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Abstract. In this paper we assess the short-term forecasting power of different time series models in the 
electricity spot market. We calibrate autoregression (AR) models, including specifications with a fundamental 
(exogenous) variable – system load, to California Power Exchange (CalPX) system spot prices. Then we 
evaluate their point and interval forecasting performance in relatively calm and extremely volatile periods 
preceding the market crash in winter 2000/2001. In particular, we test which innovations distributions/processes 
– Gaussian, GARCH, heavy-tailed (NIG, -stable) or non-parametric – lead to best predictions. 
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1. Introduction 

In the last decades, with deregulation of power markets and introduction of competition, 
electricity price forecasts have become a fundamental input to an energy company‟s decision-
making mechanism (Bunn 2004; Weron 2006). Extreme price volatility, which can be even 
two orders of magnitude higher than for other commodities or financial instruments, has 
forced producers and wholesale consumers to hedge not only against volume risk but also 
against price movements. Short-term price forecasts (STPF) are of particular interest for 
participants of auction-type spot electricity markets who are requested to express their bids in 
terms of prices and quantities. In such markets buy (sell) orders are accepted in order of 
increasing (decreasing) prices until total demand (supply) is met. Consequently, a market 
participant that is able to forecast spot prices can adjust its own production and (to some 
extent) consumption schedule accordingly and hence maximize its profits.  

This paper is a continuation and a review of our earlier studies on STPF of California 
electricity prices with time series models (Misiorek et al. 2006; Weron 2006; Weron and 
Misiorek 2007). Consequently, as a benchmark and a starting point we choose the 
autoregressive time series specification that has been found to perform well for pre-crash 
California power market data. We compare it not only with autoregressive models allowing 
for heteroskedastic (GARCH) or heavy-tailed (NIG, α-stable) innovations, but also with an 
autoregressive model calibrated within a non-parametric framework, where the innovations 
density is estimated by the Parzen–Rosenblatt kernel. We call the latter model semi-
parametric because it has a parametric autoregressive part and a non-parametric noise 
distribution. In a detailed empirical study we evaluate the point and interval forecasting 
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performance of all investigated models. In particular, the novel in electricity price forecasting 
literature semi-parametric approach seems to be promising.  

 

2. The data and the base model 

Like in our previous studies, an assumption is made that only publicly available information 
is used to predict spot prices, i.e. generation constraints or line and production capacity limits 
are not considered. The dataset used in this analysis – CA_hourly.dat – is distributed with the 
MFE Toolbox (Weron 2006). It was constructed using data obtained from the UCEI institute 
(www.ucei.berkeley.edu) and the California independent system operator (CAISO; 
oasis.caiso.com). Apart from hourly system prices quoted in the California Power Exchange 
(CalPX), it includes two fundamental variables: system-wide loads and day-ahead CAISO 
load forecasts for the California market, see Figure 1.  

 

Figure 1: Hourly system prices (top panel) and hourly system loads (bottom panel) in California for the period 
July 5, 1999 – December 3, 2000. The changing price cap (750 → 500 → 250 USD/MWh) is clearly visible in 
the top panel. The day-ahead load forecasts of the system operator CAISO are indistinguishable from the actual 
loads at this resolution; only the latter have been plotted. 

 

The logarithmic transformation was applied to price, )log( tt Pp , and load, 

)log( tt Zz , data to attain a more stable variance. Furthermore, the mean price and the 

median load were removed to center the data around zero. Removing the mean load resulted 
in worse forecasts, perhaps, due to the very distinct and regular asymmetric weekly structure 
with the five weekday values lying in the high-load region and the two weekend values in the 
low-load region. The data from the period July 5, 1999 – April 2, 2000 was used only for 
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calibration. Such a relatively long period of data was needed to achieve high accuracy. For 
example, limiting the calibration period to data coming only from the year 2000, like in 
Contreras et al. (2003), led to a decrease in forecasting performance by up to 70%. 
Consequently, the period April 3 – December 3, 2000 was used for out-of-sample testing. 
Since in practice the market-clearing price forecasts for a given day are required on the day 
before, we used the following (adaptive) testing scheme. To calibrate the models and compute 
price forecasts for hour 1 to 24 of a given day, data available to all procedures included price 
and system load historical data up to hour 24 of the previous day plus day-ahead load 
predictions for the 24 hours of that day.  

