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ABSTRACT 

 

 

This paper introduces new methods of estimating Value-at-Risk 
(VaR) using Range-Based GARCH (General Autoregressive 
Conditional Heteroskedasticity) models. These models, which 
could be either based on the Parkinson Range or Garman-Klasss 
Range, are applied to 10 stock market indices of selected countries 
in the Asia-Pacific Region. The results are compared using the 
traditional methods such as the econometric method based on the 
ARMA-GARCH models and RiskMetricsTM. The performance of 
the different models is assessed using the out-of-sample VaR 
forecasts. Series of likelihood ratio (LR) tests namely: LR of 
unconditional coverage (LRuc), LR of independence (LRind), and 
LR of conditional coverage (LRcc) are performed for comparison. 
The result of the assessment shows that the model based on the 
Parkinson Range GARCH (1,1) with Student’s t distribution is the 
best performing model on the 10 stock market indices. It has a 
failure rate, defined as the percentage of actual return that is 
smaller than the one-step-ahead VaR forecast, of zero in 9 out 10 
stock market indices. The finding of this paper is that Range-Based 
GARCH Models are good alternatives in modeling volatility and in 
estimating VaR. 
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1. Introduction 

The need to manage risk has been highlighted in the 1990’s by the large losses 

reported by some financial institutions (Jorion, 2000). For example, in February 1993, 

Japan’s Showa Shell Sekiyu oil company lost $1.58 billions from speculating on 

exchange rates (Holton, 2003). In December 1994, California’s Orange County 

announced its losses totaling $1.8 billions from repos and other transactions (Jorion, 

2000). And in February 1995, Nick Leeson, a trader from Britain’s Barings PLC, lost 

$1.33 billions from unauthorized Nikkei futures trading (Jorion, 2000). 

The examples above and other publicized losses in the 1990’s have demonstrated the 

need to control risk. In order to control risk, there should be a way on how to measure 

it. Measuring risk is tricky because it is not observable, but financial analysts have 

found a way to quantify it. One method in quantifying risk is the Value-at-Risk 

(VaR). It is the most popular method and has been adopted by financial institutions 

like the JP Morgan and Goldman Sachs, and regulators like the Basel Committee on 

Banking Supervision.  

The Basel Committee on Banking Supervision (or Basel Committee) is an 

international body formed to formulate recommendations on how to regulate banks. 

Its recent recommendation released in 2004, called the Basel II Accord, is a move to 

control risk by requiring the banks to hold capital proportional to risks. One of the 

risks included in the Basel II accord is the market risk which is estimated based on the 

VaR framework1. The exact methodology of estimating VaR is flexible. It could be 

based on the standardized procedure proposed by the Basel Committee or based on 

the banks proprietary VaR measure as approve by the regulators of the implementing 

country (i.e., central banks). Aside from managing risk, VaR is needed in the banking 

sector to comply with the regulatory requirement of the Basel II Accord.  

The Value-at-Risk (VaR) is defined as the amount the market value of an asset (or a 

portfolio of assets) could decline over a certain period under normal market 

conditions at a specified probability (Tsay, 2005). More formally (following Bao, Lee 

and Saltoglu (2006)), let r1, r2, …,rT be the financial return series and suppose that {rt} 

follows a stationary stochastic process, 
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VaR with a given tail probability α ∈ (0,1), denoted by VaRα, is defined as the 

conditional quantile, 

( ) αα =Φ VaR          (2) 

The VaRα can be estimated by inverting the distribution function, Φ(.), 

( ) )(12/11 αμαα
−− +=Φ= FhVaR tt       (3) 

In estimating VaR, we need to specify ( )ttt uFandh,μ . 

There are many methods that can be used to estimate the VaR. The popular methods 

are the RiskMetricsTM and econometric procedures based on the Autoregressive 

Moving Average (ARMA) models to specify µt and the Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) models to specify ht.  

