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Abstract

This paper proposes a straightforward Markov-switching asset allo-

cation model, which reduces the market exposure to periods of high

volatility. The main purpose of the study is to examine the perfor-

mance of a regime-based asset allocation strategy under realistic as-

sumptions, compared to a buy and hold strategy. An empirical study,

utilizing daily return series of major equity indices in the US, Japan,

and Germany over the last 40 years, investigates the performance of

the model. In an out-of-sample context, the strategy proves profitable

after taking transaction costs into account. For the regional markets

under consideration, the volatility reduces on average by 41%. Addi-

tionally, annualized excess returns attain 18.5 to 201.6 basis points.

Keywords: Hidden Markov model, Markov-switching model, asset allocation, tim-

ing, volatility regimes, daily returns.

JEL classification codes: C13, C15, C22, E44, G11, G15.

Introduction

Asset allocation decisions represent the most important single determinant of an

investor’s performance (Brinson et al., 1991). In this paper, the effects and conse-

quences of regime-switching on asset allocation are analyzed. Considering a simple

two-asset world, we employ a Markov-switching approach in which the decision to

invest in the stock market or in cash depends on the prevailing market regime.

The main purpose of this study is to examine the profitability of a regime-based

asset allocation strategy after taking transaction costs explicitly into account. The

present paper contributes an empirical analysis of the in-sample and out-of-sample
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performance of a Markov-switching asset allocation model applied to daily stock

market return series in the US, Japan, and Germany over several decades.

Regime-switching models in finance

In the past two decades, regime-switching models have attracted increasing interest

by researchers in the fields of macroeconomics and financial time series. Markov-

switching models represent time series models with a latent variable component

where an unobserved Markov process drives the observation-generating distribution.

Despite the flexibility of the hidden Markov model (HMM) and its widespread use

among engineers in the field of signal-processing, applications of Markov-switching

models (a synonym for HMM) to economics and financial econometrics evolved

mainly after the seminal work of Hamilton (1989).

The introduction of time-varying parameter models to the scientific community

dates back to Quandt (1958) who presented an estimation approach for a linear

regression system with two regimes. In a later study, Quandt (1972) refined his

techniques and applied them to analyze disequilibria in the housing market. In

the following year, Goldfeld and Quandt (1973) introduced Markov-switching re-

gression. Hamilton (1989) focused on autoregressive models with Markov-switching

parameters. During the same period, researchers in the field of speech recognition

successfully worked on related models. These can be traced back to Baum and

Petrie (1966) and Baum et al. (1970), who laid the groundwork for the influential

works of Dempster et al. (1977) and Rabiner (1989).

The findings relevant to the subsequent analysis belong to the field of modeling

daily return series with Markov-switching mixture distributions. The study of

Turner et al. (1989) may be the first in this context, and others followed, e.g.,

Rydén et al. (1998); Linne (2002); Bialkowski (2003). For further details, we refer

to the monographs of MacDonald and Zucchini (2009) and Cappé et al. (2007).
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Asset allocation and regime-switching

The effects of regime-switching on asset allocation have been investigated using

different approaches for different types of data. One of the earliest works on this

subject has been presented by Ang and Bekaert (2002) who treated an asset allo-

cation problem with shifting regimes from the perspective of a US investor. Their

core analysis focused on a dataset of monthly Morgan Stanley Capital International