The time of the year, the day of the week and the hour of the day influence price 
patterns. Price forecasting models should take these time factors into account. However, since 
we are focused on short-term (day-ahead) forecasting the annual seasonal behavior does not 
play a major role (also the used adaptive testing scheme allows the analyzed autoregressive 
models to quickly adapt to the changing conditions throughout the year).  

The hourly and weekly seasonal patterns were handled in two different ways. Since 
each hour displays a rather distinct price profile reflecting the daily variation of demand, costs 
and operational constraints the modeling was implemented separately across the hours, 
leading to 24 sets of parameters. This approach was also inspired by the extensive research on 
demand forecasting, which has generally favored the multi-model specification for short-term 
predictions (Bunn 2000; Weron 2006). On the other hand, the weekly seasonal behavior – 
which is mostly due to variable intensity of business activities throughout the week – was 
captured by a combination of (i) the autoregressive structure of the models and (ii) daily 
dummy variables. The log-price was made dependent on the log-prices for the same hour on 
the previous days, and the previous weeks, as well as the minimum of all prices on the 
previous day (the latter created the desired link between bidding and price signals from the 
entire day). Furthermore, three dummy variables (for Monday, Saturday and Sunday) were 
considered to differentiate between the weekends, the first working day of the week and the 
remaining business days (this particular choice of the dummies is a consequence of the 
significance of the dummy coefficients for particular days).   

The electricity spot price is not only dependent on the weekly and daily business 
cycles but also on other fundamental variables that can significantly alter this deterministic 
seasonal behavior. Recall, that the equilibrium between demand and supply defines the spot 
price. Both – demand and supply – are influenced by weather conditions, most notably air 
temperatures. In the short-term horizon, the variable cost of power generation is essentially 
just the cost of the fuel, consequently, the fuel price is another influential exogenous factor. 
Other factors like power plant availability (capacity) or grid traffic (for zonal and modal 
pricing) could also be considered. However, including all these factors would make the model 
not only cumbersome but also sensitive to the quality of the inputs and conditional on their 
availability at a given time. Instead we have decided to use only publicly available, high-
frequency (hourly) information. In the California market of the late 1990s this includes 
system-wide loads and day-ahead CAISO load forecasts. In particular, the latter are important 
as they include the system operator‟s (and to some extent – the market‟s) expectations 
regarding weather, demand, generation and power grid conditions prevailing at the hour of 
delivery. The knowledge of these forecasts allows, in general, for more accurate spot price 
predictions. In the studied period (with some deviations in the volatile weeks 11-35), the 
logarithms of loads (or load forecasts) and the log-prices were approximately linearly 
dependent (the Pearson correlation was positive, ρ > 0.6, and highly significant with a p-value 
of approximately 0; null of no correlation). 

At lag 0 the CAISO day-ahead load forecast for a given hour was used, while for 
larger lags the actual system load was used. Interestingly, the best models turned out to be the 
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ones with only lag 0 dependence. Using the actual load at lag 0, in general, did not improve 
the forecasts either. This phenomenon can be attributed to the fact that the prices are an 
outcome of the bids, which in turn are placed with the knowledge of the CAISO load 
forecasts but not actual future loads. 

Extensive studies performed by Weron (2006) led to the conclusion that the best 

autoregressive model structure for the (log-)price tp , in terms of forecasting performance for 

the first week of the test period (April 3-9, 2000), was given by:  
 

,)( 3211 tSunSatMontt DdDdDdzpB  (1) 

where the autoregressive part ,)( 41683482241 tttttt mpapapapappB  tmp  was the 

minimum of the 24 hourly (log-)prices on the previous day, tz  was the (log-)load forecast and 

SunSatMon DDD ,,  were the dummy variables (for Monday, Saturday and Sunday). In this base 

model, denoted in the text as ARX, the noise term t  is i.i.d. Gaussian. Recall that the model, 

as well as its extensions described in the following Section, were estimated using an adaptive 
scheme, i.e. instead of using a single model for the whole sample, for every day (and hour) in 
the test period we calibrated the model (given its structure) to the previous values of prices 
and loads and obtained a forecasted value for that day (and hour).  
 

