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On the Fixed-Effects Vector Decomposition

Abstract: This paper analyses the properties of the fixed-effects vector decompo-
sition estimator, an emerging and popular technique for estimating time-invariant
variables in panel data models with unit effects. This estimator was initially moti-
vated on heuristic grounds, and advocated on the strength of favorable Monte Carlo
results, but with no formal analysis. We show that the three-stage procedure of
this decomposition is equivalent to a standard instrumental variables approach, for a
specific set of instruments. The instrumental variables representation facilitates the
present formal analysis which finds: (1) The estimator reproduces exactly classical
fixed-effects estimates for time-varying variables. (2) The standard errors recom-
mended for this estimator are too small for both time-varying and time-invariant
variables. (3) The estimator is inconsistent when the time-invariant variables are
endogenous. (4) The reported sampling properties in the original Monte Carlo ev-
idence are incorrect. (5) We recommend an alternative shrinkage estimator that
has superior risk properties to the decomposition estimator, unless the endogeneity
problem is known to be small or no relevant instruments exist.

1. INTRODUCTION

Researchers in many fields seek to exploit the advantages of panel data. Having

repeated observations across time for each group in a panel allows one, under suit-

able assumptions, to control for unobserved heterogeneity across the groups which

might otherwise bias the estimates. However, traditional panel analysis techniques

have difficulty when some of the explanatory variables have little or no variation

across time within a group. We consider here the properties of a recently introduced

methodology for panel data, known as fixed-effects vector decomposition (fevd),

which Plümper and Troeger (2007a) developed to produce improved estimates for

such time-invariant or slowly-changing variables.
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From the earliest days of panel data methods, there has been a tension between

alternative treatments of the unobserved individual effects as either fixed or random.

Mundlak (1978) clarified the issues by showing that in the extant literature individual

effects were always essentially treated as random, regardless of the estimator used.

But, unknown correlation between the unobserved individual effects and the observed

individual characteristics would motivate the use of the so-called fixed-effects (fe)

estimator even though the underlying model was of random-effects. However, fixed-

effects is a blunt instrument for controlling correlation between observed and unob-

served characteristics, because it ignores any systematic average differences between

individuals. Thus any potential explanatory factors that are constant longitudinally

(time-invariant) will be ignored by the fe estimator. Likewise, any explanatory vari-

ables that have little within variation (that is, slowly-changing over the longitudinal

dimension) will have little explanatory power, and will result in imprecise coefficient

estimates that have large standard errors.

Hausman and Taylor (1981) showed that a better estimator is available if some of

the explanatory variables are known to be uncorrelated with the unobserved individ-

ual effect, thus described as exogenous explanatory variables. The Hausman-Taylor

(ht) estimator is an instrumental variables (iv) procedure that combines aspects

of both fixed-effects and random-effects estimation. Given a sufficient number of

exogenous regressors, the ht procedure allows time-invariant variables to be kept

in the model. It also provides more efficient estimates than fe for the coefficients

of the exogenous time-varying variables. The downside of the ht estimator resides

in specifying the exogeneity status for each of the time-varying and time-invariant
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variables in the model. In many practical applications such detailed specification is

onerous.

Plümper and Troeger introduced fevd as an alternative that seemed to be supe-

rior to ht because it requires fewer explicit assumptions yet seemed to always have

more desirable sampling properties. Like the fe estimator, and unlike ht, fevd

does not require specifying the exogeneity status of the explanatory variables. Like

the ht estimator, and unlike fe, the fevd procedure gives coefficient estimates for

time-invariant (and slowly-changing) variables as well as the time-varying variables.

Plümper and Troeger motivated the fevd procedure on heuristic grounds, and ad-

vocated it on the strength of favorable results in a Monte Carlo simulation study. In

particular, the simulation indicated that fevd has superior sampling properties for

time-invariant explanatory variables.