This paper proposes new methods in estimating VaR using the range of the prices of 

assets. Two Range-based models, the Parkinson Range (using the highest and lowest 

prices) and the Garman-Klass Range (using the highest, lowest, opening and closing 

prices), are used to estimate the time varying volatility  needed in estimating 

VaR.  

)( 2/1
th

The remainder of the paper is organized as follows: section 2 discusses the ARMA-

GARCH and the RiskMetricsTM approaches in estimating VaR. The ranged-based 

models are introduced in section 3 while section 4 discusses the methods of assessing 

the VaR forecasts, using series of Likelihood Ratio tests. Section 5 presents the results 

of the empirical exercise and section 6 concludes. 
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2. RiskMetrics
TM

 and Econometric Approaches to VaR Estimation 

RiskMetrics 

A method in calculating VaR that it is widely used by practitioners is the 

RiskMetricsTM (Giot and Laurent, 2003). The method was developed by JP Morgan 

(Morgan and Reuters, 1996) and the VaR is defined as, 

)(12/1 αμα
−+= FhVaR tt        (4) 

where F(.) is the standard normal distribution (example: F-1(0.01))=2.326 and F-

1(0.05))=1.645), µt = 0 and the conditional variance ht is defined as an Integrated 

GARCH (IGARCH) with fixed parameters given by, 

2
11 06.094.0 −− += ttt rhh         (5) 

 RiskMetricsTM can be easily implemented in a spreadsheet program since the values 

of the parameters are fixed. 

ARMA-GARCH Models 

The ARMA-GARCH model is one of the existing methods to estimate VaR. This 

approach utilizes two models: one for the conditional mean specification (µt) and the 

other for the conditional variance specification (ht) of the return error series. The 

mean equation can be defined from the class of models under the AutoRegressive 

Moving Average (example:ARMA(1,1)), while the variance specification, usually 

follows the generalized AutoRegressive Conditional Heteroskedasticity (GARCH 

(1,1)) model (Bollerslev, 1986). A typical ARMA (1,1)-GARCH(1,1) model is 

defined as, 
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Other specifications of the variance equation (ht) were later developed to capture 

leverage effect of the past error terms. Threshold GARCH (TARCH) process was 
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developed to capture the quadratic leverage effect (Glosten, Jagannathan and Runkle, 

1993). Nelson (1991), on the other hand, developed the Exponential GARCH process 

to capture the exponential leverage effect. 

3. Range-Based Models for VaR Estimation 

An alternative method of estimating volatility is to use the Range-Based GARCH 

model. It is similar to GARCH model for the conditional variance but makes use of 

the daily opening, closing, high and low values of assets which are readily available. 

These intra-daily prices are used to compute the daily volatility of returns directly. 

The GARCH model is then applied to the range to estimate the time-varying 

conditional variance (ht). Mapa (2003) made use of the Range-Based GARCH model 

to forecast volatility of the daily Peso-Dollar exchange rates and showed that the 

Range-Based GARCH models performed better than their GARCH counterparts using 

inter-daily returns. 

Following Mapa (2003), the Range-Based GARCH model is specified as:  
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where tttR εμ=  and ( )2
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The time varying parameter µt is the conditional standard deviation which is modeled 

directly from the proxy volatility of an asset Rt.  

There are two types of proxy volatility, Rt, which will enter into the Range-Based 

GARCH model: the Parkinson Range (Parkinson;1980) and the Garman-Klass Range 

(Garman and Klass; 1980). The Parkinson Range of an asset is defined as,  

( ) ( )( )
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2

tt
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where Ht and Lt denote, respectively, the highest and the lowest prices on day t.  
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The Garman-Klass Range is an extension of Parkinson Range where the information 

about opening, pt-1, and closing, pt, prices are incorporated as follows: 
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Mapa (2003) showed that the parameters of the Range-Based GARCH models from 

equation (7) can be estimated using the quasi-maximum likelihood estimation 

(QMLE) procedure which produces consistent estimators that are asymptotically 

distributed as normal. 

