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Abstract

We propose a data-constrained generalized maximum entropy (GME) estimator for dis-

crete sequential move games of perfect information which can be easily implemented on

optimization software with high-level interfaces such as GAMS. Unlike most other work on

the estimation of complete information games, the method we proposed is data constrained

and does not require simulation and normal distribution of random preference shocks. We

formulate the GME estimation as a (convex) mixed-integer nonlinear optimization problem

(MINLP) which is well developed over the last few years. The model is identi�ed with only

weak scale and location normalizations, monte carlo evidence demonstrates that the esti-

mator can perform well in moderately size samples. As an application, we study the social

security acceptance decisions in dual career households.
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1 INTRODUCTION

Nash equilibrium is one of the cornerstones of modern economic theory, with substantive

application in all major �elds in economics, particularly industrial organization. It is the

benchmark theoretical model for analyzing strategic interactions among a handful of players.

Given the importance of gaming in economic theory, the empirical analysis of games has been

the focus of a recent literature in econometrics and industrial organization, such as Golan,

Karp and Perlo¤ (1998, 2000) (hereafter GKP), Haile, Hortacsu and Kosenok (2003), Tamer

(2003), Seim (2005), Aguirregabiria and Mira (2007), Aradillas-Lopez (2007, 2008), Bajari,

Hong, John Krainer and Nekipelov (2009) and Bajari, Hong and Ryan (2009) (hereafter

BHR).

Econometrically, a discrete game is a generalization of a standard discrete choice model,

such as the conditional logit or multinomial probit. An agent�s utility is often assumed to

be a linear function of covariates and a random preference shock. However, unlike a dis-

crete choice model, utility is also allowed to depend on the actions of other agents. Such

modeling strategy was �rst suggested by the seminal work of Bresnahan and Reiss (1990,

1991). Although there are numerous studies on both methodology and empirical applica-

tions of game-theoretic models, the most widely studies is the class of incomplete information

simultaneous-move games (normal form) and dynamic games, see Bajari, Hong, Krainer and

Nekipelov (2009) and Aguirregabiria and Mira (2007). The complete information games

received fewer studies due to its computational complexity, since it involves multidimen-

sional integrals. More recently, BHR (2009) provides simulation-based estimators (more-

over, Method of Simulated Moments (MSM)) for static complete information discrete games

based on importance sampling. Furthermore, estimation of sequential-move (extensive form)

games has been quite limited, especially on its� general form, Berry (1992), Mazzeo (2002)

and Schmidt-Dengler (2006) estimate some simpli�ed sequential-move games with special

game structure. The estimation of the general class of sequential games has su¤ered from
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its computational complications, for sequential-move games, to the best of our knowledge,

Maruyama (2009) was the only existing literature, which provides a simulation-based es-

timator for the general class of discrete-choice perfect information sequential game with a

modi�ed version of the GHK simulator (Geweke (1989, 1991), Hajivassiliou and McFadden

(1998) and Keane (1990, 1994)), which he called as "sequential GHK". The estimator pro-

vided by Maruyama (2009) essentially is a maximum simulated likelihood (MSL) estimator,

As is well known, MSL is biased for any �xed number of simulations, in order to obtain
p
T consistent estimators, one needs to increase the number of draws S so that Sp

T
! 1.

Such estimator requires larger scale simulation and also relies on the normal distribution of

random preference shocks. Thus, computational burden also exists and makes its application

adjective.

In this paper, we propose a data-constrained generalized maximum entropy (GME) esti-

mator for discrete sequential-move games of perfect information which can be easily imple-

mented since it does not require simulation, moreover, it also does not rely on the normality

of random preference shocks. In the spirit of GKP (1998, 2000), the �rst application of GME

to the estimation of game-theoretic models, and Su and Judd (2008), which argues that the

direct optimization approach, called the MPEC (Mathematical Programming with Equilib-

rium Constraints) to structural estimation that avoids repetitive solution of the structural

model is more powerful than traditional procedures such as the Nest Fixed-Point (NFXP)

algorithm (Rust, 1987), we formulate the GME estimation as a mixed-integer nonlinear op-

timization (MINLP) problem which also be a direct optimization problem. Moreover, when

the deterministic part of the payo¤ function is linear, it will be a convex MINLP, such opti-

mization problems are well developed over the last few years (Grossmann (2002), Nowak and

Vigerske (2008), Bonami, Kilinc and Linderoth (2009)) and there are several state-of-the-art

solvers incorporated into many software packages (such as Tomlab which you can call from

Matlab) and optimization modeling language, such as GAMS and AMPL1, the user need

1Although such modeling languages (softwares) are commercial, you can use a free internet service, NEOS

3



not make decision about the algorithmic details thus our estimator is easy to use.

Econometrically, the main concern of such estimation problems is to formulate the critical

function, possible choices are likelihood function or some distance function such as method

of moments. Unfortunately, with a general structural model, such functions involve the

multidimensional integrals, most studies alleviate this problem by simplifying the model

structure or make use of some simulation-assisted estimation method, such as MSM and

MSL, even with the simulaiton-based method which known to obtain many prefer large

sample properties, they always need large draws and then computational burden incurred.

Furthermore, such simulation methods always not easy to use which also limit its application.