Although the fevd procedure comes out of the empirical political science liter-

ature, it is rapidly finding application in many other areas including social research

and economics. At last count there were well over 150 references in Google Scholar

to this emerging estimation methodology. Several empirical studies report standard

errors for fevd-based estimates that are strikingly smaller than estimates based on

traditional methods. There is, however, little formal analysis of the fevd procedure

in this literature.

The present paper is a remedy to the lack of formal analysis. We demonstrate

that the fevd coefficient estimator can be equivalently written as an iv estimator,

which serves to demystify the nature of the three-stage fevd procedure and its

relationship with other estimators. As one immediate benefit, the iv representation
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allows us to draw on a standard toolkit of results.

First, using the iv variance formula, we show that the fevd standard errors for

coefficients of both the time-invariant and time-varying variables are uniformly too

small. In the case of the latter variables, the discrepancy in the fevd standard errors

is unbounded, and grows with the length of the panel and with the variance of the

group effects.

Second, using the moment-condition representation, we prove that the coefficients

of the time-varying variables in fevd are exactly the same as in fe. This result is

apparent in many of the practical studies which list fe estimates beside fevd esti-

mates, but it is hardly mentioned in the existing analytical material. An immediate

implication is that fevd estimates, like fe, are inefficient if any of the time-varying

variables are exogenous.

Third, fevd usually produces lower variance estimates of time-varying coeffi-

cients than ht in small samples. However, it does so by including invalid instru-

ments that produce inconsistent estimates. So, even with massive quantities of data

those fevd estimates will deviate from the truth. Further developments can also be

made to the estimator, to exploit the ideas in fevd while avoiding the problems of

that procedure. The advantage of fevd will be found in smaller samples where the

large sample concept of consistency does not dominate. The Monte Carlo simulation

studies by Plümper and Troeger (2007a) and Mitze (2009) show a trade-off between

bias and efficiency in which fevd often appears to be better than either fe or ht

under quadratic loss. We propose an alternative shrinkage estimator which combines

the desirable small sample properties of fevd with the desirable large sample prop-
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erties of the ht estimator. Our Monte Carlo evidence shows this shrinkage estimator

to have superior risk to either estimator alone over a wide region of the parameter

space.

2. THE MODEL

The data are ordered so that there are N groups each of T observations. The model

for a single scalar observation is

yit = Xitβ + Ziγ + ui + ǫit for i = 1, . . . , N and t = 1, . . . , T. (1)

Here, Xit is a k × 1 vector of time-varying explanatory variables, and Zi is a p × 1

vector of time-invariant explanatory variables.1 The parameters β, γ, the group effect

ui, and the error term ǫit are all unobserved. Some elements of Xit or Zi are correlated

with the group effect ui, in which case we call those variables endogenous. Otherwise

we call those variables exogenous. With endogenous explanatory variables standard

linear regression techniques may produce estimates of the unknown parameters which

are inconsistent in the sense that they do not converge to the true parameter values

as the sample size grows large. One standard approach to this endogeneity problem

is to use the instrumental variables technique developed by Hausman and Taylor.

1The setup here describes a balanced panel with observations on every t for each i, but the ideas
extend to unbalanced panels with more complicated notation. A constant can be represented in
this model by including a vector of ones as part of the time-invariant elements, Z.
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Notation

The presentation is considerably simplified by introducing some projection matrix

notation. Let

D = IN ⊗ ιT , (2)

where IN is an N × N identity matrix and ιT is a T × 1 vector of ones. That is, D

is a matrix of dummy variables indicating group membership. For any matrix M ,

we use PM = M(M ′M)−1M ′ to indicate the projection matrix for M , and we use

QM = I−PM to indicate the projection matrix for the nullspace of M . For example,

PD = D(D′D)−1D′ =
1

T
(IN ⊗ ιT ι′T ) (3)

is the matrix which projects a vector onto D. This particular projection produces a

vector of group means. That is, PDy = {ȳi} ⊗ ιT , where ȳi = 1
T

∑T

t=1 yit. Also,

QD = INT − PD (4)

is the matrix which produces the within-group variation. That is, QDy = {yit − ȳi}

is the NT × 1 vector of within-group differences.
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The FEVD Estimator

The fevd proceeds in three stages, which we detail below. To sharpen the anal-

ysis, we assume that the elements of Z are exactly time-invariant (not just slowly-

changing), so that PDZ = Z. An explicit analysis of the slowly-changing case yields

qualitatively similar insights.

