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Compatibility in Tax Reporting�

Vilen Lipatovy

Abstract

We consider corporate tax evasion when business partners have di¤erent

attitudes towards aggressive tax accounting. There are costs of uncoordinated

tax reports, both in terms of catching inspectors� attention and running ac-

counts. If these costs are small, there exist a unique stable Nash equilibrium of

the game between the tax authority and a population of heterogeneous �rms.

In this equilibrium, the relation between compatibility costs and compliance is

non-monotonic and depends on the curvature of auditing function. However,

compatibility costs reduce non-compliance in low cheating regimes and may

enhance it when many �rms are cheating. This provides one rationale for de-

veloping countries to be cautious with employing re�ned auditing schemes and

for developed countries to promote complicated accounting procedures.

JEL Classi�cation: H26, H32

Keywords: tax evasion, compatibility, coordination, business partners, tax ac-

counting

1 Introduction

Recent years have seen a surge in research on tax evasion of �rms. The interest was

aroused by an observation that �rm adds new dimensions to the problem over and

above standard gambling and cat-and-mouse1 approaches. Firstly, a �rm is not a

�I am grateful to Chaim Fershtman, Massimo Motta, Rick van der Ploeg, Karl Schlag and par-

ticipants of workshops at European University Institute, Tinbergen Institute, Hannover University;

Labsi and Ruhr Graduate School Conferences for the comments on an earlier version of this paper

entitled "Tax Evasion and Coordination".
yFrankfurt University, Grüneburgplatz 1, 60323 Frankfurt am Main, Germany.
1The term is borrowed from Cowell (2006) and refers to the modeling of evasion as a game

between tax agency and a single taxpayer.
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single decision maker and has its own agency problem, as stressed by Crocker and

Slemrod (2005). Second, the interaction between �rms can be important for the

general outcome, as Bayer and Cowell (2009) and Sanchez (2006) point out, although

Lipatov (2008) shows that the interaction matters in games with individual taxpayers

as well.

Even in the simplest cases successful hiding of information from tax authority re-

quires coordinated action of at least two parties. In sophisticated evasion (tax evasion

that requires certain expertise and involves intricate manipulation of accounts), there

may be multiple parties as well as substantial costs of making accounts consistent

and looking good at super�cial checks of tax authorities. In the US, Sarbanes-Oxley

act of 20022 has made these costs even higher3.

The act is largely seen as a response to corporate scandals which were undermining

con�dence in the American securities market. The congress has designed it to promote

transparency: increased disclosure becomes mandatory, corporations are required to

install new board oversight and internal controls, investors are promised to be given

better information. In 2003 companies shelled out an average of $16 million on Sarbox

compliance, up 77 percent from the year before. An article in the Economist 2004

devoted to the controversy of this act was entitled �404 tons of paper� referring to

the aspect of compatibility costs that are in the spotlight of our paper.

The other aspect of costs to coordinate are di¤erences in the tax reports that

should be similar a priory. In case of business partners, the tax authority observes

transactions and can audit both partners, having some idea of how correlated their

incomes are. It is well known in the profession that the tax audits are not random.

First, the taxpayers are divided in homogenous auditing classes. Second, within each

class the tax authority may receive some signals that a given report is suspicious. One

of such signals is a discrepancy in the reports of business partners. The importance

of coordination in tax reporting is also con�rmed experimentally by Alm and McKee

(2004).

The counter-checking of reports is a standard procedure for some taxes. For VAT,

this particularly makes sense, as a part of the tax that is paid by one party is then

rebated by the other. Das-Gupta and Gang (2001) model the matching of purchase

and sales invoices explicitly. They conclude that cross-matching can induce truthful

2The following information about the act is taken from http://www.fmsinc.org/cms/?pid=3253
3The data availability requirements that are also part of costs can be checked at

http://www.itcinstitute.com/display.aspx?id=2021
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reporting, but distorts purchase and sales decisions. In Russia the auditing of one

�rm involves checking accounts of the �rms that are transacting with it, as described

e. g. in Sumina (2006).

McIntyre (2005) writes that most of the modern sheltering schemes undermine

the basic principle of tax law: a tax deductible item of one taxpayer is a part of

taxable income of the other. The evasion opportunity arises when one �rm deducts

some payments made to the other �rm, but this other �rm is not taxable, e. g. it

is an o¤-shore company. This kind of evasion looks simple in principle, but requires

sophisticated organization and coordination not to be obvious. In turn, the detection

of such evasion requires counter-checking of the reports provided by business partners.

In Russia, the mechanism of evasion is similar, though the schemes are usually blunter:

the accounting specialists register a lot of �ctitious �rms some of which just do not

pay taxes and disappear.

We look here at a long run situation in an economy where �rms exercise trans-

actions with each other. Before entering the industry, a �rm has to decide whether

to adopt aggressive attitude towards tax reporting or to stay on the compliant side.

This choice of accounting standard is analogous to the choice of a computer operating

system in its compatibility aspect. That is, while operating together, the �rms with

di¤erent accounting machineries incur higher transaction costs than the �rms with

similar accounting procedures do.

If a �rm decides to be aggressive, it hires a tax evasion specialist who arranges

accounts for a certain fee4. A compliant �rm manages accounts itself. After the

accounting policy has been adopted, the �rms start operating and transacting with

other �rms. Finally, the �rms get pro�ts and report them to a tax authority. The

tax authority observes the transacting �rms and decides on the auditing intensity.