Instead of using simulation to deal with the multidimensional integrals, we overcome this

problem by using the data-constrained equilibrium conditions which treat all the random

shocks not observed by econometricians as endogenous parameters, thus the parametric

distribution assumption wiped o¤. With these data-constrained equilibrium conditions, the

nature choice of the critical function is the entropy (Shannon, 1948) and then formulate a

GME problem. The GME principle was introduced by Golan et al. (1996), which is based

on the classic maximum entropy (ME) approach of Jaynes (1957a, 1957b, 1984), which

uses the entropy-information measure of Shannon (1948) to recover the unknown probability

distribution of underdetermined problems, and started a new discussion in econometrics

(among others, Golan, Judge and Perlo¤ (1997), Mittelhammer and Cardell (1997), Golan,

Perlo¤, and Shen (2000), Golan (2003), and Nunez, G. (2009)). The GME estimators are

obtained by a constrained optimization problem which maximized the entropy objective

function constrained by the model properties (such as equilibrium conditions), due to the

structure of the perfect information sequential move game, the equilibrium (which known

as sub-game perfect equilibria) conditions contain logical connections between endogenous

variables, as a result, the common constrained optimization problem comes to be a mixed-

Server (http://neos.mcs.anl.gov/neos/), which gives the user acess to several state-of-the-art solvers such
as the MINLP solvers, BARON and BONMIN.
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integer nonlinear optimization problem, since we can always modify logical statements with

integer variable, moreover, zero or one variables (H.P. Williams, 1985). With the e¢cient

algorithms such as Branch and Bound (BB), Outer-Approximation (OA) and Hybrid OA

based Branch-and-Cut (B-Hyb), we can solve this GME problem accurately, as shown below,

with a linear payo¤ function, our GME problem is a convex MINLP, which can be exactly

solved by most of the existing algorithms (Bonami, Kilinc and Linderoth (2009)).

Our approach makes several contributions to the literature on estimating game theoretic

models, especially the complete (perfect) information case. First, our approach avoids the

usual multidimensional integrals by using the data constraints instead of the moment con-

straints in complete (perfect) information case, the computational burden is acceptable for

most applications. Although we focus on the sequential-move game, our approach can be

extend to static game of complete information. GKP (1998, 2000) also make use of the GME

to estimate the static game, their constraints are moment based since they deal with the

incomplete information case. Second, there is no need for the normality of random pref-

erence shocks in our approach, this assumption is prerequisite for the existing estimators

for general complete information games, such as BHR (2009) for static case and Maruyama

(2009) for sequential-move case. Although BHR (2009) only make the assumption that such

distribution should be known to any parametric distribution, mostly the choice only can

be normal since we�ve no prior information about that. And for Maruyama (2009), since

GHK simulator can only work under normal distribution, it highly relies on the normal as-

sumption. Third, we reformulate the estimation problem as a MINLP since there are logical

connections between endogenous variables among the equilibrium conditions, to the best of

our knowledge, our estimator is the �rst one which makes use of MINLP in econometric

estimation problems2, since our monte carlo shows the validity of this estimation procedure,

this reformulation can be extended to other estimation problems where logical statements

2Jouneau-Siona and Torrès (2006) formulate Maximized Monte Carlo (MMC) test as a Mixed Integer
Programming problem.
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incurred. The most shortcoming of our approach is that it is very hard to construct the large

sample properties if not impossible, then the exactly tests and inference procedures can not

be provided. As argued by Su and Judd (2008), to use such MPEC style results to compute

standard errors, we need to work through the implicit construction of the critical function

to formulate the exactly Hessian of the critical function with respect to the structural pa-

rameters, such work seems hard within the MINLP framework. Mittelhammer and Cardell

(1997) provide the large sample distributions for GME estimator of general linear models,

also, they prove the consistency and asymptotic normality. Since our monte carlo simula-

tions show the consistency and asymptotic normality of the proposed estimator, following

the arguments of Horowitz (1995, 1998, 2001), Campbell and CarterHill (2001) and Su and

Judd (2008), we use the paired bootstrap methods to construct standard errors and related

inference, although the bootstrap may not provide the asymptotic re�nements since our es-

timator essentially is obtained from a nonsmooth optimization. Campbell and CarterHill

(2001) also shows how to reformulate linear inequality restrictions in GME framework.

The paper is organized as follows. In section 2 we outline the general discrete sequential-

move game to be estimated and formulate its equilibrium conditions. For purposes of exposi-

tion, a simple 2�2�2 sequential entry game also be provided, which will be used extremely

in the following sections. A brie�y reviews of the maximum entropy, generalized maximum

entropy estimation and the (convex) mixed-integer nonlinear programming are presented in

section 3. Although there is no exactly identi�cation problem in GME framework (Golan et

al., 1996), we discuss the identi�cation issue from the nature of the game structure and equi-

librium conditions in section 4, our GME estimation for the discrete sequential-move game

of perfect information is also presented. Monte carlo simulations are conducted in section

5. Section 6 contains the empirical application to the social security acceptance decisions in

dual career households. Section 7 concludes the paper.
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2 THE MODEL

In the model, there are T independent repetitions of a sequential move game of perfect

information (extensive form game). In each game there are i = 1; :::; Nt players, each with

the �nite set of actions Ait. De�ne At = �iAit and let at = (a1t; :::; ait; :::aNt) denote a generic

element of At. Without loss of generality, the order of subscripts for players (1; :::; Nt) also

represents the decision order of the sequential move game in each repetition, that means

player 1 makes decision �rst and player Nt at the end. Player i�s von Neumann-Morgenstern

(vNM) utility is a map uit : At ! R, where R is the real line. Since we study the perfect

information case, the corresponding equilibrium concept is the subgame perfect equilibria

(SPE), this can be achieved when every player expects no gain from individually deviating

from its equilibrium strategy in its every subgame, the standard technique for solving the SPE

is backward induction, furthermore, the �nite sequential move game of perfect information

where there is no player is indi¤erence between any two outcomes has a unique SPE. We

will sometimes drop the subscript t for simplicity when no ambiguity would arise.

