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Abstract

The article presents a model of default dependency based on Lévy subordinator.
It is a tractable one-factor model with an architecture similar to that of the standard
Gaussian copula model, providing easy calibration to individual hazard rate curves and
efficient pricing with Fast Fourier Transform techniques. The subordinator is a stable
Lévy process with a probability distribution function known as the Lévy distribution.
The model provides a reasonable fit to market data with two parameters necessary to
assess dependency risk, a measure of correlation and a measure of catastrophe.

Correlation products are derivatives sensitive to default correlation among a collection of
credit names. Pricing of these involves either directly or indirectly modeling default depen-
dency among the credit names. Market standard among such models is still the Gaussian
copula model, a one-parameter model that enables easy quotation of market prices. But, it
is well-known that the model is inadequate to price nonstandard products.

Major attraction of the Gaussian copula model is its simplicity and tractability. It can
easily be calibrated to individual hazard rate curves. It can be formulated in closed form
providing a semi-analytical framework for pricing. It can be priced efficiently by employ-
ing Fast Fourier Transform techniques. As it turns out, there exists a model similar in
architecture that also enjoys these properties. Unlike the Gaussian copula model, it is a
two-parameter model, but is able to offer a reasonable explanation of the correlation smile.
The two parameters provide the two ingredients necessary to quantify dependency risk, a
measure of correlation and a measure of catastrophe. The model is driven by alpha=1/2
stable Lévy process for which the probability distribution function is available in closed form
and is known as the Lévy distribution. Though it is inevitable that, with a model of such
few parameters, there is bound to exist a residual smile, the ability to capture the smile will
be helpful in sensitivity analysis and stress testing.

Issues with the Gaussian copula model have been addressed before. Brigo, Pallavicini and
Torresetti [2010] provide an account of the developments in this field. Hull and White [2006]
introduce an implied copula model that can calibrate consistently across all CDO tranches
for a given maturity. Brigo, Pallavicini and Torresetti [2006] provide a fit across tranches as
well as maturities in a generalized Poisson cluster loss model. Balakrishna [2009] models the
jump distribution in an intensity based model. A doubly stochastic framework for intensity
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modeling is introduced in Duffie and Garleanu [2001]. Joshi and Stacey [2005] consider an
intensity based modeling of business time as a gamma process. Chapovsky, Rennie and
Tavares [2007] model default intensity as a jump-diffusion process. Errais, Giesecke and
Goldberg [2006] present a model based on affine point processes.

An approach using Markov chains is presented in Di Graziano and Rogers [2005]. Puty-
atin, Prieul and Maslova [2005] use a Markovian approach with a Poissonian mixing distri-
bution. Bennani [2005] presents a Markov functional approach to instantaneous loss rate.
Sidenius, Piterbarg and Andersen [2005] consider a no-arbitrage approach to modeling future
loss distribution. Overbeck and Schmidt [2005] propose a threshold model based on time-
scaled Wiener processes. Albanese, Chen, Dalessandro and Vidler (2006) present a structural
model based on spectral analysis. Baxter (2007) presents a structural framework using Lévy
processes. Albrecher, Ladoucette and Schoutens (2007) present a unified approach to generic
one-factor Lévy processes.

Section 1 formulates one-factor models independent of the factor dynamics. Section 2
realizes this framework with Lévy processes called subordinators, and presents a specific
model based on the Lévy subordinator. Section 3 discusses large homogeneous pool ap-
proximation. Section 4 presents a semi-analytical framework to compute expected loss for
a finite number of names with Fast Fourier Transform techniques. Section 5 discusses CDO
pricing semi-analytically and via a Monte Carlo algorithm. Section 6 concludes with a brief
summary. Table 1 presents the results of a numerical investigation.