(MSCI) total returns from January 1970 to December 1997. The authors’ main con-

clusions were that the existence of a high-volatility bear market regime does not

negate the benefits of international diversification and that the high volatility, high

correlation regime tends to coincide with a bear market. In a subsequent study,

Ang and Bekaert (2004) extended their data basis and changed the period un-

der investigation. They found that the regime-switching strategy dominates static

strategies out-of-sample for a global all-equities portfolio, and that the model pro-

poses to switch primarily to cash in a persistent high-volatile market. Utilizing

an autoregressive Markov-switching model, Graflund and Nilsson (2003) analyzed

monthly returns for Germany/Japan (1950–1999) and US/UK (1900–1999). They

investigated an intertemporal asset allocation problem for investors who dynami-

cally rebalance their portfolio every month. The authors highlighted the economic

importance of regimes and pointed out that optimal portfolio weights are clearly

dependent on the current regime. Bauer et al. (2004) focused on monthly returns

from January 1976 to December 2002 of a six-asset portfolio consisting of equities,

bonds, commodities, and real estate. They observed changing correlations and

volatilities among assets, and demonstrated a significant information gain by using

a regime-switching instead of a standard mean-variance optimization strategy. The

study of Guidolin and Timmermann (2005) analyzed the FTSE All Share stock

market index, returns on 15-year government bonds and 1-month T-bills from Jan-

uary 1976 to December 2000. It presents strong evidence of regimes with different

risk and return characteristics for UK stocks and bonds, and evidence of persistent

bull and bear regimes for both series. Ammann and Verhofen (2006) estimated

the four-factor model of Carhart (1997), using monthly data from January 1927
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to December 2004. They found two clearly separable regimes with different mean

returns, volatilities, and correlations. One of their key findings was that value

stocks provide high returns in the high-variance state, whereas momentum stocks

and the market portfolio perform better in the low-variance state. Finally, Hess

(2006) examined the improvement of portfolio performance when imposing condi-

tional CAPM strategies based on regime forecasts from an autoregressive Markov

regime-switching behavior. Based on returns of the Swiss stock market and its 18

sectors from January 1973 to June 2001, his results indicate that regime switches

are a valuable timing signal for portfolio rebalancing.

However, an important point with regard to the practical applicability of regime-

switching models is the number of state changes, because frequent rebalancing of

the portfolio is likely to eat up much of the potential excess returns (as described,

e.g., in the studies of Bauer et al., 2004; Hess, 2006). Alternatively, transaction

costs are often simply not explicitly taken into account (see e.g. Graflund and Nils-

son, 2003; Ang and Bekaert, 2002, 2004; Guidolin and Timmermann, 2005), just as

out-of-sample forecasts are not always included. This does not reduce the value of

the descriptive capacities of the models, however, it limits their practical applica-

tion.

The remainder of this article is organized as follows. Section 1 outlines the method-

ology; it introduces the basic concept of HMMs and the approach to regime-driven

asset allocation. Section 2 gives a short description of the data and provide sum-

mary statistics. Section 3 discusses the empirical results, and Section 4 concludes.

1 Methodology

1.1 The basic hidden Markov model

The main characteristic of a HMM is a probability distribution of the observation

Xt, t = 1, . . . , T that is determined by the unobserved states St of a homogeneous

and irreducible finite-state Markov chain. The switching behavior is governed by a

transition probability matrix (TPM). Assuming a model with two states, the TPM
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is of the form

Π =





p11 p12

p21 p22



 ,

where pij , i, j ∈ {1, 2} denote the probability of being in state j at time t+1 given a

sojourn in state i at time t. The distribution of the observation at time t is specified

by the conditional or component distributions P (Xt = xt |St = st). Assuming, for

instance, a two-state model with Gaussian component distributions yields

xt = µst + ǫst , ǫst ∼ N(0, σ2
st
), (1)

where µst ∈ {µ1, µ2} and σ2
st

∈ {σ2
1 , σ

2
2}. The parameters of a HMM are gener-

ally estimated by the method of maximum-likelihood. The likelihood function is

available in a convenient form:

L(θ) = πP (x1)ΠP (x2)Π . . .P (xT−1)ΠP (xT )1
′ ,

where P (xt) represents a diagonal matrix with the state-dependent conditional

distributions as entries (MacDonald and Zucchini, 2009) and π denotes the initial

distribution of the Markov chain. The estimation of the model parameters θ for

stationary HMMs in this work follows Bulla and Berzel (2008).