Following Bresnahan and Reiss (1990, 1991), assume that the vNM utility of player i can

be written as:

ui(a; x; �i; �) = fi(x; a; �) + �i(a) (1)

In Equation (1), player i�s vNM utility from action a is the sum of two terms. The �rst

term fi(x; a; �) is a function which depends on a, the vector of actions taken by all of the

players, covariates x, the players� characteristics and some other variables which in�uence

the utility, and parameters �, covariates x are observed to the econometrician. The second

term is �i(a), a random preference shock which re�ects the information about utility that is

common knowledge to the players but not observed by the econometrician. Unlike Maruyama

(2009), here the preference shocks depend on the entire vector of actions a, not just the

actions taken by player i. As argued by BHR (2009), this is a more general setting and

seems straightforward within the game framework, think about a simple entry game, the
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unobserved information of one player to econometrician may be di¤erent not only among

players but also action vector dependent. �i(a) are assumed to be independent or some

known dependence, let �i denote the vector of the individual �i(a) and �i denote the vector

of all the shocks. we will discuss more about the structure of �i in the identi�cation and

estimation section.

As noted above, the equilibrium concept corresponding to the sequential move game of

perfect information, SPE, is a equilibrium strategy pro�le which means that every player

expects no gain from individually deviating from its equilibrium in every subgame. A strategy

of player i 2 N is a function that assigns an action in Ai to each nonterminal history,

a player�s deviation form equilibrium holding other�s decisions �xed does not mean that

all the others make the same decision, it means the others follow the same strategy. But

what can be observed is only the equilibrium actions (i.e. equilibrium outcome). Thus, for

deriving the equilibrium conditions in our econometric model, we should make the others�

action pro�le when one player deviating as endogenous variable. Formally, an SPE action

pro�le, aSPE = (aSPE
1

; :::aSPEi ; :::aSPEN ), is any solution for the decisions of the players that

satis�es:

ui(a
SPE
i ; aSPE�i ; x; �i; �)� ui(ai; aSPE<i ; a�>i(a

SPE
<i ; ai); x; �i; �) � 0 (2)

for all i = 1; :::; N and all ai 6= aSPEi .

where a�>i(a
SPE
<i ; ai) is the unique SPE action pro�le for the subgame that starts from player

i+1 given the decisions of the preceding players, a�i. This equilibrium conditions are de�ned

recursively and the solution can be easily calculated by the backward induction for any given

parameters �, observed covariates, x, and unobservable shocks �.

Given such structure of the discrete choice sequential move game, our task is to estimate

and draw an inference about the parameters of payo¤ functions, �, with the observation

of action pro�le ao, some covariates which have e¤ect on the payo¤s, x, and an exogenous
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decision order. Note that the actual payo¤ levels are unobserved, since in most case, we can

not determine what they should be, i.e. they are the latent variables.

For purposes of exposition, here we provide a simple 2�2�2 sequential entry game as an

example, which will be used extremely in our analysis. There are two players who act as the

potential entrants in each of the T markets, the structure of this entry game is illustrated in

Fig.1 with payo¤s u1 and u2. The decision rule or the equilibrium conditions corresponding

to (2) can be easily formulated, as an example, for action pro�le (0; 0) to be

Fig.1 A Simple Entry Game

P1

P2 P2

0 1

0 1 0 1

f1(x; 0; 0; �) + �1(0; 0) f1(x; 0; 1; �) + �1(0; 1) f1(x; 1; 0; �) + �1(1; 0) f1(x; 1; 1; �) + �1(1; 1)

f2(x; 0; 0; �) + �2(0; 0) f2(x; 0; 0; �) + �2(0; 1) f2(x; 1; 0; �) + �2(1; 0) f2(x; 1; 1; �) + �2(1; 1)

an equilibria, equilibrium condition

u1(x; 0; 0; �1(0; 0); �) > u1(x; 1; 0; �1(1; 0); �) if u2(x; 1; 0; �2(1; 0); �) > u2(x; 1; 1; �2(1; 1); �)

u1(x; 0; 0; �1(0; 0); �) > u1(x; 1; 1; �1(1; 1); �) if u2(x; 1; 0; �2(1; 0); �) � u2(x; 1; 1; �2(1; 1); �)

u2(x; 0; 0; �2(0; 0); �) � u2(x; 0; 1; �2(0; 1); �)
(3)

should be satis�ed, the equilibrium conditions for other three action pro�les to be equilib-

rium actions can be formulated similarly. As noted above, since we only can observe the

equilibrium actions but not the strategies, the equilibrium conditions contain the logical
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statements due to the o¤ equilibrium path�s choice, since the o¤ equilibrium path�s choices

are unobserved to econometricians. We make use of MINLP to handle such logical state-

ments.