3. Model extensions 

The residuals obtained from the fitted ARX model seemed to exhibit a non-constant variance. 
Indeed, when tested with the Lagrange multiplier „ARCH‟ test statistics (Engle 1982) the 
heteroskedastic effects were significant at the 5% level. Following Weron (2006) we calibrate 
an ARX-G model, where „G‟ stands for GARCH(1,1). It differs from the ARX model in that 
the noise term t  in eqn. (1) is not just ),0( 2

iid  but is given by ttth  with 
2

11
2

110
2

ttt h . 

It has been long known that financial asset returns are not normally distributed. 
Rather, the empirical observations exhibit excess kurtosis (Carr et al. 2002; Rachev and 
Mittnik 2000). Bottazzi et al. (2005) and Weron (2006) have shown that electricity prices are 
also heavy-tailed. In particular, normal inverse Gaussian (NIG) and α-stable probability 
distributions provide a very good fit. The pertinent question is whether models with heavy-
tailed innovations perform better in terms of forecasting accuracy than their Gaussian 
counterparts.  

Following Weron and Misiorek (2007), we extend the basic model by allowing for a 

noise term t  that is governed by a heavy-tailed distribution: NIG or α-stable. The resulting 

models are denoted by ARX-N and ARX-S, respectively. Recall, that the NIG distribution is 
defined as a normal variance-mean mixture where the mixing distribution is the generalized 
inverse Gaussian law with parameter λ=–0.5, i.e. it is conditionally Gaussian. The probability 
density function of the NIG(α, β, δ, µ) distribution is given by: 
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where δ > 0 and µ R are the usual scale and location parameters, while α and β determine the 
shape, with α being responsible for the steepness and β, |β| < α, for the skewness. The 
normalizing constant K1(t) is the modified Bessel function of the third kind with index 1. The 
tail behavior is often classified as „semi-heavy‟, i.e. the tails are lighter than those of non-
Gaussian stable laws, but much heavier than Gaussian (Weron 2004).  

Stable laws – also called α-stable, stable Paretian or Lévy stable – require four 
parameters for complete description: the tail exponent (0,2], which determines the tail 
thickness, the skewness parameter β [−1, 1] and the usual scale, σ > 0, and location, µ R, 
parameters. When α = 2, the Gaussian distribution results. When α < 2, the variance is infinite 
and the tails are asymptotically equivalent to a Pareto law, i.e. they exhibit a power-law decay 

of order x . In contrast, for α = 2 the decay is exponential. From a practitioner‟s point of 
view the crucial drawback of the stable distribution is that, with the exception of three special 
cases (α = 2, 1, 0.5), its density and distribution function do not have closed form expressions. 
They have to be evaluated numerically, either by approximating complicated integral 
formulas or by taking the Fourier transform of the characteristic function (Weron 2004). 

Heavy tailed laws provide a much better model for electricity price returns than the 
Gaussian distribution. Yet, a non-parametric kernel density estimator will generally yield a 
superior fit to any parametric distribution. Perhaps, time series models would lead to more 
accurate predictions if no specific form for the distribution of innovations was assumed. To 
test this conjecture we evaluate a semi-parametric model (denoted by ARX-NP; we call it 
semi-parametric because it has a parametric autoregressive part and a non-parametric noise 

distribution) for which no specific form for the distribution of innovations t  is assumed. 

Instead, to calibrate the parameters of the autoregression, we employ a non-parametric 
maximum likelihood (ML) routine. Such ML estimators can be derived by extending the ML 
principle to a non-parametric framework, where the innovations density is estimated by the 
Parzen–Rosenblatt kernel (Cao et al. 2003, Hsieh and Manski 1987). These non-parametric 
maximum likelihood estimators (NPMLE) generally perform well not only when the error 
distribution is Gaussian (or any other known parametric form), but also when only regularity 
conditions are assumed about the error density. On the other hand, the deficiency of these 
estimators with respect to ordinary ML estimators, under normality, should not be great if the 
non-parametric density estimator performs well.  