Stage 1 Perform a fixed effects regression of y on the time-varying X. The moment

condition corresponding to a fixed effects regression is

(y − Xb)′QDX = 0. (5)

The unexplained component after this first step is y−Xb. The group-average of the

unexplained component is PD(y − Xb).

Stage 2 Regress the group-average of the unexplained component from the first step

on the time-invariant Z. The moment condition is
(

PD(y−Xb)−Zg
)

′

Z = 0. Using

the fact that PDZ = Z, this moment condition can be equivalently written as

(y − Xb − Zg)′Z = 0. (6)

The group-average residuals from this regression are

h = PD (y − Xb − Zg). (7)
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Stage 3 Regress y on X, Z, and h. The coefficients from this step are the final fevd

estimates. The moment conditions are

(y − Xβ − Zγ − hδ)′[X,Z, h] = 0. (8)

Theorem 1. The solution for β is b from Stage 1; the solution for γ is g from Stage

2; and the solution for δ is one.

Proof. We need to verify that the moment conditions (8) are satisfied at β = b,

γ = g, and δ = 1. This requires that

(y − Xb − Zg − h)′[X,Z, h] = 0. (9)

Substituting in the definition of h from (7) and gathering terms, this simplifies to

(y − Xb − Zg)′QD[X,Z, h] = 0. (10)

Using the fact that QDZ = 0, this further simplifies to

(y − Xb)′QD[X,Z, h] = 0. (11)

The first set of equalities in (11) must be satisfied, since it is identical to the moment

condition (5) that defines b. The second set of equalities must be satisfied since

QDZ = 0. Similarly, the third set of equalities must be satisfied since QDh = 0,

which follows from the definition of h in (7) and the fact that QDPD = 0.

8



Instrumental Variables Representation

Using Theorem 1 we can show that the fevd estimator can also be expressed as an

iv estimator for a particular set of instruments. The major benefit of using the iv

representation is that one can draw on a standard toolkit of results. Theorem 1 shows

that the fevd estimates of β are identical to the standard fixed effects estimator b

from Stage 1. This estimator is defined by the moment condition (5). Theorem 1

also shows that the fevd estimates of γ are equivalent to the estimator of g from

Stage 2. This estimator is defined by the moment condition (6). Combining both

moment conditions, and using the fact that QDZ = 0, the full moment conditions

for the fevd estimator are

(y − Xβ − Zγ)′[QDX,Z] = 0. (12)

In other words, the fevd estimator is equivalent to an iv estimator using the in-

struments QDX and Z.

3. VARIANCE FORMULAE

Using standard results for iv estimators, the asymptotically correct sampling vari-

ance of the fevd procedure is

Viv(β, γ) = (H ′W )−1H ′ΩH(W ′H)−1 for H = [QDX,Z] and W = [X,Z]. (13)
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Here, H is the matrix of instruments and W is the matrix of explanatory variables.

Ω is the covariance of the residual, ui + ǫit, which can be expressed as

Ω = σ2
ǫ INT + σ2

uIN ⊗ ιT ι′T = σ2
ǫ QD + (σ2

ǫ + Tσ2
u)PD. (14)

Using straightforward algebraic manipulation of (13), we will later separately expand

out the variances of β and of γ for more detailed inspection.

We now compare the correct iv variance formula with the fevd variance formula.