3 PRELIMINARY

Since we use data-constrained GME approach to estimate the perfect information sequential

move game in order to avoid the multidimensional integrals. We start by providing some

background of how the generalized maximum entropy approach works, furthermore, our

GME estimator is obtained via a (convex) MINLP, we also provide a basic review of the

MINLP problem.

3.1 A Basic Review of GME

The GME estimation is based on the classic maximum entropy (ME) approach of Jaynes

(1957a, 1957b, 1984), which uses the entropy-information measure of Shannon (1948) to re-

cover the unknown probability distribution of underdetermined problems. In the classic ME

approach, Shannon�s (1948) entropy is used to measure the uncertainty (state of knowledge)

we have about the occurrence of a collection of events. Letting x be a random variable with

possible outcomes xs, s = 1; 2; : : : ; n; with probabilities �s such that
P

s �s = 1, Shannon

(1948) de�ned the entropy of the distribution � = (�1; :::�n)
0, as

H � �
X

s

�s ln�s (4)

where 0 ln 0 � 0. The function H, which Shannon interprets as a measure of the uncertainty

in the mind of someone about to receive a message, reaches a maximum when �1 = �2 =

::: = �n = 1=n. To recover the unknown probabilities � that characterize a given data set,

Jaynes (1957a, 1957b) proposed maximizing entropy, subject to available sample-moment
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information and adding up constraints on the probabilities.

Obviously, within the classic ME framework, the observed moments are assumed to be

exact. To extend this approach to the problems with noise, the GME approach (developed

by Golan, Judge, and Miller, 1996) generalize the ME approach by using a dual objective

(precision and prediction) function. We illustrate the GME approach via a linear model:

Y = X� + " (5)

where Y being a N � 1 dependent variable vector, X being a N �K matrix of explanatory

variables, � being K � 1 a vector of parameters, and " being a N � 1 vector of disturbance

terms. The GME rule for de�ning the estimator of the unknown � in this general linear model

formulation is given by �̂ = Zp̂ with p̂ = (p̂0
1
; :::p̂0K)

0 derived from the following constrained

maximum entropy problem:

max
p0
k
;w0
i

�
K
X

k=1

p0k ln(pk)�
N
X

i=1

!0i ln(!i) (6)

s:t: Y = XZP + V !

10pk = 1; 8k

10!i = 1; 8i

pk > [0]; !i > 0: 8i; k

where Z and V are K�KM and N�NJ matrices of support points for the � and " vectors,

respectively, as:

Z =

2

6

6

6

6

6

6

6

4

z0
1
0 ::: 0

0 z0
2
::: 0

: : ::: :

0 0 ::: z0K

3

7

7

7

7

7

7

7

5

and V =

2

6

6

6

6

6

6

6

4

v0
1
0 ::: 0

0 v0
2
::: 0

: : ::: :

0 0 : v0N

3

7

7

7

7

7

7

7

5

(7)

where zk = (zk1; :::zkM)
0 is a M � 1 vector such that zk1 < zk2 � ::: � zkM and �k 2
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(zk1; zkM),
3 and similarly vi = (vi1; :::v1J)

0 is a vector such that vi1 < vi2 � ::: � v1J and

"i 2 (vi1; v1J), typically, vi1 and v1J will be uniformly and symmetrically distributed about

zero and have the same J dimensions. The actual bounds used for a given problem depend on

the observed sample as well as any available conceptual or empirical information4. TheM�1

pk vectors and the J�1 !i vectors are weight vectors having nonnegative elements that sum

to unity and are used to represent the � and " vectors as � = Zp and " = V !. Golan, Judge

and Miller (1996) has a rigorous discussion of this approach and applies to a rich scopes of

econometric problems, such as dynamic model, model selection and discrete choice-consored

problems. Mittelhammer and Cardell (1997) establish consistency and asymptotic normality

results for the GME estimator under general regularity conditions on the speci�cation of the

estimation problem.

3.2 A Basic Review of MINLP

Since our GME estimator for the sequential move game essentially be obtained via a

generalized disjunctive programming, which can be reformulated to a MINLP problem, we

also provide a basic review of the general structure and feasible algorithms for the MINLP

problem. MINLP provides a powerful framework for mathematically modeling optimiza-

tion problems that involve discrete and continuous variables. Such optimization problems

arise in many real world applications. Integer variables are often required to model logi-

cal relationships, �xed charges, piecewise linear functions, disjunctive constraints and the

non-divisibility of resources. Nonlinear functions are required to accurately re�ect physical

properties, covariance, and economies of scale. Over the last few years there has been a

3This parameter support is based on prior information or economic theory, for example, we might specify
boundaries of zk1 = 0 and zkM = 1 when estimating the marginal propensity to consume, without any
available prior information, we can specify zk to be symmetric around zero, with large negative and positive
boundaries. For example, zk1 = �zkM = �106:

4One viable approach is to use Chebychev�s Inequality or the three-sigma rule (Pukelsheim, 1994) and
assume the errors are drawn from a uniform distribution with mean zero and variance (ymax� ymin)=12. (A.
Golan et al. 1997)
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pronounced increase in the development of these models. The most basic form of an MINLP

problem when represented in algebraic form is as follows:

min
fx;yg

Z = f(x; y) (8)

s:t: gj(x; y) � 0; j 2 J

x 2 X; y 2 Y

where f(�), g(�) are di¤erentiable functions, J is the index set of inequalities, and x and y are

the continuous and discrete variables, respectively. The discrete set Y in most applications

is restricted to 0� 1 values, y 2 f0; 1gm. When f(�), g(�) both are convex functions, it turns

to be a convex MINLP, actually, which can be exactly solved via most of existing algorithms,

for the nonconvex case, only a few methods are available.