In this study we use the smoothed NPMLE proposed by Cao et al. (2003). It 

(numerically) maximizes the likelihood ),()( ,hh gLL , where 

 
n

i

t
h

h

x
K

hn
xg

2
,

)(

)1(

1
)(  

(3) 

is the non-parametric density, )(K  is the kernel and )(t  are the model residuals for a 

given parameter vector . For the sake of simplicity we use the Gaussian kernel and h = 

0.105 (which roughly corresponds to the so-called „rule of thumb‟ bandwidth 5/1ˆ06.1 nh , 

where ˆ  is an estimator of the standard deviation of the error density). For more optimal 

bandwidth choices consult Jones et al. (1996). 
Finally, let us note that nearly all computations are performed in Matlab 7.0. The ARX 

model is calibrated using the armax.m function, which minimizes the Final Prediction Error 
criterion (Weron 2006). The heavy-tailed and semi-parametric models are estimated by 
numerically maximizing the likelihood and the non-parametric likelihood function, 
respectively, with the ARX models‟ parameters as starting points of the unconstrained 
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simplex search routine (fminsearch.m function). Only the ARX-G model is calibrated in SAS 
9.0 (via ML), because Matlab‟s GARCH Toolbox yields significantly worse forecasts. 

4. Empirical results 

To assess the prediction performance of the models, different statistical measures can be 
utilized. The most widely used measures are those based on absolute errors, i.e. absolute 

values of differences between the actual, hP , and predicted, hP̂ , prices for a given hour, h. 

The Mean Absolute Percentage Error (MAPE) is a typical example. However, when applied 
to electricity prices, MAPE values could be misleading. In particular, when electricity prices 
drop to zero, MAPE values become very large regardless of the actual absolute differences 

|ˆ| hh PP . The reason for this is the normalization by the current (close to zero, and hence 

very small) price hP . Alternative normalizations have been proposed in the literature. For 

instance, the absolute error |ˆ| hh PP  can be normalized by the average price attained during 

the day: 
24

124

1
24 h hPP . The resulting measure, also known as the Mean Daily Error, is 

given by (Conejo et al. 2005; Weron 2006): 
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The Mean Weekly Error (MWE) corresponds to a situation when the number 24 is replaced 
by 168 in (4). Both errors are usually reported in percent, i.e. as MDE 100% or MWE 100%.  
The forecast accuracy was checked afterwards, once the true market prices were available. 
The MWE errors for the whole test period (April 3 – December 3, 2000) and all models are 
given in Table 1. Furthermore, to distinguish the rather calm first 10 weeks of the test period 
from the more volatile weeks 11-35 (see Fig. 1), in Table 2 the summary statistics are 
displayed separately for the two periods. These statistics are based on the 35 Mean Weekly or 
245 Mean Daily Errors. In particular, the number of weeks (days) a given model was best in 
terms of MWE (MDE), the mean MWE (MDE) and the mean deviation from the best model 

in a given week (day). The latter statistics is defined as 
T

t ttiT 1  model,Best, )EE(1 , where i 

ranges over all evaluated models (i.e. i = 5), T is the number of weeks (10, 25) or days (70, 
175) in the sample and E is either MWE or MDE.  

The obtained results suggest that the semi-parametric specification ARX-NP is the 
best model. Of all the competitors it most often leads to the best point forecasts, both in the 
calm and volatile periods and both in terms of the weekly and daily measures (see rows 
labeled „# best(MWE)‟ and „# best(MDE)‟ in Table 2).  Yet, it is not unanimously the best. 
While it has the lowest mean MWE in the calm period, in the latter 25 weeks, surprisingly, 
the ARX model beats it. Likewise, ARX-NP has the lowest mean MDE in the volatile period, 
but in the calm weeks both heavy-tailed specifications slightly overtake it. The mean 
deviations from the best model lead to the same conclusions. Nevertheless, ARX-NP can be 
considered the overall best model. 
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Table 1: Mean Weekly Errors (MWE; in percent) for all weeks of the test period. Best results in each week are 
emphasized in bold. Notice that the results for the ARX and ARX-G methods in this table were originally 
reported in Misiorek et al. (2006) and are re-produced here for comparison purpose. 
 