Plümper and Troeger state that the sampling variance of the fevd estimator can be

obtained by applying the standard ols formula to the Stage 3 regression. Therefore,

Vfevd(β, γ, δ) = s2
(

[X,Z, h]′[X,Z, h]
)

−1
= s2













X ′X X ′Z X ′h

Z ′X Z ′Z Z ′h

h′X h′Z h′h













−1

. (15)

Here, s2 = ‖y − Xβ − Zγ − h‖2/dof , where dof is the degrees of freedom. By

application of (7), the expression for s2 can be simplified to

s2 = ‖QD(y − Xβ)‖2/dof , (16)

which we note is the standard textbook fe estimator for σ2
ǫ when dof = NT −N −k

(see e.g. Wooldridge, 2002, p. 271).2

2The usual ols formula for the standard errors from the Stage 3 regression would calculate the
scale term using dof = NT −k−p−1, where p is the number of Z variables including the constant
and the final minus one allows for the additional regressor h. This divisor would clearly produce
an inconsistent estimator of σ2

ǫ
for large N and small T . Plümper and Troeger (2007a, p. 129)

mention briefly an adjustment to the degrees of freedom and, although they do not give an explicit
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Now consider the variance of β. The fevd variance formula for β is the top-

left block of the overall fevd variance formula in (15); using the partitioned-inverse

formula this submatrix can be written as

Vfevd(β) = s2(X ′Q[Z,h]X)−1. (17)

By expanding out (13), the correct variance for β can be written as

Viv(β) = σ2
ǫ (X

′QDX)−1. (18)

Note that this is exactly the textbook fixed effects variance formula.

Now we note from (16) that s2 is a consistent estimator of σ2
ǫ . However, the

matrices in the fevd formula (17) and the correct formula (18) differ. The fevd

variance formula for β must therefore be incorrect, and we can show the direction of

the error.

Theorem 2. The fevd variance formula for coefficients on time-varying variables

is too small.

Proof. Now PD[Z, h] = [Z, h], so that PDP[Z,h] = P[Z,h]. Such a relationship between

projection matrices implies that PD −P[Z,h] is positive semi-definite (in matrix short-

hand, PD ≥ P[Z,h]). So, QD ≤ Q[Z,h]. That (X ′Q[Z,h]X)−1 ≤ (X ′QDX)−1 follows

immediately. This inequality will almost always be strict because the p+ 1 variables

formula, their software employs the divisor dof = NT − N − k − p + 1 (Plümper and Troeger,
2007b). This adjustment would yield a consistent estimate of σ2

ǫ
, but it is nonstandard and slightly

biased. To sharpen the subsequent analysis, we use the standard unbiased estimator of σ2

ǫ
, in which

dof = NT − N − k.
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[Z, h] cannot span the whole of the N -dimensional space of group operator D, and

the X’s have arbitrary within-group variation.

The fevd formula for the variance of β is biased in that it systematically under-

states the true sampling variance of the estimator. The essential inequality does not

disappear as N gets larger, so the formula is also inconsistent. The usual reported

standard errors will be too small.

Now, consider the variance of γ. The fevd variance formula for γ is the middle

block of the overall fevd variance formula in (15). Using an alternative representa-

tion of the partitioned inverse, this submatrix can be written as

Vfevd(γ) = s2(Z ′Z)−1
(

I + Z ′[X, h]
(

[X, h]QZ [X, h]
)

−1
[X, h]′Z(Z ′Z)−1

)

. (19)

Note that Z ′h = 0, so that in the partitioned central matrix of the second term only

the submatrix corresponding to X will be selected. Then, we have the simplification

of (19),

Vfevd(γ) = s2(Z ′Z)−1 + s2(Z ′Z)−1Z ′X
(

X ′QZX
)

−1
X ′Z(Z ′Z)−1. (20)

In contrast, by expanding out (13), the correct variance for γ can be written as

Viv(γ) = σ2
ǫ (Z

′Z)−1 +Tσ2
u(Z

′Z)−1 +σ2
ǫ (Z

′Z)−1Z ′X(X ′QDX)−1X ′Z(Z ′Z)−1. (21)

Again, s2 is a consistent estimator of σ2
ǫ , so the first term in (20) and in (21) is

essentially the same. However, the expressions are otherwise different, so the fevd
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variance formula for γ must also be incorrect. Again, we can show the direction of

the error.