Thus, in our economy the �rms face two kinds of costs in addition to standard costs

and bene�ts of evasion. The �rst type is compatibility costs, which have to be borne

every time there is a transaction between �rms with di¤erent accounting standards.

These are related to the adjustment of accounts for di¤erent kinds of �rms: e. g., the

aggressive and complying �rms often prefer transactions to be re�ected in the books

at di¤erent time points or at di¤erent locations5. The second type is endogenous

costs, which arise every time the tax authority sets unequal probability of auditing

4We treat the specialist as a passive player here. Her optimization problem is analysed in Lipatov

(2008).
5A list of common tax shelters can be found at http://www.lowtax.net/lowtax/html/offon/usa_new/usashelt.html

3



for the cases of observing similar and di¤erent reports of the two �rms whose income

is known to be correlated.

The endogenous costs are also present in Sanchez (2006). The di¤erence of his

paper from our approach is not only in the lack of compatibility costs, but also

that he considers tax authority with ability to commit. This is well explained by

di¤erent ideas underlying the two papers: whereas we consider long-run equilibrium,

Sanchez concentrates on the short-term with the aim of constructing auditing rule

that minimizes mistakes of the tax authority (in sense of auditing the honest and

not auditing cheaters). Furthermore, whereas Sanchez describes the situation in a

homogenous auditing class, assuming perfect correlation of income and uncertainty

about the auditing rule, we consider a pair of �rms with imperfectly correlated income.

The paper by Bayer and Cowell (2009) stands even further from us: it looks at

the e¤ect of auditing on joint decision of competing �rms to evade and to produce.

Though their main result, the desirability of non-�xed auditing rule, survives in our

setup, we consider �rms that are partners rather than competitors, and we focus on

the e¤ect of compatibility costs rather than auditing rules. Crocker and Slemrod

(2005) go inside a �rm, whereas we treat it as a decision making unit.

In our model, the tax authority has no ability to commit. Firstly, this has a

natural appeal for the long run modeling. Secondly, though the auditing rules are

often announced by the tax authorities, there is no means to establish whether they

are actually followed.

The main result of the paper is equilibrium characterization: We �nd out that

equilibrium cheating and auditing di¤er substantially from the approach disregarding

transactions among the �rms, even if the compatibility costs are small. When evasion

is small, the share of cheating �rms as well as the auditing probability is likely to be

overestimated, if the coordination of tax reports is not taken into account. In case of

popular misreporting, both the share of non-compliers and the auditing probability

may be underestimated. It is worth noting that the auditing probability in our

setting varies with the reports combination, making comparison with uniform auditing

probability of the representative case di¢cult in principle.

In general, we idenify three e¤ects that a change in evasion share has on attractive-

ness of aggressive accounting: positive �di¤erential probability� and �saving� e¤ects

and negative �auditing change� e¤ect. The positive e¤ects re�ect bene�ts from be-

ing compatible with more of the potential partners; the negative e¤ect comes from

4



strategic reaction of the tax authority. The total e¤ect of any parameter on the

endogenous variables is then in�uenced by the sum of the three e¤ects identi�ed.

For a large class of auditing technologies, we �nd that compatibility costs decrease

cheating and auditing when only few �rms are underreporting and increase them in

case evasion is popular. The correlation of pro�ts has a similar e¤ect. In both

instances, with coordination cost ascent the more popular strategy becomes more

attractive; hence more �rms choose it in equilibrium. Somewhat surprisingly, but

following exactly the same logic, improvement in auditing technology and �nes reduce

cheating in low evasion regimes and enhance it in high evasion regimes.

The auditing probability in our model can be positively a¤ected by the amount of

�nes, unlike in representative case. This becomes possible because the direct e¤ect of

larger �nes to make auditing more attractive may overplay the indirect e¤ect coming

through the reduced cheating. Finally, the e¤ectiveness of �ne always decreases as a

result of an increase in compatibility costs.

We also shed some light on the mechanism of evasion game when compatibility

matters: we show that correlation of pro�ts solely generates the di¤erence in auditing

probabilities. The compatibility costs alone change equilibrium cheating and auditing,

but leave the latter independent from the report con�guration.

The rest of the paper is structured as follows. The model setup is presented in

the next section, followed by the description of equilibrium structure. Section four is

devoted to the discussion of the results for the mixed equilibrium. Section �ve looks

at an example of particular auditing technology. Conclusion is followed by appendix

with derivations of equilibria and results.

2 Evasion game

2.1 Single �rm benchmark

Let us start with the case when there are no transacting pairs and no compatibility

costs. A single �rm decides whether to evade its pro�t, facing the tax authority that

can perform auditing. We use the approach of Graez, Reinganum and Wilde (1986)

in this benchmark, with a convex rather than linear cost function for auditing.

First, the nature moves, assigning a type to the �rms: high pro�t h = � or low

pro�t l = 0. The types are drawn from a distribution characterized by a density
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function

f (x) =

(

 if x = �

1� 
 if x = 0
:

Second, the high pro�t �rms decide whether to submit a high report H = � (be

honest) or a low report L = 0 (cheat).

The tax authority does not audit high reports and exerts e¤ort a in auditing

low reports. A continuous function a : [0; 1) ! R+ is a mapping from detection

probability de�ned on the unit interval to the auditing e¤ort de�ned for non-negative

real numbers. The inverse function determines detection probability from the e¤ort

p : R+ ! [0; 1). We assume that the �rms can never be detected with certainty, and

zero e¤ort results in zero detection probability p (0) = 0. The low report is honest

with probability 1�

1�
+q


and not with the complementary probability, where q is the

probability that high pro�t �rm is cheating.