4. Assessing the VaR Forecast – Likelihood Ratio Tests 

The different models to estimate VaR can be assessed, through backtesting, by 

comparing the forecasted VaR with the actual loss on a portfolio. If the forecasted 

VaR is smaller than the actual loss, this phenomenon is termed as a VaR violation. 

The Basel Committee, as contained in the Basel II Accord, has developed a guideline 

in interpreting the number of violations given 250 observations or approximately one 

year of daily data. If one computes for a 99%VaR and the number of violations is 4 or 

below, the model is in the “green light” zone and incurs no penalty. If the violations 

are 5 to 9, the model is in the “yellow” zone, but if the violations are 10 or more 

(roughly 3.6% failure rate) the model is in the “red” zone. If the model is in the 

“yellow” or “red” zone, the financial institution would incur a penalty.  

Under Bangko Sentral ng Pilipinas (BSP) circular 360, “each bank must meet, on a 

daily basis, a capital risk charge expressed as the higher of (i) last trading day’s VaR 

number or (ii) an average of the daily VaR measures on each of the preceding 60 

trading days multiplied by a multiplication factor. The multiplication factor shall be 

set by the BSP on the basis of its assessment of the quality of the bank’s risk 

management system subject to an absolute minimum of k = 3.  Banks will be required 

to add to this factor a “plus” directly related to the ex-post performance of the model 

(to be determined on a quarterly basis), thereby introducing a built-in positive 

incentive to maintain the predictive quality of the model.  The plus will range from 0 

to 1 based on the number of backtesting exceptions (i.e., the number of times that 
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actual/hypothetical loss exceeds the VaR measure) for the past 250 trading days of the 

reference quarter.”2

The risk charge (RC) for day t is given by, 

]
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=
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i
ittt VaRkVaRMaxRC                (10) 

Depending on the number of VaR violations or exceptions for 250 days, Table 1 

below provides the penalty scheme, ranging from 0 to 1, that will be added to the 

minimum of 3 that sums up to k in equation (10). If the method used in estimating the 

daily VaR produces a large number of VaR violations, the bank incurs a larger risk 

charge since k in equation (10) increases to a maximum of 4 (under the “red zone”). 

Table 1. Penalty Scheme for the number of VaR violations in a 99%VaR 

Zone No. of VaR exceptions/ 
violations in 250 trading days 

“Plus” factor 

0 0.00 

1 0.00 

2 0.00 

3 0.00 

Green zone 

4 0.00 

5 0.40 

6 0.50 

7 0.65 

8 0.75 

Yellow zone 

9 0.85 

Red zone 10 or more 1.00 

Likelihood Ratio (LR) Tests 

The model can also be assessed using a series of Likelihood Ratio (LR) tests if the 

VaR violation exceeds zero (Christoffersen, 1998). There are three LR tests available 

in assessing the performance of the different models: (1) LR of unconditional 

coverage (LRuc), (2) LR of independence (LRind), and (3) LR of conditional coverage 

(LRcc). These tests provide us with information related to the possible mis-

specification of the models used in estimating the VaR. 
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a. Likelihood Ratio test for Unconditional Coverage (LRuc) 

The LR test statistic for the unconditional coverage is used to test if the proportion of 

VaR violations (also known as the empirical failure rate) is equal to the pre-specified 

level α (equal to 1% for a 99% VaR). Mathematically the empirical failure rate, π1, 

can be estimated by, 
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where T is the total number of out-of-sample observations and ( ).I  is the indicator 

variable which is equal to one if there is VaR violation and zero otherwise and T1 is 

the number of VaR violations. 

The empirical failure rate is then tested if it is equal to the pre-specified level, 

απ =10 :H  against the alternative hypotheses, απ >11 :H . The decision rule 

whether to reject or accept the null hypothesis, H0, is based on LRuc test statistic 

(Jorion, 2000) and is given by, 
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It can be shown that LRuc is asymptotically distributed as chi-square with 1 degree of 

freedom. 