Theorem 3. The fevd variance formula for time-invariant variables is too small.

Proof. As shown in the proof of Theorem 2, (X ′QDX)−1 ≥ (X ′Q[Z,h]X)−1 with

almost certain strict inequality, so the last term in the fevd variance formula (20)

understates the corresponding term in the correct variance expression (21). The

only exception would be the unlikely event that X and Z are exactly orthogonal,

causing those terms to vanish. But even then, the fevd variance formula will be

an understatement because it omits the term Tσ2
u(Z

′Z)−1, which must be positive

definite whenever there are random group effects.

In general the fevd variance formula for γ is systematically biased and incon-

sistent. The usual reported standard errors will be too small. The extent of the

downward bias is unbounded. The correct variance expression includes a term that

is directly proportional to the number of observations per group T and to the vari-

ance of the group effects σ2
u. In contrast the fevd variance formula, and hence the

standard errors, are unaffected by these parameters. By increasing either of both

of these parameters, with everything else held constant, the extent of the downward

bias in the fevd variance formula becomes arbitrarily large.

Reported results from the applied empirical literature align with these theoretical

results. For example, Belke and Spies (2008) present results for pooled ols, fe,

fevd, and ht. The coefficients for the time-varying variables included are the same,

by construction as Theorem (1) shows, for fe and fevd. However, most of the
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fevd reported standard errors are 0.00 to the two reported significant digits, and

they never exceed 0.01. In contrast the fe standard errors range from 0.03 to 0.23,

with a median value of 0.07. A similar pattern emerges for the ols and fevd

estimates for time-invariant variables. The coefficients are broadly similar, as would

be expected since both methods use the time-invariant variables as instruments. In

this case, the reported standard errors for fevd are again never greater than 0.01.

In contrast, the standard error for ols estimates of these coefficients ranges from

0.00 to 0.23 with a median value of 0.10. One would not expect ols to be generally

less efficient, given the underlying instruments for the procedures. Several other

applications reported both fe and fevd results (e.g. Caporale et al., 2009; Mitze,

2009; Krogstrup and Wälti, 2008). In the studies we examined, the fe t-statistics

were consistently smaller than those reported for fevd time-varying variables —

and often much smaller — except for few cases affected by robust standard error

formulae. Again, this is despite the fact that the coefficient estimators were actually

identical by construction.

4. COMPARISON TO ALTERNATIVE ESTIMATORS

The fevd estimator was introduced as an alternative to the ht instrumental variable

estimator. By also expressing fevd in its instrumental variable representation we

are able to develop insights into their comparative properties. Hausman and Taylor

showed that the standard fixed effects estimator is equivalent to an iv estimator with

instrument set QDX. To that, they add any exogenous elements of X or of Z as
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further instruments.3

To see the relationship more clearly, decompose X and Z into exogenous and

potentially endogenous sets: X = [X1, X2] and Z = [Z1, Z2], where the subscript 1

indicates exogenous variables and the subscript 2 indicates endogenous variables. The

ht procedure is then an iv estimator which uses the instrument set [QDX,X1, Z1].

In contrast, the fevd procedure is an iv estimator which uses the instrument set

[QDX,Z1, Z2].

The first essential difference between these estimators is that the fevd instrument

set excludes the exogenous time-varying variables X1. Of course, X1 may have no

members. In that case, the ht estimator for endogenous Z is not identified, so no

useful comparisons can be made.4 However, if X1 has known members, then a more

efficient estimator than fevd could be created by augmenting the instrument set

with X1. The second essential difference is that the fevd instrument set includes

the potentially endogenous time-invariant variables Z2. If these variables are in fact

correlated with the group effect, then the fevd estimator is inconsistent.

