between regions upon regional growth patterns.  Overall, the spatial equations would also 

appear to provide a better fit to the data.  In particular, according to the both the AIC and 

SBC criteria and the LIK statistic, the spatial-error model of equation (19) is to be 

preferred.   

 

Focusing on this spatial error model, Table 1 shows that the propensity to innovate 

variable is again negatively related to growth over the period. While this can be conceived 

                                                
8 As a rule of thumb, the best fitting model is the one that yields the minimum values for the AIC  or 

the SBC  criterion. The SBC  test has superior properties and is asymptotically consistent, whereas 

the AIC  is biased towards selecting an overparameterized model. 
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as a convergence effect, nevertheless the impact of the technology adoption variable 

works in the opposite direction.  On average, regions with high technological gaps at the 

start of the period grow slower than regions with low gaps, ceteris paribus. Thus, a 1% 

increase in the measure of capacity to adopt technology adoption leads to a 5% fall in 

growth over the period. Comparing equation (19) with equation (12) shows that the 

underlying rate of convergence is lower when the impact of technology factors is made 

explicit (0.71% compared to 0.33%).   

 

In summary, the evidence presented here clearly supports the arguments previously put 

forward, that technology adoption is a route by which lagging regions might be able to 

converge with leading regions, but that this is a process which is likely to be difficult, 

especially during the early stages of development when conditions in the lagging regions 

are least supportive.  Thus, a high technology gap presents an obstacle to convergence 

because of the implied poor infrastructure and weak adoptive capacity.  These factors 

work to sustain initial differences across regions, and suggest the possibility of club 

convergence towards different equilibria following the predictions of the model examined 

in Section 3.  

 

In order to encapsulate this possbility, equation (19) is extended as follows:  

iii uTGbPIbba
1

0,30,21 WIyg i,0i                                                           (23) 

According to Baumol and Wolff (1988), a convergence-club is apparent when 01b and 

02b . Club-membership is determined by a threshold level of iy , given by the unique 

maximum of equation (23): 
2

1*

2b

b
y . The essence of equation (23) can be summarised 

quite simply: only those economies with 0*

0, yyi  belong to the convergence-club, in 

the sense that their growth rates are inversely related to initial labour productivity in  

 

Essentially, equation (23) is a parametric method to detect convergence-clubs, and it 

might be argued that is inferior to other methods proposed in the literature.
9
 Nevertheless, 

using such a method as a first step in a research project is more comprehensible, and it 

                                                
9 For a more detailed review see Durlauf et al. (2005).    
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allows the inclusion of variables that might account for a pattern of club-convergence. It is 

thus possible to identify the appropriate areas for intervention if the aim of regional policy 

is to achieve overall convergence across regions. 

 

The obtained econometric results in Table 2 confirm the pattern of club convergence. The 

convergence-club includes, almost exclusively, regions from EU-15 and only two regions 

from new member-states. The diverging regions are all located around the ‘edge’ of the 

EU, as shown in Figure 5. 

 

VI. Conclusions  

Although an increasing number of empirical studies have paid attention to issues of 

economic convergence in the EU, the impact of technology adoption in regional 

convergence has so far received more limited attention. We have attempted in this paper 

to address the question of whether regions with a high technology gap are able to take 

advantage of this potential for faster growth, using data for the 267 NUTS-2 regions of 

the EU-27 over the period 1995-2006.  The results suggest that the NUTS-2 regions of 

EU-27 exhibit some underlying tendency towards convergence in terms of labour 

productivity, but an important conclusion which emerges is that the regions exhibit slower 

convergence after conditioning for technological differences across regions.  While the 

‘technological gap’ approach predicts, in principle, that the higher the technological 

distance from the leader, the greater the incentive to adopt technology, the results in this 

paper imply that not all the lagging regions of the EU are able to reap the ‘benefits of 

backwardness’. This inability can be attributed, perhaps, to inappropriate infrastructure 

conditions prevailing in lagging regions, which prevent or constrain convergence with the 

more technologically advanced regions.  Convergence, where possible, is not towards a 

single equilibrium but towards different equilibria, creating thus a pattern of club 

convergence. Catch-up to the leading regions is feasible only amongst those regions 

whose conditions are similar or close to those of the technologically advanced regions. 
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Figure 1. Convergence towards a single equilibrium when 1    
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Figure 2.  Convergence towards different equilibria when 1  
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Figure 3. Club Convergence when 1  and 
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Figure 4. Absolute convergence, GVA per-worker, EU-27 NUTS-2 Regions, 1995-2006  
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Table 1. Regional Convergence, GVA per-worker, EU regions: 1995-2006 

 Equation  

(10) 

Equation  

(18) 

Equation  

(12) 

Equation 

(14) 

Equation  

(15) 

Equation 

(19) 

Equation 

(20) 

Equation 

(21) 

Depended Variable: 
i

g , n = 267 NUTS-2 Regions 

a     0.5714**   0.6191**  0.5985**  0.5482**   0.5743**   0.6828* 0.5465**  0.6409** 

1
b   -0.0747** -0.0279* -0.0819* -0.0770 -0.0741** -0.0361** -0.0187 -0.0300** 

2
b   -0.0401**    -0.0382** -0.0428 -0.0399** 

3
b   -0.0631**    -0.0504** -0.0531* -0.0714** 

   0.7506**    0.6667**   

    0.1148   0.1490  

c      0.5979**   0.8671** 

Implied    0.0065** 0.0023** 0.0071** 0.0068 0.0064** 0.0033** 0.0015 0.0025** 

LIK   147.552  163.971   270.2628   270.1091   164.9574   272.2321   271.3244   185.1642 

AIC -291.104 -319.943 -534.5256 -530.2182 -323.9148 -538.4643 -532.2182 -360.3280 

SBC -283.929 -305.594 -523.7639 -512.2820 -313.1531 -527.7026 -514.7127 -342.3918 

Notes:  

1. ** indicates statistical significance at 95% level of confidence.  

2. * indicates statistical significance at 90% level.  

3. AIC, SBC and LIK denote the Akaike, the Schwartz-Bayesian information criteria and Log-Likelihood, respectively. 

 

 

 

 

Table 2. Club Convergence Spatial error specification  

Depended Variable: 
i

g ,  

n = 267 NUTS-2 Regions 

a  0.1081** 

1
b  0.3001** 

2
b  -0.706** 

3
b  -0.0353* 

 -0.0502** 

Implied  y* 2.607 
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Figure 5: Convergence Club across the regions of Europe 

 

 

 

 