A model that rejects the H0 of the LRuc is considered as an inferior model since the 

empirical failure rate 1π  is greater than the pre-specified VaR level α. However, 

accepting H0 does not necessarily mean that the model is correctly specified since it is 

possible for the failure rate to be within the pre-specified level α but the series of VaR 

violations are not independent of each other. This phenomenon is known as clustered 

VaR violations (e.g. the 4 VaR violations for 250 trading days (green zone) may 
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happened in just one week). According to Christoffersen and Pelletier (2003), a model 

with clustered VaR violations is indicative of a mis-specified model  

b. Likelihood Ratio test of Independence (LRind) 

If the null hypothesis in the LRuc test ( απ =10 :H ) is not rejected, the model is 

then assessed using a second test known as the LR test of independence (LRind). The 

test will tell us whether the proportion of the clustered VaR violations is equal to 

proportion of the independent VaR violations.  

Let Tij be defined as the number of days in which state j occurred in one day while 

state i occurred in the previous day. Thus, T00 is the number days without VaR 

exception that is preceded by a day without VaR exception, T10 is the number of days 

without VaR exception that is preceded by a day with VaR violation, T11 is the 

number of consecutive 2 days with VaR violations and T01 is the number of days with 

VaR violation that is preceded by day without a VaR violation.  

Define the following, 

11100001

1101

1011

11
1

0001

01
0 ,

TTTT

TT

TT

T

TT

T

+++
+

=
+

=
+

= πππ           (13) 

Here, π0 is equal to the proportion of VaR violations preceded by non-VaR violation 

and π1 is equal to the proportion of two consecutive VaR violations. In the LRind test 

we are interested in the hypothesis 100 : ππ =H  against the alternative 

hypothesis 101 : ππ ≠H . 

The test statistic for the LRind test is due to Christoffersen (1998) and is defined in 

Jorion (2001) as, 
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The LRind is asymptotically distributed as chi-square with 1 degree of freedom. 
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A model that rejects the H0 of the LRind test indicates that the VaR violations are not 

independent (or are clustering). Clustering of VaR violations is a matter of great 

concern since this can lead to problems for the banks (or any financial institution). On 

the other hand, a model that accepts the H0 in the LRind test needs to be tested again to 

determine if the model is correctly specified, since it is possible that the proportion of 

the independent violations (π0) or clustered VaR violations (π1) is higher than the pre-

specified failure rate, α. 

c. Likelihood Ratio test of Conditional Coverage (LRcc) 

Assuming that the VaR violations are independent, the third test to be performed is 

the LR test of conditional coverage, LRcc. The LRcc test has the null hypothesis, 

αππ == 100 :H , which states that given the VaR violations are independent, 

10 ππ = , they are  equal to the pre-specified failure rate, α. The alternative 

hypothesis is that at least one of the πs is not equal to α. If the null hypothesis of LRcc 

test is not rejected, it is indicative that the model is correctly specified. The test 

statistic for the LRcc is the sum of the test statistics for the LRuc and LRind and is 

distributed asymptotically as chi-square with 2 degrees of freedom. 

induccc LRLRLR +=  (15)  

5. Results and Discussion 

This study used 10 stock market indices in the Asia-Pacific Region: Australia, China, 

Hong Kong, Indonesia, Japan, Korea, Malaysia, the Philippines, Singapore and 

Taiwan. The data consist of daily observations from July 2, 1997 to March 18, 2005. 