Methods that have addressed the solution of convex MINLP include the branch and

bound method (BB) (Gupta and Ravindran, 1985; Nabar and Schrage, 1991; Borchers and

Mitchell, 1994; Stubbs and Mehrotra, 1999; Ley¤er, 2001), Generalized Benders Decompo-

sition (GBD) (Geo¤rion, 1972), Outer-Approximation (OA) (Duran and Grossmann, 1986;

Yuan et al., 1988; Fletcher and Ley¤er, 1994), LP/NLP based branch and bound (Quesada

and Grossmann, 1992), and Extended Cutting Plane Method (ECP) (Westerlund and Pet-

tersson, 1995). Methods for nonconvex MINLP include LP relaxation (Sherali & Adams,

1990), LP and SDP relaxations (Lov asz & Schrijver, 1991), SDP relaxations (Lasserre,

2001) and Branch-and-Reduce (Tawarmalani & Sahinidis, 2002). Such methods are involved

in some optimization software with high-level interfaces such as GAMS, AMPL, and TOM-

LAB which has a MATLAB interface. In GAMS, the state-of-the-art solvers BARON and

BONMIN both can handle the convex MINLP, but only BARON can handle nonconvex

MINLPs in general, it implements a spatial branch-and-bound algorithm that is based on a

factorable reformulation of the given problem and convexi�cations of univariate functions.

We take the technique of solving MINLP as given.

13



4 ESTIMATION

Now we propose our GME estimator, in order to make use of the GME estimation, we need

further assumptions about the utility functions. Although there is no exactly identi�cation

problem in GME framework (Golan et al., 1996), we discuss the identi�cation issue from the

nature the game structure and equilibrium conditions, which bring us introduce Assumption

1. And since the entropy is additive only for independent source of uncertainty, we also put

the i.i.d assumption on random shocks for expositional clarity, any known heteroskedasticity

and dependence among random shocks all can be handled within the GME framework.

ASSUMPTION 1 (Scale and Location Normalizations). The payo¤s of one action

for each player are �xed at a known constant.

As argued by BHR (2009), this restriction is similar to the argument that we can normal-

ize the mean utility from the outside good equal to a constant, usually zero, in a standard

discrete choice model. One clearly �nd that from the equilibrium condition (2) that adding

a constant to all deterministic payo¤s does not perturb the set of equilibria, so a location

normalization is necessary. A scale normalization is also necessary, as multiplying all de-

terministic payo¤s by a positive constant does not alter the SPE. Actually, without such

normalizations, our GME estimator still work, but the level value of each estimated para-

meter does not make any sense, they are only signi�cative in the ratio term. Thus, the

normalizations which act as a prior information can improve our GME estimation, and also

reduce the number of parameters, we would like to impose these location and scale normal-

izations.

ASSUMPTION 2. (Regularity Conditions of Random Shocks). The random pref-

erence shocks �it(a) are distributed i.i.d and independent of state variables with zero mean

and limit variance, i.e. E(�it(a)) = 0; E(x�it(a)) = 0; V ar(�it(a)) <1:

Assumption 2 which we need for establishing the GME estimation is more broad than the
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most other work does, such as Maruyama (2009), the normality of shocks is vital to that es-

timator relies on simulation. Such i.i.d assumption is not strict for our GME estimation, any

known heteroskedasticity and dependence among random shocks all can be handled within

the our GME framework, we will discuss more about it after presenting our estimator. Our

GME estimator is semiparametric in terms of it does not impose any parametric assumption

of the random shocks. For purposes of exposition, we use the simple entry game which has

been introduced in section 2 to introduce the GME estimation, under Assumption 1 and the

speci�c utility function:

ui(x; a; �i; �) = 1(ai = 1)f�x+ �g(a) + �i(a)g (9)

The entry game turns to be which lists in Fig.2.

Fig.2 A Reformulated Entry Game

P1

P2 P2

0 1

0 1 0 1

0 0 �x+ g(1; 0) + �1(1; 0) �x+ g(1; 1) + �1(1; 1)

0 �x+ g(0; 1) + �2(0; 1) 0 �x+ g(1; 1) + �2(1; 1)

Obviously, in terms of the scale and location normalizations, we set the utility of out the

market normalized to 0 and the parameter � to 1. The equilibrium conditions for action
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pro�le (0; 0) to be SPE outcomes are:

Player1: 0 > �x+ g(1; 0) + �1(1; 0) if 0 > �x+ g(1; 1) + �2(1; 1)

0 > �x+ g(1; 1) + �1(1; 1) if 0 � �x+ g(1; 1) + �2(1; 1)

Player2: 0 > �x+ g(0; 1) + �2(0; 1)

(10)

Similarly, the equilibrium conditions for (0; 1) to be SPE outcomes are:

Player1: 0 > �x+ g(1; 0) + �1(1; 0) if 0 > �x+ g(1; 1) + �2(1; 1)