The fevd and ht estimators coincide exactly when there are no exogenous ele-

ments of X and no endogenous elements of Z.5 The fevd procedure is thus primarily

of interest when some Z may in fact be endogenous. The essential question raised by

Plümper and Troeger is then whether it is better to use a biased and inconsistent but

3Hausman and Taylor describe PDX as the additional instrument, but this interpretation follows
Breusch et al. (1989).

4Ideally, one would have theoretical grounds for identifying which elements of X are exogenous.
As a practical matter, one could also use an over-identification test to confirm this assumption,
since the fixed effects estimator of β is consistent.

5More precisely, the two estimators are identical when all elements of X are treated as if en-
dogenous and all elements of Z are treated as if exogenous, regardless of the actual endogeneity
status.
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lower-variance estimator, or a consistent but higher-variance estimator. The ques-

tion of whether a weak-instruments cure is worse than the disease is a sound one,

which has been considered in other contexts by a variety of authors; see for example

Bound et al. (1995).

Under a mean-squared error (mse) loss function, neither the fevd procedure

nor the ht procedure will uniformly dominate the other. mse can be expressed

as variance plus bias squared. Thus, a consistent estimator such as ht will be

preferable to the fevd for sufficiently large sample size.6 In contrast, for a small

sample with a small endogeneity problem, the fevd estimator may be preferable.

One conventional approach to finding a balance would be to select between the

competing estimators based on a specification test (Baltagi et al., 2003). If the test

rejects the null hypothesis of no difference between fevd and ht estimators, then

ht would be selected. Otherwise, the fevd estimator would be selected because

the evidence of endogeneity is too weak. Selection of a final estimator based on the

results of a preliminary test is known as a pretest procedure. Inference based on

the standard errors of the final selected estimator alone may be misleading; however,

bootstrap techniques which include the model selection step can circumvent this

problem (Wong, 1997).

Since the work of James and Stein (1961), statisticians have understood that

shrinking (biasing) an estimator toward a low-variance target can lower the mse.

Several authors have suggested shrinkage approaches based on using a weighted av-

erage of two estimators when one estimator is efficient and the other is consistent;

6Of course, consistency does require that valid instruments correlated with Z2 exist.
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see for example Feldstein (1974), Mundlak (1978), Green and Strawderman (1991),

or Mittelhammer and Judge (2005). If the bias, variance, and covariance of two

estimators are known, it is algebraically straightforward to find the weight which

minimizes the mse of a combined estimator. In particular, suppose one estimator φ

is unbiased. The other estimator χ is biased, but presumably has lower variance. The

shrinkage estimator then has the form χ+w(φ−χ), where w is the weight placed on

the consistent estimator. Straightforward calculus shows that optimal weight which

minimizes mse is

w =
µ2

χ + σ2
χ − σχφ

µ2
χ + σ2

χ + σ2
φ − 2σχφ

, (22)

where bias is indicated by µ and where variance is indicated by σ. Of course, the

exact bias and variances will usually not be known; however, practical estimates

of these terms are readily available for the fevd and ht estimators.7 Plugging

these empirical estimates into (22) produces a practical weighted-average estimator.

Kazimi and Brownstone (1999) discuss bootstrap approaches to estimating standard

errors for shrinkage-type estimators.

5. MONTE CARLO EVIDENCE

In this section we compare the practical performance under a range of conditions

of various estimators for an endogenous time-invariant Z. In addition to the fevd

7Estimates of the variance and covariance terms follow from application of the standard iv

formula, as in equation (13). Also, the difference between the fevd and ht estimators provides an
estimate of the bias of fevd, since ht is asymptotically unbiased.

17



and ht estimators, we consider a pretest estimator and a shrinkage estimator, both

of which can be viewed as weighted averages of fevd and ht for specific weighting

rules. The pretest estimator selects between fevd and ht based on a 95% critical

value of the Durbin-Wu-Hausman specification test for exogeneity of z3 (see e.g.