The number of actual observations varies among the stock market indices because of 

the differences in the number of trading holidays. The number of observations is in 

the vicinity of 1,900 observations for each country. The first 80% observations or 

from July 2, 1997 to September 2, 2003 is used for model estimation while the 

remaining 20% observations (September 3, 2003 to March 18, 2005) is used for out-

of-sample forecast evaluation. The models used to compare VaR forecasts are the 

RiskMetrics, several ARMA-GARCH type of models and the Range-Based GARCH 

models.  
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Among the selected models, the best model is the Parkinson-GARCH(1,1) with 

Student’s t distribution since it is able to forecast correctly all the losses (i.e., no VaR 

violation) in 9 out of 10 stock indices (see Table 2). The second best model is AR(1)-

TARCH(2,1) with Student's t distribution followed by the Garman-Klass-

GARCH(1,1) with Student’s t distribution.  

   Table 2. Summary of the VaR violations of ten stock market indices 
AR(1)-

ARCH(1), 

Normal 

Distribution 

AR(1)-

TARCH(2,1), 

Student's t 

Distribution 

Park-

GARCH(1,1) 

Student’s t 

Distribution * 

GK-

GARCH(1,1) 

Student's t 

Distribution * 

RiskMetricsTM 
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Australia 394 0 0.00 0 0.00 0 0.00 0 0.00 51 12.94 

China 371 1 0.27 0 0.00 0 0.00 0 0.00 128 34.50 

Hong 

Kong 
383 2 0.52 0 0.00 0 0.00 0 0.00 1 0.26 

Indonesia 372 2 0.54 0 0.00 0 0.00 1 0.27 1 0.27 

Japan 376 4 1.06 0 0.00 0 0.00 0 0.00 7 1.86 

Korea 380 1 0.26 2 0.53 0 0.00 0 0.00 3 0.79 

Malaysia 378 0 0.00 0 0.00 0 0.00 0 0.00 28 7.41 

Philippine

s 
383 1 0.26 0 0.00 0 0.00 1 0.26 6 1.57 

Singapore 390 0 0.00 0 0.00 0 0.00 0 0.00 22 5.64 

Taiwan 382 3 0.79 1 0.26 1 0.26 1 0.26 7 1.83 

   *Using fixed degrees of freedom equal to 5 as suggested by Tsay (2001). 

 

On the other hand, the worst performing VaR methodology is the RiskMetricsTM 

where the forecasts in the ten stock market indices have VaR violations. Using the 

Basel II definition, the bank will incur a penalty charge using RiskMetricsTM on stock 

indices in Australia, China, Malaysia, and Singapore because the failure rates are in 

the “red” zone (e.g., 3.6% or greater). If the bank is using the selected ARMA-

GARCH and Range-Based GARCH models it will not incur a penalty charge since all 

VaR violations, if any, are within the “green” zone. 

In stock indices where there is at least 1 VaR violation, the models were subjected to 

the series of likelihood ratio tests. The results of the LR tests are summarized in Table 

3 below. The selected ARMA-GARCH and Range-Based GARCH models passed the 
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three LR tests (i.e., accepted the null hypothesis). The results of the LR tests suggest 

that the number of VaR violations of the ARMA-GARCH and Range-Based GARCH 

models are within the specified failure rate of 1% (using the LRuc test), moreover the 

resulting violations do not exhibit clustered violations or are independent of each 

other (based on LRind test) and finally, the VaR violations (clustered and non-

clustered) are within the specified failure rate α = 0.01 (LRcc test).   

Table 3. Summary of Likelihood Ratio tests of ten stock market indices* 

AR(1)-ARCH(1), 

Normal 

Distribution 

AR(1)-

TARCH(2,1), 

Student's t 

Distribution 

Park-GARCH(1,1) 

Student’s t 

Distribution (fixed 

df) 

GK-GARCH(1,1) 

Student's t 

Distribution (fixed 

df) 