1.2 Regime-switching asset allocation with daily return se-

ries

As summarized in Section , various studies provide insight into the effect of regime-

switching on asset allocation. Although many different samples have been analyzed,

previous work largely focuses on monthly returns. The results are encouraging,

mostly finding strong evidence for different regimes with returns above or below

the historical average. However, the literature so far has not yet considered daily

returns in this context. Moreover, the practical application involves some difficul-

ties. For example, the Ang and Bekaert (2002, 2004) explicitly “leave out many
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aspects of international asset allocation that may be important”, such as transac-

tion costs. Bauer et al. (2004) point out that substantial parts of the excess returns

disappear after accounting for transaction costs, and Ammann and Verhofen (2006)

find weak indications that their switching strategy remains profitable out-of-sample.

The results of Hess (2006) veer toward the same direction: when taking transaction

costs into account, CAPM strategies based on regime forecasts have no advantage

w.r.t. a single-state benchmark. According to Hess (2006), two major reasons for

the relatively poor performance of regime-switching models are (i) the inaccuracy

of regime forecast, and (ii) noisy parameter estimates. This is in line with earlier

findings of Michaud (1989) who considers mean-variance optimized portfolios to be

“estimation error maximizers” in different context, and Dacco and Satchell (1999)

who show that even a small number of wrong regime forecasts is sufficient to lose

any advantage of a superior model. Besides, often only relatively short sequences

of monthly data are available.

The alternative approach proposed in this study intends to circumvent the prob-

lems mentioned above and differs from the established techniques in three ways.

Firstly, the analysis is based on daily instead of monthly data. On the one hand,

this increases the amount of data available for markets with short history. On the

other hand, the impact of wrong regime forecasts reduces from an entire month

to a single trading day. As Hess (2006) stated, the “performance [...] crucially

depends on the quality of the regime forecasts” and “a wrong regime forecast may

not only lead to a non-optimal but to a detrimental allocation in the contrary direc-

tion relative to the ‘neutral’ single state. Several phases of outperformance relative

to the standard formulation are necessary to make up the damage caused by one

single wrong regime forecast”. As to the HMM selected, several authors employ

the basic regime-switching model described in Equation (1) to model daily return

series. The best-known article is presented by Rydén et al. (1998) who analyze

the S&P 500 and, although various extensions of the original model exist, several

studies still rely on the standard approach (e.g. Linne, 2002; Bialkowski, 2003). A

common finding is that a two-state model with conditional Gaussian distributions

often fits the data satisfactorily, while three-state-models exhibit the tendency to
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allocate outliers in a separate regime. Preliminary analyses of our data confirm

these findings, and therefore all models have two states.

Secondly, a mean-variance optimization strategy is not the focus of this study. The

intention is to develop a highly robust approach, and to avoid difficulties related

to the joint prediction of means and variances. According to Bauer et al. (2004),

investors who use mean-variance optimization procedures face negative effects from

the deviation of the estimated risk and return parameters from the true figures.

Therefore, we concentrate on the second moment only. The strategy is straightfor-

ward, without loss of generality let σ1 < σ2:

1. For time t, estimate the hidden state ŝt

2. Determine the weights of the portfolio at time t. If ŝt = 1, invest 100% in

the index Xt, else 100% in the risk-free asset (Cash).

The intention is to reduce overall portfolio risk during volatile market periods by

shifting from equities into the risk-free asset class. Mainly two possibilities exist

to estimate the hidden states. Either by global decoding using the Viterbi algo-

rithm (Viterbi, 1967), a dynamic programming technique that calculates the most

probable sequence of hidden states by

{ŝ1, . . . , ŝT } = argmax
j1,...,jT

P (S1 = j1, · · · , ST = jT |XT
1 = xT

1 ), (2)

or alternatively by local decoding based on the smoothing probabilities

P (St = j |XT
1 ) ∀ j ∈ {1, . . . , J}, t ∈ {1, . . . , T }.