1 One-Factor Formulation

Consider a model wherein common variables determine default dependency. Factors govern-
ing default dependency can be considered to be functions of the sample paths followed by the
common variables. In a simplified version of the model, only one such path-function would
be relevant. Let Ft() be the distribution function of this path-function at time t. Given a
value for Ft(), the defaults are considered to be independent of each other so that, for the
joint default probability during the time interval (0, t), we may write

Pij⋅⋅⋅(t) =

∫ 1

0

dF [pi(F, t)pj(F, t) ⋅ ⋅ ⋅] , (1)

where pi(F, t) is the conditional default probability, probability that ith credit name has
defaulted during (0, t) given that the distribution Ft() has value F at time t. To see that
such a common factor should exist, at least in principle, note that, in a homogeneous col-
lection of credit names, pi(F, t) itself can be viewed upon as a path-function implying that
a homogeneous collection should in general be describable by a one-factor model. Similarly,
a heterogeneous collection of names should be describable by not more than the number of
heterogeneous name types in the collection.

The above formulation of one-factor models, though appears rather simple and straight-
forward, has the attractive feature that the time-dependence of the common factor has
disappeared into the integration variable F . As we will see, this helps us define the model
independent of the dynamics governing the common factor. Note however that the above
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does not fully specify the model dynamics, and that would require specifying the factor
dynamics as well, but for our purpose the above formulation is sufficient.

Consider pi(F, t) that is an increasing function of F . It is further expected to be increasing
as a function of t. These properties let us relate it to the distribution function of a stochastic
process at t so that, we may write for pi(F, t), or equivalently for the conditional survival
probability qi(F, t) ≡ 1− pi(F, t),

qi(F, t) = e−�i(t)E
{

1Φi(t)≥F

}

, (2)

where 1{⋅⋅⋅} denotes the indicator function. �i(t) (with �i(0) = 0) is deterministic and
increasing as a function of t. Φi(t), i = 1, ⋅ ⋅ ⋅ , n are independent stochastic processes taking
values in [0, 1] with Φi(0) = 1 and Φi(∞) = 0, having only non-increasing sample paths.
For the individual credit name, its default probability Pi(t), or equivalently its survival
probability Qi(t) ≡ 1− Pi(t), can be written as

Qi(t) =

∫ 1

0

dFqi(F, t) = e−�i(t)

∫ 1

0

dFE
{

1Φi(t)≥F

}

= e−�i(t)E

{
∫ 1

0

dF1Φi(t)≥F

}

= e−�i(t)E {Φi(t)} . (3)

Note that this formulation of one-factor models covers the well-known one-factor models.
The standard one-factor Gaussian copula model is recovered with �i(t) = 0 and

Φi(t) = N

(

1√
�

(

√

1− �Zi −Ki(t)
)

)

, (4)

where N() is the cumulative normal distribution function, Zi is a standard normal random
variable associated with the ith credit name, � is the correlation parameter and Ki(t) =
N−1(Pi(t)). This follows after writing F = N(−Y ) where Y is a standard normal random
variable associated with the common factor, and assumes a straightforward extension of
expression (1) into a copula.

It is more convenient to work with Λi(t) = − ln Φi(t), a non-decreasing stochastic process,
taking values in [0,∞] with Λi(0) = 0 and Λi(∞) = ∞. The conditional survival probability
qi(F, t) then reads

qi(F, t) = e−�i(t)E
{

1Λi(t)≤− lnF

}

. (5)

For the individual survival probability Qi(t), this gives

Qi(t) = e−�i(t)E
{

e−Λi(t)
}

. (6)

We may also express the joint survival probability QΩ(t) for a list of names in Ω as

QΩ(t) = e−
∑

i∈Ω
�i(t)E

{

e−Maxi∈ΩΛi(t)
}

, (7)

where Maxi∈Ω picks up the largest Λi(t) in the list Ω. This follows from the fact that Λi(t)s
are independent stochastic processes. The above is not needed for our discussion to follow,
but it is interesting to note that it defines the model independent of the common factor that
has been integrated away.
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2 Lévy Subordinator Model

The above formulation of one-factor models left us with individual stochastic processes that
are a priori expected to be quite complicated. Fortunately, as we will see below, they can be
realized neatly with a class of Lévy processes with non-decreasing sample paths known as
subordinators. Of these, a Lévy process called the Lévy subordinator, with its distribution
known in closed form, turns out to be an appropriate one to choose.