The authority is maximizing its expected revenue q


1�
+q

p (a) (1 + s) t� � a, the

high income �rm - its expected pro�t � � p (a) (1 + s) t�. Here s is a surcharge rate

for being caught, t is a tax rate. In equilibrium with positive detection probability

FOC for the tax authority p0 (a�) (1 + s) t� = 1�

q�


+ 1, and indi¤erent condition for

the �rm is . Hence equilibrium e¤ort is

p (a�) =
1

1 + s

and equilibrium evasion probability is

q� =
1� 





1

p0
�
p�1

�
1
1+s

��
(1 + s) t� � 1

:

Su¢cient conditions for the existence of such an equilibrium: p is strictly increas-

ing and strictly concave, p0
�
p�1

�
1
1+s

��
> 1


(1+s)t�
. The latter actually ensures mixed

equilibrium. If, to the contrary, detection probability does not increase fast enough or

the �ne is too small, the equilibrium is all cheating. The equilibrium, either in mixed

or pure strategies, is unique with strictly increasing and strictly convex p. We retain

this assumption for the rest of the paper. The mixed equilibrium is of most interest

to us, since we do not observe full cheating and the �nes are usually high enough

to cover auditing costs in reality. Moreover, this mixed equilibrium is evolutionary

stable (Weibull 1995), as even if a small part of taxpayers gives honest reports, the

reduction in detection probability is not enough to o¤-set a loss from lower evasion.
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2.2 Two transacting �rms

Recall the story behind our model, presented in the introduction. Firstly, the �rms

choose their accounting standards. Second, the �rms are matched according to some

rule. Third, the �rms draw pre-tax incomes from participating in a match. The

second and third stages may repeat a number of times. Fourth, the �rms summarize

the realized income and submit a tax report. Finally, the tax authority audits the

tax reports of some �rms (and all its partners).

To make the analysis as simple as possible while preserving the coordination as-

pect, we make the following simplifying assumptions: (i) each �rm meets only one

transacting partner; (ii) each �rm makes only one transaction; (iii) the aggressive �rm

does not report truthfully. Under these assumptions the game above is equivalent to

the following 3 player game.

2.2.1 The setup

Consider a simultaneous game between two risk neutral �rms and a tax authority.

The �rst move is made by the �rms. They decide whether to adopt aggressive

accounting policy and pay a price b per evaded euro for it, 0 � b < t, or to use

compliant accounting that comes at a cost normalized to zero.

The second move is made by the nature that assigns a type to each of the two

�rms: high pro�t h = � or low pro�t l = 0. We assume now that the pro�ts are

correlated with the correlation coe¢cient r; 0 � r < 16. We do not consider negative

correlation, as our �rms are cooperating rather than competing. The joint distribution

of two types in a match is given by the following density function:

f (x; y) =

8
>><

>>:

�; if x = y = �;


 � �; if fx; yg = f0; �g ;

1� 2
 + �; if x = y = 0:

where � := 
2 + 
 (1� 
) r; � 2 [
2; 
).

After the pre-tax pro�t is realized, the �rms submit their reports according to

the procedure they chose in the �rst stage. Namely, the low income �rm submits a

6We have also analyzed the case when r = 1, but since this is not likely to happen in reality, we

do not present the results here. It turns out that the equilibrium structure in this case is distinctly

di¤erent from correlation arbitrary close to perfect, so we also cannot use it as a benchmark. The

derivation of equilibrium is available upon request.
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low report and gets a payo¤ normalized to 0, if its partner has the same accounting

standard, and �c, if it has a di¤erent standard. The high income �rm submits a high

report H = � (be honest) if chose compliant policy or a low report L = 0 (cheat) if

chose aggressive policy. Each �rm of type h (high pro�t) gets ex interim expected

payo¤ (before the coordination costs c) of u (i; j), where i is its own report and j is

a report of its partner:

u (L;L) = � � p
�
aLL
�
(1 + s) t� � b�;

u (L;H) = � � p
�
aHL

�
(1 + s) t� � b�;

u (H;H) = u (H;L) = � (1� t) :

Ex ante expected pro�t is then the following. If a �rm decides to use aggressive

accounting,

u (A) = � (qu (L;L) + (1� q) u (L;H)) + (
 � �) u (L;L) + (1� 
) � 0� (1� q) c:

Here the event when both the �rm and its partner get high pro�t de�nes the �rst

term, the event when the �rm gets high pro�t and its partner gets a low one de�nes

the second term. The third term contains the payo¤ in the event of our �rm getting

low pro�t, normalized to zero. In any event we have to subtract coordination cost c

in case our aggressive �rm is matched with the compliant one, and that is what the

last term takes care of.

If a �rm decides to use compliant accounting, it is

u (C) = � (qu (H;L) + (1� q) u (H;H)) + (
 � �) u (H;L) + (1� 
) � 0� qc:

The terms are similar: both �rms getting high pro�t, only the compliant �rm getting

high pro�t, and the compliant �rm getting low pro�t.

The third move is by the tax authority, which chooses an auditing e¤ort a 2 R+

conditional on the reports observed: a (LL) (two low reports), a (HL) (a low and a

high report in any order), a (HH) (two high reports). The tax authority gets expected

revenue of p (a) (1 + s) t��a from each cheater it audits and the revenue t��a from

each honest report it audits.

The game takes into account both types of costs outlined in the introduction.