In contrast to the Viterbi algorithm, the smoothing probabilities locally determine

the probability of a sojourn in state j at time t. Thus, the resulting path derived

from the maximum probabilities is the sequence of most probable states, which does

not correspond with the most probable state sequence in general. A preliminary

analysis and the in-sample results in Section 3.1 show that the estimated condi-

tional variances are almost identical for either approach. However, the number of
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Figure 1: Number of wrong state classifications by the Viterbi and smooth-
ing algorithm
The figure shows the proportion of wrongly classified states per position in per cent. The

position is identified by the observations number, ranging from 1 to 250.
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regime-switches is significantly lower for the Viterbi paths, as this algorithm reacts

less to fugacious regime changes, and thus transaction costs are reduced (see sim-

ulation study below). Therefore, the Viterbi algorithm serves for estimating the

hidden states in what follows.

Thirdly, the out-of-sample forecasts are subject to a filtering procedure. This re-

duces undesired frequent state changes and thus transaction costs, Section 3.2 con-

tains details on the filter. The following simulation study briefly illustrates the

motivation, the underlying data are 50000 simulated series of length 250 each from

a two-state HMM with parameters estimated from the S&P 500 data. For every

series, estimated of the underlying state sequences are calculated by the Viterbi

algorithm and the smoothing probabilities. For the latter, we assume that the

underlying state has a low variance if P (St = 1 | XT
1 ) > 0.5 and a high variance

otherwise. Figure 1 displays the proportion of wrong state classifications per posi-

tion. It is obvious that both techniques perform rather well for the larger part of

the observations, with average errors of 3.48% and 3.16%. However, classification
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Table 1: Descriptive statistics of daily returns

This table summarizes the daily returns data of the DAX, the DJIA, the NASDAQ 100,
the Nikkei 225, and the S&P 500 index. It displays the number of observations, mean,
standard deviation, skewness, kurtosis, and the value of the Jarque-Bera test statistic.

Name N Mean·104 S.D.·102 Skew. Kurt. JB

DAX 7,796 3.21 1.25 −0.426 10.26 17,384

DJIA 7,823 3.45 1.02 −2.144 59.09 1,032,042

NASDAQ 100 5,383 5.18 1.79 −0.089 10.04 11,142

Nikkei 225 5,925 1.42 1.31 0.034 7.56 5,136

S&P 500 7,834 3.54 1.00 −1.692 43.30 534,098

errors at the beginning and the end of a sequence increase strongly to circa 10% and

6.5%, respectively, independent of the chosen algorithm. This is problematic insofar

as the last position plays a central role for the state prediction at time T + 1 in an

out-of-sample setting. As mentioned already in the previous paragraph, an impor-

tant feature from the practical point is that the Viterbi-path reduces the number

of regime switches compared to smoothing (from 2.92 to 2.55). To further reduce

the number of switches, a smoothing of the out-of-sample forecasts is presented in

Section 3.2.

2 Data

The data analyzed in this paper are daily returns for five major equity indices, each

covering at least 20 years: DAX, DJIA, NASDAQ 100, Nikkei 225, and S&P 500.

The data for the DAX, DJIA, and S&P 500 start in January 1976, whereas the

records of the NASDAQ and Nikkei begin in October 1985 and January 1983,

respectively. Following Ang and Bekaert (2002), we fix the return of our risk-

free asset to an annual rate of 3%. This figure can be considered being relatively

conservative when compared to the previously cited study; it guarantees that the

risk-free return is attainable during almost all periods and markets. Returns are

calculated as Rt = ln(Pt)− ln(Pt−1), where Pt represents the index closing price on

day t, adjusted for dividends and stock splits. Table 1 provides descriptive statistics

for the data.
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Table 2: Parameter estimates for the in-sample Markov-switching model
with conditional Gaussian distributions