Davidson and MacKinnon, 1993, p. 237). The shrinkage estimator assigns weights

according to a first-stage empirical estimate of formula (22).

Plümper and Troeger argued for the superiority of the fevd procedure over the

ht approach based on Monte Carlo evidence. While our simulation design stays

close to the original design where appropriate, our design differ from theirs in two

fundamental respects.8 The first difference is that in the Plümper and Troeger Monte

Carlo study, the ht estimator was not actually consistent. This is because their data

generating process had no correlation between X and Z. The fact that the available

instruments had, by construction, zero explanatory power for the endogenous variable

contrasts sharply with their characterization of the Monte Carlo results (p. 130):

“the advantages of the fevd estimator over the Hausman-Taylor cannot be explained

by the poor quality of the instruments.” Plümper and Troeger note (in footnote 11)

that the advantage of fevd persists in their experiments regardless of sample size.

However, the asymptotic bias of an iv estimator is the same as the bias of ols when

the instruments are uncorrelated with the endogenous variable (Han and Schmidt,

2001). In contrast, with a valid instrument, the bias of the iv estimator will approach

zero asymptotically. We therefore consider scenarios in our simulation where the ht

estimator is consistent, that is at where at least one instrument for the endogenous

8The authors graciously provided the original simulation code upon request.
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Z is valid and relevant.

The second difference is that our simulations account for sampling variation in the

random effect. The Plümper and Troeger code generates the X, Z, and u (random

effect) data using the Stata ‘corr2data’ command. This command enforces the desired

moments exactly in the sample. Unfortunately, this causes the effective sampling

variability of the random effect to be zero. To see the problem, consider the case

with no X’s. In this case, the fevd procedure is equivalent to an ordinary regression

of y on the Z’s. The estimator for γ is then

γ̂ = (Z ′Z)−1Z ′y = γ + (Z ′Z)−1Z ′ǫ + (Z ′Z)−1Z ′u. (23)

The final term in (23) is identically the same in each replication of the Monte Carlo

experiment. This is because the ‘corr2data’ command forces both Z ′Z and Z ′u to

be constant across each sample. Consequently, the sampling variance calculated in

the Plümper and Troeger Monte Carlo study reflects only the variance of ǫ, and not

the variance of the random effect u.

We run a series of experiments which vary the degree of endogeneity and strength

of instrument. The data generating process for our simulation is

yit = 1 + 0.5x1 + 2x2 − 1.5x3 − 2.5z1 + 1.8z2 + 3z3 + ui + ǫit. (24)

Here, [x1, x2, x3] is a time-varying mean-zero orthonormal design matrix, fixed across

all experiments. [z1, z2] is a time-invariant mean-zero orthonormal design matrix,

fixed across all experiments. z3 is fixed for all replications in each experiment. z3
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has sample mean zero and variance 1, and is orthogonal to all other variables except

x1. The sample covariance of the group mean of x1 with z3 is set exactly to an

experiment-specific level, which allows us to vary the strength of the instrument

across experiments.9 The idiosyncratic error term ǫ is standard normal. The random

effect u is drawn from a normal distribution in each replication. The expectation

of u conditional on z3 is ρz3, where ρ works out to be the value of cov(z3, u) set

in the experimental design. All other variables are uncorrelated with u, and the

variance of u conditional on all variables is 1.10 The level of endogeneity is varied

across experiments by changing the value of cov(z3, u). Each experiment has 1000

replications, which vary the random components u and ǫ. There are 30 groups (N)

and 20 periods (T ), as reported in Plümper and Troeger (2007a). In implementing

the estimators [x1, x2, z1, z2] are treated as known exogenous, while [x3, z3] are treated

as potentially endogenous.

Figure 1 illustrates the simulation results for varying instrument strengths and

endogeneity levels. The vertical axis in each panel is the square root of mse of

various estimators for the endogenous time-invariant variable z3. The horizontal

axis of each panel is the covariance between the random effect u and z3. Each panel

illustrates different instrument strength, as indicated by stronger instruments having

higher correlation between the group-means of x1 and the endogenous variable z3.