Let Xi(t), i = 1, ⋅ ⋅ ⋅ , n be n independent subordinators. For a parsimonious model, let us
assume that they are identically distributed. Let �(u) be their Laplace exponent given by

E
{

e−uXi(t)
}

= e−t�(u). (8)

Given such subordinators, let us set

�i(t) = (1− ��(1))�i(t), Λi(t) = Xi(��i(t)), (9)

which introduces �, a measure of correlation, as one of the parameters of the model. Here
�i(t), that may be referred to as intrinsic time, is derived from the individual survival prob-
ability Qi(t) as

�i(t) ≡ − lnQi(t). (10)

Now, individual hazard rate curves are automatically calibrated to, since

Qi(t) = e−�i(t)E
{

e−Λi(t)
}

= e−(1−��(1))�i(t)E
{

e−Xi(��i(t))
}

= e−�i(t). (11)

As for the conditional survival probability, we get

qi(F, t) = e−(1−��(1))�i(t)E
{

1Xi(��i(t))≤− lnF

}

= e−(1−��(1))�i(t)g(− lnF, ��i(t)). (12)

where g(x, t) = E
{

1Xi(t)≤x

}

is the cumulative distribution function of Xi(t). Note that, due
to the introduction of parameter �, one may standardize parameters of Xi(t) so as to yield
a fixed value for �(1).

A subclass of subordinators are �−stable processes having 0 < � < 1 and maximally
skewed to the right (skew parameter � = 1). Their distributions are not known in closed form
except for the � = 1/2−stable subordinator known as the Lévy subordinator. The cumula-
tive distribution function of the Lévy subordinator is the Lévy distribution (standardized to
�(1) = 1 + �)

g(x, t) = 2N
(

−t/
√

2(x− �t)
)

, (13)

where N() is the cumulative normal distribution function. It has a positive drift component
�t, introducing � as the second of our model parameters. It has support only to the right of
�t. The above distribution gives us for the conditional survival probability,

qi(F, t) = 2e−(1−�(1+�))�i(t)N
(

−��i(t)/
√

−2(lnF + ���i(t))
)

. (14)

Positive drift forces qi(F, t) to zero above F = e−���i(t). This F -threshold is name-dependent,
but, in the large homogeneous pool approximation to be discussed next, it implies that there
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is a probability mass at � = 1, suggesting a finite probability for all the names in the pool
defaulting, � being the measure of such a catastrophe.

We modeled the individual process Λi(t) as a subordinator (with time scaling). Vari-
ations are possible, for instance, it could be the time-integral of a nonnegative stochastic
process, perhaps mean-reverting, that in some sense could be interpreted as stochastic de-
fault intensity. Such variations result in individual survival probabilities that are not as
easily calibrated to. Though it is simpler and to some extent equivalent when the stochastic
process is a stable process, the model presented above is the simplest and still results in a
reasonable fit to market data.

The formulation bears some resemblance to barrier models, but the resemblance does not
go too far since the barrier here is random and common to all the names, and the processes
have non-decreasing sample paths. It is known that the distribution of default times in the
simplest version of a barrier diffusion model follows the Lévy distribution and the fact that
the same distribution is relevant here is also intriguing. However, the roles of time and other
variables in the distribution appear to be of a different nature.

Result (14) defines our two-factor model. Though, in general, the two parameters could
be different for different names, and time-dependent as well, they are considered uniform and
constant for ease of calibration. The model’s viability can only be examined by calibration
to market data. Hence, let us next consider various approaches to pricing.