Estimated parameters for a model with Markov-switching Gaussian component distribu-
tions for the five indices. For state i = 1, 2, pii is the entry on the diagonal of the TPM,
and µi and σi parameterize the conditional distributions, respectively.

p11 p22 µ1 · 10
4 µ2 · 10

4 σ1 · 10
2 σ2 · 10

2

DAX 0.991 0.977 6.94 −6.62 0.786 2.01

DJIA 0.992 0.950 4.99 −6.66 0.776 1.98

NASDAQ 100 0.994 0.985 10.70 −9.22 1.090 2.90

Nikkei 225 0.980 0.989 10.60 −3.43 0.468 1.58

S&P 500 0.991 0.968 5.90 −5.31 0.712 1.67

All indices are leptokurtic and the Jarque-Bera statistic confirms the departure

from normality for all series at the 1% significance level. Note that the year 1987

contains a unique event, the ’Black Monday’ on October 19th 1987. On this day

most of the indices sharply retreated, e.g., the DJIA and the S&P 500 lost 25.6%

and -22.8%, respectively. In order to reduce manual interventions in our analysis,

we omit an outlier correction. Consequently, the estimated values of the kurtosis,

in particular of the two broad US indices, have to be looked at with caution.

3 Empirical Results

3.1 In-sample results

For every index, the Markov-switching model described in Section 1.1 is fitted. Ta-

ble 2 summarizes the estimation results, which all display typical features common

to return series: the two regimes are clearly separated with conditional variances

differing by factor two to three and conditional means close to zero. Both regimes

are highly persistent, whereas parameter estimates for the high-variance regime

indicate that sojourns in this regime tend to last shorter than sojourns in the low-

variance regime (with exception of the Nikkei).

Table 3 presents the in-sample performance of the asset allocation strategy de-

scribed in the previous section. Additionally, it shows the performance of a strategy
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Table 3: In-sample performance of Markov-switching strategies

This table displays annualized returns (in %), standard deviation (in %), and Sharpe
ratios of the five indices and the Markov-switching strategies. “Str.V it.” and “Str.Smo.”,
respectively, denote the Viterbi- and smoothing-based strategy. Every index is followed
by the statistics of the respective strategies in the two subsequent rows.

Name Mean S.D. Sharpe ratio Transitions

DAX 6.2 19.8 0.25 -

Str.V it. 13.8 10.7 0.98 60

Str.Smo. 13.8 10.6 0.99 86

DJIA 7.6 16.1 0.35 -

Str.V it. 11.2 11.6 0.71 54

Str.Smo. 11.4 11.5 0.74 74

NASDAQ 100 9.3 28.3 0.35 -

Str.V it. 19.8 14.8 1.10 28

Str.Smo. 21.0 14.7 1.17 38

Nikkei 225 1.4 20.7 0.03 -

Str.V it. 11.6 4.3 1.87 46

Str.Smo. 11.6 4.3 1.86 62

S&P 500 7.9 15.7 0.37 -

Str.V it. 12.4 10.1 0.91 58

Str.Smo. 12.8 10.1 0.95 82

based on smoothing probabilities for comparability. The first three columns con-

tain annualized mean, standard deviation, and Sharpe ratio, and the last column

displays the number of transitions required by the strategies.

The main findings can be summarized as follows. Firstly, the exposure to high-

volatile periods is strongly reduced. Secondly, the returns of the strategies are sig-

nificantly higher and thus is the Sharpe-ratio. This side-effect results from periods

of high volatility tending to coincide with periods of falling stock prices (Schwert,

1989). Thirdly, the performance of the two strategies does not differ significantly,

apart from the number of transitions, as indicated in the previous section. Note

that transaction costs are not taken into account in the results reported in Table 3.

However, in the face of the observation period of several decades the number of

transitions is almost negligible.