The four panels display the experiments for corr(x̄1, z3) = 0.15, 0.30, 0.45, and 0.60

respectively.11 Note that, within each panel, the ht results are unchanging as a

9Conditional on a non-zero sample correlation of the endogenous variable and the instrument,
the moments of the iv estimator exist, so the Monte Carlo mse is well-defined.

10The specified pattern of covariance is implemented through a Choleski decomposition approach.
11Because variances of x̄1 and z3 are both 1, the covariance of these variables equals their corre-

20



Figure 1: Performance of the four estimators for varying instrument strengths
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consequence of the experimental design. Also, across panels, the fevd results are

unchanging by design.

The most notable feature of Figure 1 is that neither ht nor fevd uniformly

dominates the other. If reasonably strong instruments are available to implement

the ht procedure, and endogeneity is an issue, ht can greatly outperform fevd as

shown in Panel 4 because the higher variance of ht is compensated by lower bias.12

lation.
12The discussion here focuses on the small sample properties. When N is very large, ht will

always outperform fevd if there is endogeneity and valid and relevant instruments exist. For a
modest example of relative estimator performance as N grows, see the Appendix, where the case
of N = 300 and T = 2 is illustrated.
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For all cases when endogeneity is absent (or is mild), fevd will be the most efficient

estimator, as shown at the far left of all panels, because fevd exploits the true (or

approximately true) restriction that z3 is uncorrelated with u. If the investigator

has strong prior reason to believe that endogeneity is not an issue, it makes sense to

use that information. Indeed, with strong priors over endogeneity, using a Bayesian

procedure which minimizes risk against that prior might well be the best approach.

However, usually, the investigator will be using fe, or ht, or fevd precisely because

of concern that endogeneity might be a significant problem.

Instead of basing the choice of estimator on prior guesses about endogeneity,

the investigator can rely on evidence from within the dataset about the degree of

endogeneity. Both the shrinkage and the pretest estimators are in this spirit. The

shrinkage estimator in particular exhibits remarkably good risk characteristics across

all ranges of all four panels, and it clearly dominates the pretest approach under mse

loss. Indeed the shrinkage estimator often has an mse lower than both the ht and

the fevd, and never is much worse than the better of the two. It does this, not

by selecting the better of the two basic estimators (as the pretest attempts), but by

merging the best qualities of both. The ht estimator offers lower bias, while the

fevd estimator offers lower variance. The shrinkage estimator attempts to make an

optimal trade-off over these features in a weighted average of the two basic estimators.

Even though the optimal weights must be approximated from the data, the Monte

Carlo evidence suggests that the shrinkage estimator would almost certainly be the

best choice in the absence of prior information that the endogeneity problem is quite

small.
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Plümper and Troeger conclude that “the vector decomposition model performs

better than the Hausman-Taylor model, pooled ols, and the [random effects] model.”

In contrast, we suggest that none of these estimators is likely to be dominant, without

strong prior information about endogeneity. Instead, some form of model averaging

either through the shrinkage approach discussed here, or through alternatives such

as Bayesian model averaging (Hoeting et al., 1999), will generally be the most robust

approach.
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APPENDIX

Figure 2: Relative estimator performance when N = 300 and T = 2.
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In applications such as labor market studies the number of groups can be quite
large, often in the tens of thousands, since there may be a distinct group for each
individual in the study. Figure 2 presents a modest example of the relative behavior
of the four estimators as the number of groups grows larger. Each panel in Figure 2
illustrates the same parameter settings as the corresponding panel in Figure 1. The
simulation code for the figures is identical, except for the N and T settings. While
the overall number of observations is the same in the two figures, the larger number
of groups provides more information about the time-invariant variables. Panel 4
illustrates that the relative performance of fevd can be quite poor for reasonable
parameter settings and a modest number of observations.
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