3 Large Homogeneous Pool

Large homogeneous pool approximation can be a useful tool since it admits an explicit
expression for the loss distribution. Consider a homogeneous collection of n credit names.
The joint default probability for k or less number of defaults during (0, t) then reads

P{k}(t) =
k

∑

j=0

(

n

j

)
∫ 1

0

dF [pt(F )]j [1− pt(F )]n−j , (15)

where p(F, t) has been written as pt(F ). For a large homogeneous pool of names, as is
well-known, the above simplifies to

Gt(�) ≡ P{�n}(t) =

∫ 1

0

dF1pt(F )≤� , (16)

where � = k/n is the fraction of names defaulted during (0, t). The above indicates that
Gt(�) can be obtained by summing up the region of F over which pt(F ) ≤ �.

We have considered pt(F ) to be an increasing function of F . Hence, Gt(�) can be obtained
by solving pt(F ) = � for F = Gt(�). If � < 1/(1 + �), as is found to be the case upon
calibration, there is a �min(t) below which Gt(�) = 0,

�min(t) = 1− e−(1−�(1+�))�(t) if � < 1/(1 + �), else 0. (17)

Above �min(t), Gt(�) is

Gt(�) = exp

{

−���(t)− 1

2
(��(t))2

[

N−1

(

1

2
(1− �)e(1−�(1+�))�(t)

)]−2
}

, � ≥ �min(t).

(18)
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Note that Gt(�) → e−���(t) as � → 1 so that there is a probability mass at � = 1, suggesting
a finite probability 1− e−���(t) of total collapse.

In this approximation, the expected loss per tranche size for a tranche with attachment
point a and detachment point b is

L(t)[a,b] = 1− 1

�b − �a

∫ �b

�a

d�Gt(�). (19)

where �a = a/(1− R), �b = b/(1− R) and R is the recovery rate (this known result follows

from the usual expressions). Note that
∫ 1

0
d�Gt(�) = Qi(t) as expected. The above shows

that, in this approximation, the expected loss is 100% of the tranche size if the detachment
point is not above (1 − R)�min. This leads to overpricing of the equity tranches. Finite n
and heterogeneity is expected to smoothen out the small �−behavior.

4 Finite n with FFT

Large homogeneous pool approximation yields fast results, but at the expense of accuracy.
As is well-known, many of the factor models can be accurately computed for finite n by
employing Fast Fourier Transform (FFT) techniques. This is true with the present model as
well. To obtain the loss distribution for finite n, consider the loss process conditional on F ,

ℒ(F, t) =
n

∑

j=1

Li1�j(F )<t. (20)

Here �j(F ) is its conditional default time random variable and Li = (1−Ri)wi is the normal-
ized loss-given-default, Ri being the recovery rate and wi the fraction of the pool notional
associated with the ith name. Li is assumed to be deterministic and time-independent.
Defaults being independent conditional on F , the above process has the characteristic

E
{

eiuℒ(F,t)
}

=
n
∏

m=1

[

qm(F, t) + pm(F, t)e
iuLi

]

, (21)

where i =
√
−1. This characteristic is the Fourier transform of the loss distribution (con-

ditional on F unless mentioned otherwise). Hence, the loss distribution can be obtained by
inverting the above using FFT techniques. The result can be used to compute the expected
loss per tranche size for a tranche with attachment point a and detachment point b,

L(F, t)[a,b] = 1− 1

b− a

∫ b

a

dxHt(F, x), (22)

where Ht(F, ⋅) is the cumulative distribution function of the loss distribution.
FFT requires discretization of u. Discretization is straightforward if Li’s are uniform at

L across the collection (L = (1−R)/n if Ris are uniform as well). Inversion then yields the
loss distribution at loss-points j = 0, ⋅ ⋅ ⋅ , n in units of L. This gives the default probability
density P[j](F, t), the sum of products of various combinations of j of the pi(F, t)s and n− j
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of the qi(F, t)s. Consider it extended up to j = N − 1 ≥ n by padding with zeros where N
is a power of 2, as is usually done for an efficient FFT. In this case, (21) reads

N−1
∑

j=0

P[j](F, t)e
i!jk =

n
∏

m=1

[

qm(F, t) + pm(F, t)e
i!k

]