Compatibility costs are �xed to c per transaction. The endogenous coordination

cost re�ects the di¤erence in detection probabilities the tax authority might want

to generate. Namely, the authority can exert di¤erent e¤orts in auditing low pro�t

report depending on whether it comes with another low report or with a high report.
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Compared to the case of two low reports, it needs a half of resources to provide the

same auditing probability if one of the reports is high. Thus, we do not consider the

case in which coordinated evasion requires more e¤ort to discover than uncoordinated

does.

We choose the simultaneous formulation rather than a sequential one, because

we do not want to consider a particular industry structure or a relation between

an entrant and an incumbent. Our goal is to characterize the economy where two

�rms from di¤erent populations (again, think of buyers and sellers) meet to play a

coordination game. Even more, since the decisions are long-term, they become a

property of the �rms, so that they can be characterized as evaders or honest. In this

way, the Nash equilibria of the simultaneous game show us where these populations

could converge to.

2.2.2 Optimization problem of the tax authority

The tax authority observes the match. Recall that we denote with lower-case letters

the pro�ts, and with upper-case the reports. We have then the following pro�t -

report table

total HH HL LL

hh � � (1� q)2 2�q (1� q) �q2

hl 2 (
 � �) 0 2 (
 � �) (1� q) 2q (
 � �)

ll 1� 2
 + � 0 0 1� 2
 + �

which represents the measures (or shares) of taxpayer pairs reporting incomes given

by the column entries, while actually receiving incomes given by row entries.

The following lemma characterizes the best response of the tax authority in this

case.

Lemma 1 In the tax evasion game above the best response of the tax authority a (q)

to the �rms cheating with probability q 2 (0; 1] is implicitly de�ned by:

aHH = 0; (1)

p0
�
aHL (q)

�
=

�q + 
 � �

�q (1 + s) t�
; if q � q0HL; (2)

p0
�
aLL (q)

�
=
�q2 + 2q (
 � �) + 1� 2
 + �

(�q2 + q (
 � �)) (1 + s) t�
; if q � q0LL; (3)

aHL (q) = 0; if q < q0HL; a
LL (q) = 0; if q < q0LL: (4)
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The proof is left to the appendix A, q0HL and q
0
LL are also de�ned there. Obviously,

observing two high reports the tax authority does not audit them. Observing di¤erent

reports in a match, the authority audits the low one with probability determined by

the e¤ort aHL (q). When two low reports are observed, the optimal auditing e¤ort is

given by aHL (q).

Note that the two e¤orts (and corresponding probabilities) are only equal, when

r = 0, that is the report of one �rm does not contain any information about the pro�t

of the other �rm. With r > 0 we have aHL (q) � aLL (q), which is quite intuitive:

di¤erent reports indicate possible cheating, so it makes sense to audit them more.

2.2.3 Equilibria

Before stating the result it is useful to introduce the following terminology:

De�nition 1 We call an equilibrium of our game full cheating, if all the �rms are

submitting low (zero) reports in this equilibrium q� = 1; we call an equilibrium

full honesty, if all the high income �rms submit high reports q� = 0.

The proposition 1 characterizes the equilibria arising in case of correlated draws.

We denote the equilibrium values of cheating probability with q� and of auditing e¤ort

with a�.

Proposition 1 In the tax evasion game with two transacting �rms

(i) There exists a symmetric evolutionary stable equilibrium with q� implicitly

de�ned by


 (t� b) ��(1� 2q�) c =
�
(
 � � (1� q�)) p

�
aLL (q�)

�
+ � (1� q) p

�
aHL (q�)

��
(1 + s) t�;

(5)

aHH� = 0, aHL� = aHL (q�), aLL� = aLL (q�) as given by (1), if the compatibility

costs are small and


 (t� b) � �
�
1� 2q0LL

�
c > �

�
1� q0LL

�
p
�
aHL

�
q0LL
��
(1 + s) t�; (6)

where q0LL re�ects auditing technology and is de�ned in the appendix.

(ii) There exists a symmetric evolutionary stable equilibrium with q� implicitly

de�ned by


 (t� b) � � (1� 2q�) c = � (1� q) p
�
aHL (q�)

�
(1 + s) t�; (7)
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aHH� = 0, aHL� = aHL (q�), aLL� = 0, if the compatibility costs are small and

(6) does not hold7.

(iii) If 
 (t� b) � � c � 0, there exist a full honesty equilibrium with q� =

0; a� � 0.

(iv) If 
 (t� b) � + c � 
p
�
aLL (1)

�
(1 + s) t�, there exist a full cheating equi-

librium, and q� = 1; aHH� = 0, aHL� = aHL (1), aLL� = aLL (1).

The proof of the proposition is left to appendix B. The structure of equilibria is

very intuitive: for small compatibility costs (how small they should be depends on

the auditing technology) there is a unique stable mixed equilibrium, as in a standard

game without coordination issues. A small quali�cation here is that it takes a di¤erent

form depending on whether consistent low reports are audited (i) or not (ii).

With larger compatibility costs, multiple equilibria may arise. More importantly,

full honesty and full cheating may become equilibrium, as with everybody around

being honest it is too costly in terms of compatibility to use aggressive accounting

and visa versa. Whereas only the magnitude of the compatibility costs (relative to

the evasion bene�ts) decides whether there exist full honesty equilibrium (iii), the

auditing technology also plays a role in determining the existence of full cheating

equilibrium (iv).