More importantly, it should be noted that the performance is strictly in-sample, and

regarding Figure 2, the nature of these results becomes clear. All major declines
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Figure 2: Indices with state sequence determined by the Viterbi algorithm
The five panels show plots of the daily returns from the five indices. The returns are shaded
gray in the high-variance regime and black in the low-variance regime. The underlying
state sequences result from Viterbi paths.
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(e.g., stock market crash 1987, Asian crisis, Russian crises, crash of the dotcom

bubble) coincide with periods of high volatility and, in particular, trading days

ending with a strong decline regularly are linked to the high-variance state. Never-

theless, it confirms the result of Ang and Bekaert (2002) that the “cost of ignoring

regime-switching is very high if the investor is allowed to switch to a cash position”.

3.2 Out-of-sample results

Aim of this section is to perform an out-of-sample forecast study under realistic

conditions. In order to avoid transaction costs, the focus lies on the more steady

Viterbi paths only, and transaction costs are fixed at 10 basis points (0.10%) for a

one-way trade. While this might not be achievable for private investors, it repre-

sents a conservative assumption for professionals who can implement the proposed

strategy in a very cost-efficient way using index future contracts.

The first step of the out-of-sample forecasts is implemented as follows. Select a

window of n observations [xt−n+1, . . . , xt], where xt corresponds to the last avail-

able observation, and fit a HMM. Subsequently, calculate the Viterbi-path using

the estimated parameters. Then, derive the probability of being in state i ∈ {1, 2}

at time t + 1 conditional on the knowledge of ŝt, which is a simple multiplication

of the TPM with a vector of zeros except of a one at position ŝt (MacDonald and

Zucchini, 2009). For the out-of-sample predictions, the length of the rolling win-

dow is set to n = 2000, equaling about eight years of historical data which can be

thought of the average length of a full economic cycle.

In a second step, the sequence of predicted states is smoothed to further reduce

the number of state shifts and thus transaction costs. Many alternative filtering

procedures exist, but here we apply a simple median filter of lag k. That is, the

predicted state at time t+ 1 is given by

ŝ
f
t+1 = [median(ŝt−k+2, . . . , ŝt+1)] , (3)
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Table 4: Effect of the median filter

The table summarizes the number of state changes before and after applying the median
filter. The median filter includes the current and five past observations, i.e. k = 6. The
original paths result from a Viterbi-based prediction with a window of length 2000.

Name Before After # obs.

DAX 188 84 5,796

DJIA 190 60 5,823

NASDAQ 100 59 31 3,383

Nikkei 225 207 89 3,925

S&P 500 134 46 5,834

where [·] maps every number to its integer part. The states ŝt+1−j , j = 0, . . . , k− 1

correspond to the predicted state from the first step, each from a different window.

Table 4 displays the effect of the filter with k = 6 on the number of transitions

in the predicted state sequence. The number of state changes reduces by about

50-65%, which has a significant impact on the transactions costs.

For an application of the median filter, the value selected for the lag parameter k

has non-negligible impact on the performance. A too high value delays the reaction

to regime changes too much, whereas a too low value increases the number of trans-

actions and therefore produces costs. The choice of six trading days produces good

results for all indices, although further numerical optimization of k per index would

improve the results. However, the primary goal is to develop a simple and robust

strategy which simultaneously works for all markets, and therefore these techniques

are not pursued here. Table 5 summarizes the out-of-sample performance of the

strategies and corresponding indices taking transaction costs into account.

For all indices, the exposure to highly volatile periods is reduced. Investors following

the strategy significantly reduce their risk in terms of the annualized standard

deviation, on average by 41%. The highest degree of risk reduction is observed

for the NASDAQ where the standard deviation of the strategy (14%) is not even

half the risk of the index (32%). Moreover, all strategies outperform the respective

index in terms of annual returns. The highest average annual excess return is

realized for the Nikkei (201.6 bp), the lowest difference occurs for the S&P 500

(18.5 bp). This is naturally much lower than in-sample, however a not undesirable
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Table 5: Out-of-sample performance of Markov-switching strategies

This table displays annualized mean returns (in %), standard deviations (in %) for the five
indices and the Markov-switching strategies. Sharpe ratios are only reported for positive
mean returns. “Str.V it.” denotes the Viterbi-based strategy. Every index is followed by
the statistics of the respective strategy in the subsequent row.