Week ARX ARX-G ARX-N ARX-S ARX-NP 

1 3.03 3.60 3.39 3.55 3.44 

2 4.71 5.46 5.73 5.35 5.30 

3 8.37 8.92 8.71 8.73 8.58 

4 13.51 13.48 12.37 12.84 13.49 

5 17.82 18.22 17.70 17.64 17.52 

6 8.04 8.26 8.00 7.89 7.87 

7 9.43 10.72 9.93 9.82 8.59 

8 48.15 45.55 44.44 44.11 45.18 

9 13.11 15.19 13.38 13.30 12.74 

10 7.39 8.10 7.63 7.59 8.01 

11 46.23 53.64 52.95 52.10 48.42 

12 19.23 19.18 17.56 17.67 18.47 

13 44.17 56.00 56.88 56.51 49.21 

14 27.99 28.22 27.00 27.21 28.03 

15 11.11 16.99 11.76 11.94 10.56 

16 25.41 33.45 30.67 29.67 26.04 

17 19.26 32.49 26.45 25.66 19.79 

18 11.71 26.47 16.33 15.96 11.97 

19 14.47 14.02 14.94 14.62 15.74 

20 9.18 15.19 10.49 10.50 9.57 

21 13.91 18.51 14.10 14.58 13.45 

22 20.28 22.40 20.55 20.27 19.51 

23 23.27 24.64 23.78 23.72 22.84 

24 14.30 17.83 14.97 14.83 14.75 

25 17.28 22.92 18.29 18.20 16.37 

26 13.97 13.30 13.43 13.30 13.75 

27 10.65 11.13 10.67 10.56 10.53 

28 7.93 7.57 7.46 7.50 7.43 

29 7.36 8.41 7.65 8.25 7.03 

30 10.22 8.73 9.21 9.53 10.20 

31 13.35 11.94 12.59 12.88 13.12 

32 11.43 11.29 10.38 11.03 11.28 

33 11.09 12.92 10.61 11.13 11.35 

34 12.40 10.30 10.61 11.22 12.67 

35 5.07 4.74 4.01 4.72 4.83 

 

Table 2: Summary statistics for the Mean Weekly Errors (MWE; presented in Table 1) and the Mean Daily 
Errors (MDE). The first number (before the slash) indicates performance during the first 10 weeks and the 
second – during the latter 25 weeks. Best results in each category are set in boldface. 
 

Statistics ARX ARX-G ARX-N ARX-S ARX-NP 

# best(MWE) 4/7 0/4 1/5 1/1 4/8 

Mean(MWE) 13.36/16.85 13.75/20.09 13.13/18.13 13.08/18.14 13.07/17.08 

Mean dev. from best 0.69/0.62 1.08/3.86 0.46/1.90 0.41/1.91 0.40/0.84 

# best(MDE) 17/35 9/43 15/25 5/18 24/54 

Mean(MDE) 11.98/17.70 12.30/19.87 11.64/18.10 11.63/18.15 11.69/17.64 

Mean dev. from best 1.55/2.59 1.87/4.76 1.21/2.99 1.20/3.04 1.26/2.53 
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Table 3: Mean percent of exceedances of the 50%, 90% and 99% two-sided day-ahead prediction intervals (PI) 
by the actual system price for the five considered models. 
 