, k = 0, ⋅ ⋅ ⋅ , N − 1, (23)

where ! = 2�/N . This can easily be computed and inverted using FFT techniques to obtain
P[j](F, t). This gives the cumulative loss distribution Ht(F, jL), j = 0, ⋅ ⋅ ⋅ , n, or equivalently,
the cumulative default probability distribution Gt(F, �) where � = j/n is the fraction of
names defaulted. The normalized expected loss is then

L(F, t)[a,b] = 1− 1

�b − �a

∫ �b

�a

d�Gt(F, �). (24)

where �a = a/(nL), �b = b/(nL), and Gt(F, �) is flat in-between successive �−points. Inte-
gration of P[j](F, t) over F gives P[j](t), the unconditional default probability density. This
integration is deferred to the end of computations for efficiency reasons.

5 CDO Pricing

The analytical results for the expected loss can be used to price the CDO tranches. The
default leg of a tranche per tranche size can be priced as

DL[a,b] =

∫ 1

0

dF

{
∫ T

0

D(t)dL(F, t)[a,b]

}

, (25)

where T is the maturity and D(t) is the discount factor for the time period (0, t). Similarly
the premium leg per tranche size and per unit spread can be priced as

PL[a,b] =

∫ 1

0

dF

{

N�
∑

i=1

�iD(ti)
[

1− L(F, ti)[a,b]
]

}

. (26)

where �i is the accrual factor for the period (ti−1, ti) and N� is the number of periods. To
this premium leg, we need to add a contribution from accrued interest payments made upon
default,

PL′
[a,b] =

∫ 1

0

dF

{

N�
∑

i=1

∫ ti

ti−1

�′i(t)D(t)dL(F, t)[a,b]

}

, (27)

where �′i(t) is the accrual factor for the partial period covering (ti−1, t). Given the leg values,
the fair spread can be obtained by dividing the default leg by the premium leg, after taking
care of any upfront payments.

It is found to be efficient to perform the numerical integration over F after the expressions
within the curly brackets are computed over a sufficiently fine time-grid. The super senior
tranche can be priced like an ordinary tranche along with an additional premium leg of
notional that is a fraction R of the total notional of the underlying credit default swaps,
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or, if recovery rates are nonuniform, sum of fractions Ri of the individual notionals of the
underlying credit default swaps.

Though the model can be handled semi-analytically as detailed above, a Monte Carlo
algorithm could be a useful tool to price more exotic products. It can also be useful for
pricing standard tranches as it is found to be efficient, accurate, easily implementable and
does not involve discretization of time. Note that the following is not to be viewed as a
simulation of the model dynamics, rather just a method of computing the above integrals.
The algorithm reads as follows.

1. Draw a uniformly distributed random number F and n independent exponentially
distributed unit mean random numbers ui, i = 1, ⋅ ⋅ ⋅ , n.

2. For each credit name i, first determine whether it defaults before the time horizon
T by checking if qi(F, T ) < ui where qi(F, .) is as given in equation (14). If so, solve the
equation qi(F, t) = ui for �i(t). Determine default time ti by a table look up into the hazard
rate curve of credit name i.

3. Given the default times before the time horizon, price the instrument. For the next
scenario, go to step 1.

4. Average all the prices thus obtained to get a price for the instrument.
Given a scenario of default times, it is straightforward to price the CDOs. To improve

efficiency, quasi random sequences such as Sobol sequences can be used to generate each of
the independent random numbers.

6 Conclusions

The article has presented a one-factor model of default dependency to capture the correlation
smile. It is driven by alpha=1/2 stable Lévy subordinator process for which the probability
distribution function is known in closed form as the Lévy distribution. The attractive feature
of the model is its tractability, at par with that of the Gaussian copula model. It gets
automatically calibrated to individual hazard rate curves. It can be used for pricing both
semi-analytically and via a Monte Carlo algorithm. As can be seen from Table 1, despite
having only two parameters at its disposal, it is able to capture the smile reasonably well.
Market quotes are as on October 2, 2006 (source: Brigo, Pallavicini and Torresetti [2006]),
and it remains to see how the model performs during distressed market conditions (when
parameter � is expected to play a significant role). Calibration is done for a homogeneous
collection, with constant interest rates and recovery rates, and with hazard rates flat in-
between maturities. Relaxing these assumptions could improve the fit. A better fit could
also be attempted by having parameters � and � in Gt(�) to be �−dependent, that implies
a certain distribution for pt(F ) to be used in pricing.