Name Mean S.D. Sharpe ratio # Forecasts # Transitions

DAX 7.24 22.0 0.292 5,796 -

Str.V it. 7.76 13.0 0.437 - 84

DJIA 8.93 16.8 0.417 5,823 -

Str.V it. 9.82 11.2 0.646 - 60

NASDAQ 6.82 32.0 0.272 3,383 -

Str.V it. 8.63 14.0 0.464 - 31

Nikkei -4.30 22.6 – 3,925 -

Str.V it. -2.28 13.9 – - 89

S&P 500 8.37 16.5 0.390 5,834 -

Str.V it. 8.56 10.3 0.577 - 46

side-effect of avoiding volatile periods. Consequently, the stategies exhibit much

better Sharpe ratios than the respective indices. These results are in line with Ang

and Bekaert (2004) for monthly returns who noted that “optimal regime-switching

asset allocation may require shifting assets into bonds or cash when a bear market is

expected”. Although the regimes in this study do not explicitly try to identify bear

markets by negative conditional returns, these periods are apparently circumvent

by avoiding the high-variance regime.

4 Conclusion

The figures show that the answer to our initial question, whether profitable Markov

regime-switching strategies exist, is a clear “Yes”. While previous works look at a

range of different samples, they largely focus on monthly data, and often do not

consider out-of-sample performance or transaction costs. The present paper con-

tributes an investigation of the profitability of an asset allocation strategy that is

based on a Markov-switching approach applied to daily returns. Looking at five

major regional markets over the last four decades, the performance of the proposed

model in a simple two-asset world is evaluated in- and out-of-sample under realistic
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assumptions.

The in-sample analysis delivers two main results. At first, an asset allocation strat-

egy, where the switching signals are derived either by the Viterbi algorithm or

by smoothing, clearly outperforms a buy-and-hold strategy. While the returns of

the Markov-switching based strategies are found to be higher, the corresponding

volatilities are observed to be significantly lower than the volatilities of the respec-

tive indices. Secondly, the number of transitions in case where the prevailing market

regime is derived by the Viterbi algorithm is lower than the number of necessary

switches related to the smoothing-based strategy.

In an out-of-sample context with a focus on Viterbi-based strategies, the existence

of a profitable Markov-switching based asset allocation strategy can be confirmed.

Employing a robust technique to reduce the number of regime switches and thus

transaction costs, the results are encouraging: For all analyzed stock market in-

dices, the strategy is found to be profitable after transaction costs, which are taken

explicitly into account. Portfolio risk is lowered by an average of 41% for all markets

under consideration. Besides, annualized excess return between 18.5 (S&P 500) and

201.6 (Nikkei) basis points can be realized by avoiding highly volatile periods. This

leads to Sharpe ratios between 0.437 (DAX) and 0.646 (DJIA), which compares

well to an average Sharpe ratio of the various indices of 0.342. This is a significant

improvement of former studies exerting monthly returns.

The methodology employed in this study can be extended in various directions. In

a first step, the investable universe could be extended by also allowing other asset

classes, such as bonds or commodities. It would be of interest to see how the ob-

served profitability depends on the spectrum of available investment instruments.

Another open route for future research relates to the use of more flexible models,

such as semi-Markov models, which allow for nonparametric state occupancy dis-

tributions. By employing a regime-switching framework that is characterized by

an even higher degree of flexibility, profitability of the proposed asset allocation

strategy might be further improved. Consideration of economic covariates on the

one hand and smoother switching procedures for the change from cash to shares

and vice versa on the other hand may also be approaches that are worth further
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exploration.
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