3 Discussion of the results

3.1 Summary

Since we believe that the exogenous coordination costs are relatively small, we can

concentrate on the regions of parameter values where a mixed equilibrium exists. As

it has been already noted, the probability of auditing for dissonant reports is higher

than that for the similar reports as long as r > 0. A further breakdown of the

compatibility costs propagation mechanism is represented in the table below:

c = 0; r = 0 c > 0; r = 0 c = 0; r > 0

p� (LL) t�b
(1+s)t

p
�
p0�1

�

q�+1�


q�(1+s)t�

��
p
�
p0�1

�
�q�2+2q�(
��)+1�2
+�
(�q�2+q�(
��))(1+s)t�

��

p� (HL) t�b
(1+s)t

p
�
p0�1

�

q�+1�


q�(1+s)t�

��
t�b
(1+s)t

7The equilibria characterized in (i) and (ii) are also unique under the conditions speci�ed in the

appendix B.
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From this table we see clearly that the di¤erential auditing probability is generated

from some correlation even in the absence of exogenous compatibility costs. On the

other hand, only exogenous costs c shift equilibrium cheating probability even in the

absence of auditing intensity di¤erential: The following expression determines the

share of aggressive �rms with independent draws.


 (t� b) � � (1� 2q�) c = 
p

�
p0�1

�

q� + 1� 



q� (1 + s) t�

��
(1 + s) t�: (8)

Thus, the two channels of the compatibility costs can be clearly separated.

The following remark shows how the expected payo¤ of the �rms I depend on the

compatibility costs. The payo¤ is easy to compute because in the mixed equilibrium

the �rms a ex ante indi¤erent between aggressive and compliant accounting.

Remark Compatibility costs put a burden on the �rms unless there is a full honesty:

I = 
 (1� t) � � q�c.

3.2 Comparative statics

Firstly, we are interested in how the equilibrium value of cheating depends on the

compatibility costs. For q� > q0LL, from (5) we have

(1� 2q�) dc = Qdq; (9)

Q :=

 
�
�
p
�
aHL

�
� p

�
aLL
��
� (
 � � (1� q�)) p0

�
aLL
�
aLLq

�� (1� q�) p0
�
aHL

�
aHLq

!

(1 + s) t� + 2c:

(10)

On the lhs we see the direct e¤ect of c on the costs of evasion: When there are more

compliant �rms (q� < 1=2), the e¤ect is positive, as there is a higher chance to meet

a compliant �rm and incur the compatibility costs. Otherwise (q� > 1=2), the e¤ect

is negative, as there is a higher chance to meet a �rm with aggressive accounting.

On the rhs we see the indirect e¤ect of c on the bene�ts of evasion through

changing q. The e¤ect is more intricate and can be divided into three terms. The

�rst term is a positive di¤erential in auditing probability for similar and di¤erent

reports. Indeed, with higher q there is a lower chance to submit di¤erent reports,

so the evading �rms can enjoy lower auditing probability (�di¤erential probability�
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e¤ect). The second term re�ects the negative e¤ect of q on the attractiveness of

evasion through raising auditing probability for both types of the reports (�auditing

change� e¤ect). The third term is positive and re�ects the increase in bene�ts from

evasion through saving on compatibility costs (�saving� e¤ect).

Thus, the total indirect e¤ect is ambiguous. Note that this is true not only for

compatibility costs, but for any parameter a¤ecting q, since it is actually change in

q itself that either increases or decreases attractiveness of evasion depending on how

responsive the auditing probability is. This in turn depends on the curvature of the

auditing function (we see p0 (a) directly in (9), in appendix we show that aq depends

on p00 (a)). As p0 (a) is decreasing in q with @2p0 (a (q)) = (@a@q) < 0, the e¤ect of

the auditing change is most likely to outweight other e¤ects for small q, and visa

versa. Because of strict monotonicity and p (+1) � 1, auditing functions satisfy

p0 (+1) = 0. So, the auditing change e¤ect evaporates for large q, and the total

e¤ect becomes positive.

For the class of functions with p0 (0) = +1, q0LL = q0HL = 0 and the auditing

change e¤ect grows unboundedly large at zero, whereas the lhs is bounded, so the

total e¤ect is certainly negative. Thus, for such functions there is a threshold value

of equilibrium share of cheaters qc, below which the total indirect e¤ect is negative

(and hence dq�=dc < 0 for q� < min f1=2; qcg), and above which the total indirect

e¤ect is positive (and hence dq�=dc < 0 for q� > max f1=2; qcg).

We also note that the di¤erential probability e¤ect is reinforced by pro�t correla-

tion more than the auditing change e¤ect, so the total is more likely to be negative

with lower correlation. At the extreme of independent draws we shall have

Q = �
p0 (a) aq (1 + s) t� + 2c;

which is negative, if compatibility costs are small.8

If the equilibrium is at the intersection when only inconsistent reports are audited,

that is q0HL < q
� < q0LL, we have

(1� 2q) dc = Q0dq (11)

Q0 :=
��
p
�
aHL

�
� � (1� q) p0

�
aHL

�
aHLq

�
� (1 + s) t� + 2c

�

We can see the play of all e¤ects described above also here. The di¤erential

probability is represented by p
�
aHL

�
and the auditing change e¤ect is weakened,

8For su¢ciently large compatibility costs the total e¤ect is positive, but this is most likely to be

irrelevant, as we are not sure about existence and uniqueness of the equilibrium under consideration.
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because the similar reports are not audited. We know that close to q0HL the total

e¤ect is negative, as p
�
aHL (q0HL)

�
= 0. With higher q the di¤erential probability

e¤ect kicks in and the auditing change e¤ect is less pronounced, so that the total may

even change its sign.