Weeks 50% 90% 99% 50% 90% 99% 

 ARX ARX-G 

1-10 41.96 13.93 5.60 41.85 13.15 4.88 

11-35 46.10 13.60 5.52 47.93 15.64 6.81 

 ARX-N ARX-S 

1-10 60.95 14.70 3.39 58.57 15.48 0.77 

11-35 65.02 18.40 2.05 65.38 19.31 0.60 

 ARX-NP  

1-10 42.92 14.40 5.65    

11-35 46.31 14.17 5.50    

 

At the other end is the ARX-G model, which is inferior to the remaining competitors 
in most categories. It fails spectacularly in terms of the mean errors and the mean deviation 
from the best model. However, it can lead to the best predictions from time to time. Finally, 
the heavy-tailed models behave similarly. While ARX-N more often yields the best forecasts, 
ARX-S performs slightly better on average. Somewhat surprisingly, it is the calm period and 
not the volatile one that favors the heavy-tailed models relative to its competitors. 

Apart from point forecasts, we investigated the ability of the models to provide 
interval forecasts. For all considered models interval forecasts were determined analytically; 
for details on calculation of conditional prediction error variance and interval forecasts we 
refer to Hamilton (1994) and Weron (2006). Afterwards, following Christoffersen and 
Diebold (2000) and Misiorek et al. (2006), we evaluated the quality of the interval forecasts 
by comparing the nominal coverage of the models to the true coverage. Thus, for each of the 
models we calculated prediction intervals (PIs) and determined the actual percentage of 
exceedances of the 50%, 90% and 99% two sided day-ahead PIs of the models by the actual 
system price, see Table 3. If the model implied interval forecasts were accurate then the 
percentage of exceedances should be approximately 50%, 10% and 1%, respectively. Note 
that in the calm period (first 10 weeks) 1680 hourly values were determined and compared to 
the system price for each of the models, while in the volatile period (weeks 11-35) – 4200 
hourly values. 

Examining the exceedances of the 50% interval we note that while the Gaussian, 
GARCH and semi-parametric models yield too wide PIs, the heavy-tailed alternatives behave 
quite the opposite. In this respect they exhibit a performance similar to the Markov regime-
switching model analyzed in Misiorek et al. (2006). Looking at the exceedances of the 90% 
interval we see all models performing alike and yielding too narrow PIs. Yet, the ARX PIs are 
slightly better (wider) than those of the other models. Finally, the exceedances of the 99% 
interval present a different picture. The -stable innovations lead to the widest (even a bit too 
wide) and closest to the optimal PIs. Next in line is the ARX-N model, the other three trail far 
behind. All of them yield too narrow PIs. In this category, the ARX-N model behaves 
comparably to the nonlinear Threshold TARX model analyzed in Misiorek et al. (2006).  

Overall, the interval forecasting results are much less conclusive than the point 
forecasting ones. While ARX, ARX-G and ARX-NP are better in 50% and 90% intervals, 
they fail in 99% PIs, where the heavy-tailed models dominate. Among the three models – 
ARX,  ARX-G and ARX-NP – the latter model could be considered the best, as it leads to 
more accurate point forecasts and comparable interval forecasts. In the whole group, however, 
the answer is not that obvious. The heavy tailed models could be preferred for risk 
management purposes since they yield more accurate upper quantiles of the error distribution. 
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Their behavior during the calm weeks is also comparable to that of the ARX-NP model. 
Surprisingly, only during the volatile period they perform below expectations.   

5. Conclusions 

In this paper we investigated the forecasting power of time series models for electricity spot 
prices. We expanded the standard autoregressive specification by allowing for heteroskedastic 
(GARCH), heavy-tailed (NIG, α-stable) and non-parametric innovations. The models were 
tested on a time series of hourly system prices and loads from California. We evaluated the 
quality of the predictions both in terms of the Mean Daily and Weekly Errors (for point 
forecasts) and in terms of the nominal coverage of the models to the true coverage (for 
interval predictions).  

There is no unanimous winner of the presented competition. While in terms of point 
forecasts the semi-parametric ARX-NP model generally yields the best performance, when 
prediction intervals are considered the evidence is mixed. In particular, for risk management 
purposes, requiring accurate approximation of the upper quantiles, the heavy tailed models 
could be preferred. Although this study adds an important voice to the discussion of 
electricity spot price forecasting, more research – including evaluation of the models on other 
datasets – is needed.  
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