0 > �x+ g(1; 1) + �1(1; 1) if 0 � �x+ g(1; 1) + �2(1; 1)

Player2: �x+ g(0; 1) + �2(0; 1) � 0

(11)

for (1; 0) are:

Player1: �x+ g(1; 0) + �1(1; 0) � 0 if 0 > �x+ g(0; 1) + �2(0; 1)

�x+ g(1; 0) + �1(1; 0) � 0 if 0 � �x+ g(0; 1) + �2(0; 1)

Player2: 0 > �x+ g(1; 1) + �2(1; 1)

(12)

�nally, for (1; 1) are:

Player1: �x+ g(1; 1) + �1(1; 1) � 0 if 0 > �x+ g(0; 1) + �2(0; 1)

�x+ g(1; 1) + �1(1; 1) � 0 if 0 � �x+ g(0; 1) + �2(0; 1)

Player2: �x+ g(1; 1) + �2(1; 1) � 0

(13)

In order to use the GME framework, we need to specify the support space for � and �(a),

which we de�ne as z, v1, v2, v3, v4 for �, �1t(1; 0), �1t(1; 1), �2t(0; 1) and �2t(1; 1) respectively,

without loss of generality, each of them are M � 1 vector and v1 = v2 = v3 = v4 = v; the
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corresponding probabilities are de�ned as p�; !1t ; !
2

t ; !
3

t ; !
4

t such that:

� =
M
X

m=1

p�mzm (14)

�1t(1; 0) =

M
X

m=1

!1tmv (15)

�1t(1; 1) =
M
X

m=1

!2tmv (16)

�2t(0; 1) =

M
X

m=1

!3tmv (17)

�2t(1; 1) =

M
X

m=1

!4tmv (18)

Our GME estimator is obtained from the estimated probabilities which are the solution of

problem:

max
fp�m;!1tm;!2tm;!3tm;!4tmg

H = �
M
X

m=1

p�m ln(p
�
m)�

T
X

t=1

M
X

m=1

!1tm ln(!
1

tm)� (19)

T
X

t=1

M
X

m=1

!2tm ln(!
2

tm)�
T
X

t=1

M
X

m=1

!3tm ln(!
3

tm)�
T
X

t=1

M
X

m=1

!4tm ln(!
4

tm)

subject to the corresponding constraints which list in equation (10) to (13) with the repara-

meterized � and �:

If 0 >
PM

m=1 p
�
mzmxt + g(1; 0) +

PM

m=1 !
1

tmvm if 0 >
PM

m=1 p
�
mzmxt + g(1; 1) +

PM

m=1 !
4

tmvm

aot = 0 >
PM

m=1 p
�
mzmxt + g(1; 1) +

PM

m=1 !
2

tmvm if 0 �PM

m=1 p
�
mzmxt + g(1; 1) +

PM

m=1 !
4

tmvm

(0; 0) 0 >
PM

m=1 p
�
mzmxt + g(0; 1) +

PM

m=1 !
3

tmvm

(20)
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If 0 >
PM

m=1 p
�
mzmxt + g(1; 0) +

PM

m=1 !
1

tmvm if 0 >
PM

m=1 p
�
mzmxt + g(1; 1) +

PM

m=1 !
4

tmvm

aot = 0 >
PM

m=1 p
�
mzmxt + g(1; 1) +

PM

m=1 !
2

tmvm if 0 �
PM

m=1 p
�
mzmxt + g(1; 1) +

PM

m=1 !
4

tmvm

(0; 1)
PM

m=1 p
�
mzmxt + g(0; 1) +

PM

m=1 !
3

tmvm � 0
(21)

If aot =
PM

m=1 p
�
mzmxt + g(1; 0) +

PM

m=1 !
1

tmvm � 0

(1; 0) 0 >
PM

m=1 p
�
mzmxt + g(1; 1) +

PM

m=1 !
4

tmvm

(22)

If aot =
PM

m=1 p
�
mzmxt + g(1; 1) +

PM

m=1 !
2

tmvm � 0

(1; 1)
PM

m=1 p
�
mzmxt + g(1; 1) +

PM

m=1 !
4

tmvm � 0
(23)

and the normalization-additvity constraints:

PM

m=1 p
�
m = 1

PM

m=1 !
1

tm = 1;8t 2 T
PM

m=1 !
2

tm = 1;8t 2 T
PM

m=1 !
3

tm = 1;8t 2 T
PM

m=1 !
4

tm = 1;8t 2 T

p�; !1t ; !
2

t ; !
3

t ; !
4

t > 0;8t 2 T

(24)

Note that for each market or each repetition of the game, there is unique equilibria, then the

constraints for each market are one of the four possible constraints which list in equation

(20) to (23). With the estimated p̂�m, our GME estimator of the structure parameter � will

be:

�̂GME =

M
X

m=1

p̂�mzm (25)

For this simple game, except for constraints (22) and (23), the constraints all contain the

logical statements such as if::: then::: between endogenous variables, this programming is

called disjunctive programming which can be reformulated as MINLP, for example, consider
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the logical statements:

y1 < 0 if x < 0

y2 < 0 if x � 0
(26)

we can reformulate them to the statements with inter variables which can be easily handled

in the MINLP problem by introducing a zero or one variable q, the statement (26) will be:

x�M(1� q) < 0

x+Mq � 0

y1 < M(1� q)

y2 < Mq

q = f0; 1g

(27)

where M is a big positive variable which exceeds the bound of x such as 9:e10. Such refor-

mulations are discussed severely in H.P. Williams (1985) and Raman and Grossmann (1991).