Second, we are interested in the e¤ect of correlation on the equilibrium share of

�rms that use aggressive accounting. For an equilibrium with non-zero auditing of

both report combinations9, we have

Dd� = Qdq; (12)

D :=

 �
(
 � � (1� q�)) p0

�
aLL
�
aLL� + � (1� q�) p0

�
aHL

�
aHL�

�

+
�
p
�
aHL

�
� p

�
aLL
��
(1� q�)

!

(1 + s) t� (13)

The direct e¤ect of the correlation on the costs of evasion is always positive (the

last term in D). It increases in the probability di¤erential and the share of compliant

�rms. Intuitively, with higher correlation di¤erent reports are more likely, other things

being equal. And since di¤erent reports are more likely to be detected and punished

than similar, expected �ne increases in pro�t correlation. The indirect e¤ect of the

correlation through auditing probability is represented by the �rst two terms in the

expression for D. The �rst term is a negative e¤ect through the decrease in auditing

of similar reports (aLL� < 0), the second term is a positive e¤ect through the increase

in auditing of di¤erent reports (aHL� > 0).

Here we can observe that for small q the negative e¤ect becomes small, whereas

for large q the positive e¤ects vanish. The total e¤ect of correlation on q depends then

on the indirect e¤ect discussed at length above. For example, for auditing functions

satisfying Inada conditions dq�=dr < 0 for both very small and very large q�.

Third, we would like to see how an improvement in auditing technology a¤ects

the equilibrium. Consider a new auditing technology p1 (a) = kp (a) ; k > 0. Then

Kdk = Q1dq; (14)

K :=

 
(
 � � (1� q�))

�
p
�
aLL (q�)

�
+ kp0

�
aLL
�
aLLk
�

+(1� q) p
�
aHL (q�) + kp0

�
aHL

�
aHLk

�

!

(1 + s) t�: (15)

where Q1 is a correspondingly adjusted version of Q that takes into account k. As

expected, the direct e¤ect of an improvement in auditing on the costs of evasion is

positive: the same e¤ort of the tax authority results in higher expected �ne for a �rm.

9The sign of the expression does not change if only high-low report combinations are audited.
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The indirect e¤ect is negative: with more e¤ective auditing the optimal auditing e¤ort

is reduced, so the expected �ne goes down as well. The total e¤ect K depends on

the size of p00 (a): If p (k) is concave, the direct e¤ect is higher than the indirect one,

so the total e¤ect of an improvement in auditing on the evasion costs is positive; the

opposite is true for convex p (k).

The e¤ect through equilibrium cheating Q1 is not a¤ected much, as both di¤eren-

tial probability and auditing change e¤ects are ampli�ed to the same extent, only the

compatibility e¤ect becomes relatively less important. Then with Inada conditions

and positive K, dq�=dk < 0 for q� < qc, dq�=dk > 0 for q� > qc, that is improvement

in auditing technology reduces cheating in low evasion regimes and enhances it in

high evasion regimes.

Fourth, we look at the �ne. In our model the cheating is not necessarily decreasing

in the surcharge rate s. The deterrence e¤ect depends again on whether an increase

in q curbs or boosts bene�ts of evasion, i.e. on the sign of Q:

�
(
 � � (1� q�)) p

�
aLL (q�)

�
+ � (1� q) p

�
aHL (q�)

��
t�ds = Qdq: (16)

With Inada conditions that means dq�=ds < 0 for q� < qc, dq�=ds > 0 for q� > qc.

We de�ne the measure of e¤ectiveness of the �ne as the absolute value of the

derivative of the equilibrium cheating
��dq�
ds

��. We immediately see that this mea-

sure is decreasing in compatibility costs, so the �nes loosen their grip with higher

costs in our equilibrium. This is important to have in mind while formulating a

tax/enforcement/accounting policy.

4 Example

We take a function a (p) = �k ln(1 � p) from Reinganum and Wilde (1986). The

inverse function is p (a) = 1 � e�
a

k . k is a detection di¢culty parameter: the higher

it is, the more e¤ort is required to support a given detection probability.

From Lemma 1, using the functional form for the auditing technology, we can

write

aHL (q) = �k ln

�
k
�q + 
 � �

�q (1 + s) t�

�
; q > q0HL; (17)

aLL (q) = �k ln

�
k
�q2 + 2q (
 � �) + 1� 2
 + �

(�q2 + q (
 � �)) (1 + s) t�

�
; q > q0LL: (18)
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The two thresholds are

q0HL =

=� � 1

(1 + s) t� � 1
;

q0LL =
� (
 � �) ((1 + s) t� � 2) +

q
(
 � �) ((1 + s) t� � 2)2 + 4 ((1 + s) t� � 1) � (1� 2
 + �)

2 ((1 + s) t� � 1) �
;

assuming (1 + s) t� > 2.

From Proposition 1 we have


 (t� b) � � (1� 2q�) c = � (
 � � (1� q)) k

�

 � �

�q�

�
(19)

��
1� q�

q�
k

�
q�
 + 1� 


�q� + 
 � �
� 1

�
+ 
 ((1 + s) t� � k) : (20)

This is a third degree polynomial, so we have to solve it numerically. For the com-

plementary case


 (t� b) � � (1� 2q) c = � (1� q)

�
(1 + s) t� � k

�
1 +


 � �

�q

��
;

Full cheating condition is c+k > 
� (b+ st), full honesty condition is 
 (t� b) � <

c.