RiskMetricsTM
 

LRuc LRind LRcc LRuc LRind LRcc LRuc LRind LRcc LRuc LRind LRcc LRuc LRind LRcc

Australia - - - - - - - - - - - - R na na 

China A A A - - - - - - - - - R na na 

Hong Kong A A A - - - - - - - - - A A A 

Indonesia A A A - - - - - - A A A A A A 

Japan A A A - - - - - - - - - A A A 

Korea A A A A A A - - - - - - A A A 

Malaysia - - - - - - - - - - - - R na na 

Philippines A A A - - - - - - A A A A A A 

Singapore - - - - - - - - - - - - R na na 

Taiwan A A A A A A A A A A A A A A A 

*Legend: A = accept the null hypothesis; R = reject the null hypothesis; na = test not applicable; - = 
cell indicates the test is undefined because the VaR violation is zero. 
** Likelihood Ratio (LR) tests: LRuc = LR test of unconditional coverage, LRind = LR test of 
independence, LRcc = LR test of conditional coverage. All LR tests are based on 95% confidence 
interval. 

In the case of RiskMetricsTM, however, the VaR violations in some stock indices are 

too high that the null hypothesis of the LR test of unconditional coverage (empirical 

failure rate is 0.01) is rejected. The performance of RiskMetricsTM will produce higher 

capital charges in the four indices: Australia, China, Malaysia, and Singapore 

Regardless of the specification of the model (GARCH, EGARCH, TARCH), 

econometric models based on the Student's t distribution tend to forecast VaR 

correctly (i.e., zero VaR violations) as shown in Table 4. This result is consistent with 

the findings of Mapa (2003) that the Student's t tend give a better forecast than normal 
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distribution. The reason is that VaR forecast are usually larger because Student's t 

distribution has fatter tails than the normal distribution.   

Table 4. Number of times there is zero VaR violation in 10 stock market indices. 

ARMA-GARCH model Normal Distribution Student's t Distribution 

AR (1)-ARCH (1) 3 out of 10 8 out of 10 

AR (1)-GARCH (1,1) 1 out of 10 7 out of 10 

AR (1)-GARCH (2,1) 1 out of 10 7 out of 10 

AR (1)-GARCH (1,2) 1 out of 10 7 out of 10 

AR (1)-GARCH (2,2) 1 out of 10 7 out of 10 

AR (1)-TARCH (1,1) 0 out of 10 7 out of 10 

AR (1)-TARCH (2,1) 0 out of 10 8 out of 10 

AR (1)-TARCH (1,2) 0 out of 10 7 out of 10 

AR (1)-TARCH (2,2) 0 out of 10 7 out of 10 

AR (1)-EGARCH (1,1) 0 out of 10 6 out of 10 

AR (1)-EGARCH (2,1) 0 out of 10 6 out of 10 

AR (1)-EGARCH (1,2) 0 out of 10 6 out of 10 

AR (1)-EGARCH (2,2) 0 out of 10 6 out of 10 

PARKINSON-GARCH (1,1) 0 out of 10 9 out of 10 

GARMAN-KLASS-GARCH (1,1) 0 out of 10 7 out of 10 

 

6. Conclusion 

This paper introduces a relatively simple yet efficient way of modeling volatility 

needed in estimating VaR using the Range-Based GARCH models. Two Range-based 

models were introduced, the Parkinson Range-GARCH and the Garman-Klass 

GARCH models. The empirical analysis, using 10 stock market indices in the Asia 

Pacific region, showed that these models are promising based on their out-of-sample 

performance. In particular, the Parkinson Range-GARCH model was able to produce 

VaR estimates with zero violation in 9 out of 10 stock market indices. This paper has 

shown that indeed Range-Based GARCH models are good alternative in modeling 

volatility and estimating VaR. 
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1 Duffie and Singleton (2003) argues that VaR “captures only one aspect of market risk and is too 

narrowly defined to be used on its own as a sufficient measure of capital adequacy.” Moreover, 
Artzner et al (1999) showed that VaR does not satisfy the sub-additive property of the risk measure 
resulting to a serious limitations when aggregating risk. 

2 Bangko Sentral ng Pilipinas (BSP) Circular No. 360 Annex A. 
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