By introducing such a zero or one variable, our GME programming can be reformulated as

the following MINLP problem:

max
fp�m;!1tm;!2tm;!3tm;!4tm;qtg

H = �
M
X

m=1

p�m ln(p
�
m)�

T
X

t=1

M
X

m=1

!1tm ln(!
1

tm)� (28)

T
X

t=1

M
X

m=1

!2tm ln(!
2

tm)�
T
X

t=1

M
X

m=1

!3tm ln(!
3

tm)�
T
X

t=1

M
X

m=1

!4tm ln(!
4

tm)

s:t:

if aot = (0; 0)
PM

m=1 p
�
mzmxt + g(1; 1) +

PM

m=1 !
4

tmvm � �Mqt
PM

m=1 p
�
mzmxt + g(1; 1) +

PM

m=1 !
4

tmvm < M(1� qt)
PM

m=1 p
�
mzmxt + g(1; 0) +

PM

m=1 !
1

tmvm < M(1� qt)
PM

m=1 p
�
mzmxt + g(1; 1) +

PM

m=1 !
2

tmvm < Mqt

0 >
PM

m=1 p
�
mzmxt + g(0; 1) +

PM

m=1 !
3

tmvm
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if aot = (0; 1)
PM

m=1 p
�
mzmxt + g(1; 1) +

PM

m=1 !
4

tmvm � �Mqt
PM

m=1 p
�
mzmxt + g(1; 1) +

PM

m=1 !
4

tmvm < M(1� qt)
PM

m=1 p
�
mzmxt + g(1; 0) +

PM

m=1 !
1

tmvm < M(1� qt)
PM

m=1 p
�
mzmxt + g(1; 1) +

PM

m=1 !
2

tmvm < Mqt
PM

m=1 p
�
mzmxt + g(0; 1) +

PM

m=1 !
3

tmvm � 0

and equation (22), (23)

normalization-additvity constraints equation (24)

qt 2 (0; 1)

Optimization (28) which can be solved via MINLP techniques yields the estimated probabil-

ity for each unkonwns, which include the probabilities for our structural parameter �, thus

the estimated �̂ can be recovered from the original reparameterization:

�̂GME =

M
X

m=1

p̂�mzm (29)

Note that if the payo¤ function is linear in all covariates, x, then the optimization problem

becomes a convex MINLP, since the objective entropy function is always a concave function.

For the game which has more than two players, more than two actions, and more than two

stages, the estimation (28) can be straightforwardly extended to involve more constraints,

also more zero or one variables to hold more logical statements. One also can simplify the

reformulation of logical conditions by investigating the recursive structure of the sequential

move games.

The GME estimator proposed above essentially is a MPEC style estimator, as argued by

Su and Judd (2008), implementing asymptotic inference methods is more complex with the

MPEC approach. Computing standard errors requires the computation of the Hessian of the

objective function with respect to structural parameters �, such work seems hard within the
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MINLP framework since our GME estimation problem is a non-smooth optimization. Al-

though Su and Judd (2008) suggest use the bootstrap methods to construct standard errors

which can avoid the �nite sample bias that may raise with standard asymptotic methods,

the asymptotic re�nements may not be obtained in our GME estimation. Following the

arguments of Horowitz (1995, 1998, 2001), little is known about the ability of the bootstrap

to provide asymptotic re�nements for hypothesis tests and con�dence intervals based on

such non-smooth estimators, but for widely range of non-smooth estimators, such as the

least-absolute-deviations (LAD) estimator, bootstrap can provide a consistent approxima-

tion to the asymptotic distribution (De Angelis, et al., 1993; Hahn, 1995). In this sense,

we also suggest use the bootstrap to get the standard errors for structural parameters and

related inferences, and since our model make no parametric assumptions on random shocks,

a nonparametric (paired) bootstrap will be the choice. Horowitz (1995, 1998, 2001) also

explains how some non-smooth estimators can be smoothed in a way that greatly simpli-

�es the analysis of the their asymptotic distributional properties, the bootstrap provides

asymptotic re�nements for hypothesis tests and con�dence intervals based on the smoothed

estimators. Smoothing our GME estimator is also possible since for most cases we can

reformulate MINLP problem to nonlinear programming (NLP) with complementarity con-

straints (MPCC), Chen and Mangasarian (1996) provides a class of smoothing functions for

nonlinear and mixed complementarity problems. Furthermore, recently there are some new

resampling methods provided in order to deal with such nonregular estimation problems and

estimators, Zeng and Lin (2008) based on asymptotic expansion via empirical process ar-

guments suggests some e¢cient resampling procedures for non-smooth estimators, Andrews

and Guggenberger (2009) also provides some e¢cient Hybrid and Size-Corrected subsam-

pling methods. We will investigate these alternative methods within our GME estimation

framework in another paper.

As noted above, our framework can deal with a wide range of random shocks� structures

which depart the i.i.d assumption, such as the market speci�c shocks which considered by
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Maruyama (2009). Consider the simple entry game in Fig.2, when introducing a market

speci�c information not observed by econometrician, �i, and the total random preference

shocks of player i in the market t speci�ed as:

�it(a) = !it(a) + �i (30)

where !it(a) and �i are both independently distributed across players (entrants) and markets,

with this speci�c variance structure, we can deeply treat with variables !it(a) and �i instead

of �it(a), which also means a additive entropy objective function.