4.1 Parameterization

In the following we calibrate our parameters to the values common in the literature.

We want to see how at plausible parameter values the compatibility costs a¤ect equi-

librium cheating and auditing quantitatively. To do this, we shall �rstly explain the

choice of parameters. Secondly, we de�ne two benchmarks according to how wide-

spread evasion is: popular cheating (q = 0:6) featuring developing countries and rare

cheating (q = 0:2) characterizing developed world. Finally, we look at how the cheat-

ing and auditing probabilities as well as tax revenue are changing for each of the

benchmarks.

Since the literature before us did not consider compatibility costs explicitly, we

leave them free. We take the values of most parameters directly from Lipatov (2008),

as we follow the same logic there: s = 0:8; t = 0:3; 
 = 0:5. Fixing correlation at

r = 0:5, that gives us � = 0:375. Choice of � is arbitrary, as it is not unit-free. We

normalize it to � = 10 to ensure that (1 + s) t� > max f2; 
=�g is satis�ed and lower

threshold is in interior.
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With these parameter values our thresholds are

q0HL = 0:075758;

q0LL = 0:47118

We see that for low evasion regime q0HL < q
� < q0LL, for high evasion regime q

� > q0LL.

We �x b = 0:03 in high evasion equilibrium to feature the widespread Russian

3% rule for the evasion service and (somewhat arbitrarily) b = 0:2 in low evasion

equilibrium.

4.2 Low evasion regime

For the low evasion regime we can calibrate auditing e¤ectiveness as

k =
(�10
 (b� t) + 10t� (q � 1) (s+ 1))

�
�
1
q�
(
 � �) + 1

�
(q � 1)

= 1:4

and we have c < 0:5 as a condition for non-existence of full cheating or full honesty

equilibria.

Share of �rms with aggressive accounting

Fixing the parameters, we get the following picture:

0.0 0.1 0.2 0.3 0.4 0.5
0.10

0.15

0.20

c

q

Figure 1. The e¤ect of compatibility cost c on

evasion share q, low evasion regime.

On the horizontal axis we can see here compatibility costs c. The vertical axis shows

the share of cheating �rms in the unique symmetric equilibrium. An increase in

compatibility costs from zero to 0:5 (5% of high pro�t) causes 35% decrease in cheating
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share (from 20% to about 13%). We see that the costs have a substantial disciplining

e¤ect on tax reporting in low cheating regime.

0.4 0.5 0.6 0.7
0.0

0.1

0.2

0.3

0.4

r

q

Figure 2. The e¤ect of pro�t correlation r on evasion

share q, low evasion regime, c = 0:1.

From �rgure 2 we can see that correlation has a similar e¤ect on the equilibrium share

of cheating. An increase in correlation from 40% to 60% drives cheating down from

28% to 13%.

Auditing probability

The auditing probability (only di¤erent reports are audited) is plotted on the

�gure 3:

0.0 0.1 0.2 0.3 0.4 0.5

0.10

0.15

0.20

0.25

0.30

c

pHL

Figure 3. The e¤ect of compatibility cost c on

auditing probability pHL, low evasion regime.

The probability is a decreasing function of the costs, which is no surprise, as it is a

decreasing function of the share of cheaters. More interesting is the extent of this
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e¤ect: an increase in compatibility costs from zero to 0:5 causes auditing probability

to drop from above 30% to less than 10%). This is a very substantial e¤ect, so the

cost savings associated with decreased auditing could be used to �nance introduction

of higher compatibility costs.

The e¤ect of pro�t correlation on auditing probability is also positive in our pa-

rameterization. In general, from Lemma 1 we know that @pHL=@r > 0, and since

dpHL=dq > 0 and from �gure 2 dq=dr < 0, we have an ambiguous sign for dpHL=dr.

For our example, the direct e¤ect outweighs the one through the compliance, so the

total e¤ect is positive.

Tax revenue

0.0 0.1 0.2 0.3 0.4 0.5
1.20

1.22

1.24

1.26

1.28

1.30

1.32

c

R

Figure 4. The e¤ect of compatibility cost c on tax

revenue R, low evasion regime.

Finally, from �gure 4 we can see that tax revenue is an increasing function of compat-

ibility costs. This is intuitive, as the compatibility costs reduce both non-compliance

and enforcement costs, so the both direct revenues are boosted and the auditing

expenditures are curbed (but the �ne collection is also reduced).

4.3 High evasion regime

The simplest calibration for the case of no compatibility costs in high evasion regime

gives

k =
10
 (b� t) + 10t
 (s+ 1)


 � 1
q
�
�
�
+q
+1

��+q�

� 1
�
(q � 1) + 1

q�
(
 + � (q � 1)) (
 � �)

= 1:3289; (21)

and the condition of nonexistence of corner equilibrium is c < 0:2.
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Share of �rms with aggressive accounting

For the high evasion regime, we get the following picture:

0.0 0.1 0.2 0.3 0.4 0.5
0.50

0.55

0.60

0.65

0.70

0.75

c

q

Figure 5. The e¤ect of compatibility cost c on

evasion share q, high evasion regime.

We plot the evasion share also for the values of compatibility costs beyond 0:2, that

is when this equilibrium is not unique any more. The reason is that it is still a unique

stable equilibrium (full cheating and full honesty are not stable). So from �gure 5 we

can see that the e¤ect of the costs on the equilibrium share of evasion is positive, but

quantitatively less pronounced than in the low evasion regime. An increase in costs

from 0 to 0:25 leads to 5% increase (from 60% to 63%) in the share of �rms with

aggressive accounting.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.6

0.7

0.8

0.9

1.0

r

q

Figure 6. The e¤ect of pro�t correlation r on

evasion share q, high evasion regime, c = 0:1.