Though the model has been developed with an application to CDOs in mind, it could
be useful in other disciplines. Tail distributions have turned out to be important under
different contexts as in, for instance, the computation of value-at-risk. The model provides
two minimum ingredients necessary to assess such risks, a measure of correlation and of
catastrophe. Simplicity and tractability with its large homogeneous pool approximation and
an efficient semi-analytical framework makes the model an attractive choice.

8



References

[1] Albanese, C., O. Chen, A. Dalessandro, and A. Vidler (2006), “Dynamic Credit Correlation
Modeling”, Available at http://www.defaultrisk.com/pp corr 75.htm.

[2] Albrecher, H., S. Ladoucette, W. Schoutens (2007), “A Generic One-factor Lévy model for
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Table 1: Best fits to the five tranches of CDX.NA.IG and iTraxx Europe CDOs for each
maturity, obtained for a homogeneous collection using semi-analytical pricing with FFT.
Hazard rate is taken to be flat in-between maturities. Interest rate is constant at 5.0% and
3.5% respectively, and recovery rate at 40%. Equity tranche is quoted as an upfront fee in
percent (plus 500bp per year running) and the other tranches are quoted as spreads per year
in bp (with bid-ask spreads in brackets).

CDX.NA.IG7
0-3% 3-7% 7-10% 10-15% 15-30% 30-100% 0-100% �, �

3y 9́.75(2.0) 7.9(1.6) 1.20(0.2) 0.50(0.1) 0.20(0.1) 24.0(0.5)
10.15 7.45 1.51 0.54 0.28 0.12 24.1 0.38,0.0

5y 30.50(1.0) 102.0(6.1) 22.50(1.4) 10.25(0.6) 5.00(0.3) 40.0(0.5)
32.00 102.3 22.04 10.51 4.80 1.32 40.0 0.62,0.06

7y 45.63(2.0) 240.0(48.0) 53.00(10.6) 23.00(4.6) 7.20(1.4) 49.0(0.5)
47.05 257.6 55.42 22.99 7.74 1.19 49.0 0.68,0.03

10y 55.00(1.0) 535.0(21.4) 123.00(7.4) 59.00(3.5) 15.50(0.9) 61.0(0.5)
56.72 530.0 139.50 52.38 16.41 2.60 61.0 0.63,0.06

iTraxx Europe 6
0-3% 3-6% 6-9% 9-12% 12-22% 22-100% 0-100% �, �

3y 3.50(1.5) 5.5(4.0) 2.25(3.0) 18.0(0.5)
4.08 6.1 1.54 0.61 0.28 0.13 18.1 0.45,0.0

5y 19.75(0.25) 75.0(1.0) 22.25(1.0) 10.50(1.0) 4.00(0.5) 1.50(0.5) 30.0(0.5)
20.55 77.4 21.19 10.31 4.60 0.85 30.0 0.76,0.03

7y 37.12(0.25) 189.0(2.0) 54.25(1.5) 26.75(1.5) 9.00(1.0) 2.85(0.5) 40.0(0.5)
38.70 204.7 53.12 24.11 9.73 1.32 40.0 0.73,0.03

10y 49.75(0.25) 474.0(4.0) 125.50(3.0) 56.50(2.0) 19.50(1.0) 3.95(0.5) 51.0(0.5)
53.95 470.1 136.48 56.10 20.18 2.15 51.0 0.68,0.03

Market quotes as on October 2, 2006. Source: Brigo, Pallavicini and Torresetti [2006].
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