5 MONTE CARLO

To demonstrate the performance of our estimator in small samples, we conducted two Monte

Carlo experiments using the simple sequential entry game which introduce in section 2 and

3. There are two players and each player has the following pro�t function:

ui(x; a; �i; �) = 1(ai = 1)f�1x1 + �2xi2 � �3xi3 + �i(a)g (31)

In the �rst experiment, we de�ne x1 � N(10; 1), xi2 � N(1; 1); and xi3 = 9(N(a)�1), where

N(a) is the number of entrants for a action pro�le a, and �it(a), the idiosyncratic error term,

are drawn from standard normal distribution. In the second experiment, we de�ne two of

the �it(a) drawn from uniform distribution [�1; 1], others are same as experiment one.

As discussed previously, our model requires both scale and location normalizations, so

we assume that �3 = 1 and the payo¤s of not entering are zero. Thus our game has two

unknown parameters: �1 and �2. The game generates equilibrium conditions for each of the

possible equilibrium action pro�les which will be the constraints of our GME estimation.

We generated 10000 samples of size t = 25; 50; 100; and 200 to assess the �nite sample

22



properties of our estimator. The true parameter vector was chosen as �1 = 1 and �2 = �1.

The parameter estimates are presented in Table I and II, the empirical distributions of

parameter estimates are reported in Fig.3 and Fig.4.

Table I: Monte Carlo Results for Normal Shocks

Standard Mean Median

Parameter Mean Median Deviation Bias Bias MSE

T = 25

�1 1:1651 1:1350 0:1387 0:1651 0:1350 0:0465

�2 �2:5561 �2:3814 0:8934 �1:5561 �1:3814 3:2194

T = 50

�1 1:0471 1:0388 0:0555 0:0471 0:0388 0:0052

�2 �1:5566 �1:4607 0:4868 �0:5566 �0:4607 0:5466

T = 100

�1 0:9934 0:9924 0:0247 �0:0066 �0:0076 0:0006

�2 �1:0449 �1:0265 0:2215 �0:0449 �0:0265 0:0511

T = 200

�1 0:9944 0:9941 0:0142 �0:0056 �0:0059 0:0002

�2 �1:0403 �1:0344 0:1171 �0:0403 �0:0344 0:0153

True value: �1 = 1, �2 = �1; Monte Carlo Times: 10000
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Table II: Monte Carlo Results for Normal and Uniform Shocks

Standard Mean Median

Parameter Mean Median Deviation Bias Bias MSE

T = 25

�1 1:1660 1:1378 0:1410 0:1660 0:1378 0:0474

�2 �2:5643 �2:4009 0:8977 �1:5643 �1:4009 3:2528

T = 50

�1 1:0461 1:0371 0:0548 0:0461 0:0371 0:0051

�2 �1:5472 �1:4479 0:4841 �0:5472 �0:4479 0:5338

T = 100

�1 0:9937 0:9931 0:0253 �0:0063 �0:0069 0:0007

�2 �1:0460 �1:0283 0:2238 �0:0460 �0:0283 0:0521

T = 200

�1 0:9946 0:9941 0:0141 0:005 4 0:0059 0:0002

�2 �1:0435 �1:0383 0:1149 0:0435 0:0383 0:0151

True value: �1 = 1, �2 = �1; Monte Carlo Times: 10000
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Fig.3 Distribution of Estimators with Normal Shocks.
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Fig.4 Distribution of Estimators with Normal and Uniform Shocks
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The results are encouraging even in the smaller samples sizes, the payo¤ parameters are

estimated near their true values, and as the sample size increase, the estimates become more

precisely. One may �nd that parameter �2 is estimated with much less precision, this mostly

due to �1 has a larger in�uence over the equilibrium than a change in �2, since �1 multiplies a

covariate with a higher mean than �2, even though they have the same average. In a extreme

small sample, the change in �2 may not change the equilibrium actions, since you can see,

with the sample size becomes larger, even �2 is estimated precisely.

The little di¤erence between the two simulation outcomes shows that our GME estimator

can handle not only the normal distribution. The empirical distributions of parameter esti-
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mates which list in Fig.3 and Fig.4 show that our GME estimator is asymptotically normal

distributed.

6 APPLICATION

*********************TBW***********************

7 CONCLUSION

In this paper, we developed a data-constrained GME estimator for the discrete sequential

move game of perfect information, which can be obtained via a MINLP. By directly using the

data-constraints which implied by the equilibrium conditions, we avoid the multidimensional

integrals which always make such estimation intractable. Moreover, our GME estimator also

does not need the parametric assumption (mostly, normality) of the random shocks, this as-

sumption is prerequisite for the existing estimators for general complete information games.

We formulate the GME estimation as a (convex) mixed-integer nonlinear optimization prob-

lem (MINLP) which is well developed over the last few years. The estimation can be easily

implemented on optimization software with high-level interfaces such as GAMS, AMPL.

The model is identi�ed with only weak scale and location normalizations, monte carlo evi-

dence demonstrates that the estimator can perform well in moderately size samples. As an

application, we study the social security acceptance decisions in dual career households.
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