Figure 6 shows that the e¤ect of correlation goes into the opposite direction with
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the e¤ect of the costs. An increase in correlation from 40% to 60% drives cheating

down from around 64% to around 60%.

Auditing probabilities and tax revenues

The e¤ect of compatibility costs on auditing probabilities and tax revenues is

summarized in the following table:

c q pHL pLL R

0 0:6 0:617 19 0:226 57 1: 373 1

0:05 0:60465 0:618 24 0:232 54 1: 362 5

0:1 0:60988 0:619 4 0:239 13 1: 350 6

0:15 0:61582 0:620 7 0:246 46 1: 337

0:2 0:62267 0:622 17 0:254 69 1: 321 4

0:25 0:63071 0:623 85 0:264 08 1: 303

0:3 0:64039 0:625 81 0:275 01 1: 280 8

0:35 0:65244 0:628 18 0:288 06 1: 253 1

0:4 0:6683 0:631 16 0:304 37 1: 216 4
We see that both probabilities increase with an increase in compatibility costs.

Again, the e¤ect is quantitatively small. An increase in costs from 0 to 0:25 leads

to only 0.6 p.p. increase in the auditing probability for di¤erent reports and 3.8 p.p.

increase in the auditing probability for similar reports. The tax revenues decrease,

mirroring the case of low evasion.

Policy

The stylized examples above nicely illustrate di¤erent policies towards compat-

ibility costs appropriate for di¤erent countries. The high evasion costs situation is

more likely in developed countries with low level of evasion. In such cases the e¤orts

to decrease compatibility costs can be dangerous in a sense of bringing about more

cheating and lower tax revenues. The low evasion costs picture is for the countries

with �ourishing evasion, like most of developing countries and CIS countries. These

countries should not pay too much attention to compatibility of the accounts, as

increasing the compatibility costs may result in even larger cheating.

From this prospective, the Sorbanes-Oxley act can be justi�ed on the ground

of increasing costs c in the US. At the same time, unwillingness of many developing

countries to be involved in a detailed analysis of industry structures in order to deduce

true tax income can also be rationalized with the help of our model. This is certainly

not to say that there are no more important factors underlying both phenomena, but

simply to show that our model seems to go well with the stylized facts we know.
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5 Conclusion

The tax evasion game with costs of accounting compatibility between contracting

�rms is considered in this paper. We show that when compatibility costs are small,

there is a unique stable equilibrium10 with a positive share of evading �rms and a

positive share of audited reports. When the costs are large, there may be multiple

equilibria, in some of which either everybody or nobody evades.

The game yields the insights that are impossible to obtain within the represen-

tative �rm framework. Firstly, the tax authority should put more e¤ort in auditing

�rms that did not coordinate their evasion decision, if it maximizes its expected rev-

enue. Second, the compatibility costs may a¤ect the amount of evasion in the opposite

directions depending on what the auditing technology and the equilibrium share of

cheating are. If there are many non-compliant taxpayers, the compatibility costs are

more likely to increase evasion, and visa versa. The correlation of taxpayer pro�t

a¤ects equilibrium in a similar way. Third, the e¤ect of the �nes and auditing tech-

nology on equilibrium values crucially depends on the prevailing accounting standard.

When most of the �rms use an aggressive standard, an increase in �nes or auditing

e¤ectiveness may have an adverse e¤ect on compliance.

There is a number of policy recommendations arising from our analysis. Firstly,

compatibility costs reduction e¤orts are only justi�ed for economies (or industries)

with substantial shadow sector. Such e¤orts include simpli�ed accounting (exogenous

costs) and little interest in the business links (endogenous costs through auditing

probability di¤erential). Secondly, the marginal increases in �nes may be dangerous in

high evasion economies. Thirdly, compatibility costs enhancement may be a sensible

strategy for low evasion countries, and it may even be �nanced by eventual reduction

in enforcement costs.

We hope that our paper opens up a whole tile of issues that could not be addressed

by the literature before. How do the links between taxpayers a¤ect their decision to

pay taxes? How are these links taken into account by the tax authority? Could the

government change the structure of these links for the bene�t of the whole society?

We cannot answer these questions in a far too simpli�ed setting of business pairs we

have here. However, what we can do is to say that the equilibrium behavior of the

agents is a¤ected signi�cantly by the links between them, that it is a¤ected through

the costs of behaving di¤erently, and it is a¤ected in the direction of harmonization

10The uniqueness is guaranteed under mild technical assumption presented in the appendix.
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of this behavior.
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Appendices

A - Proof of Lemma 1

The expected revenue of the auditor is

� (1� q)2 t� + (
 � �) (1� q) t� + �q (1� q) t� (22)

+(1 + s) p
�
aHL

�
�q (1� q) t� (23)

� (�q (1� q) + (
 � �) (1� q)) aHL

+(1 + s) p
�
aLL
� �
�q2 + q (
 � �)

�
t�

�
�
�q2 + 2q (
 � �) + 1� 2
 + �

�
aLL

Here the �rst term is the revenue from the �rms that have high pro�ts and do not

evade (they are of measure � (1� q)2). The second group of 3 term is the revenue

from the mixed reports: the high reports bringing t� are of measure �q (1� q) +

(
 � �) (1� q), and low reports bringing in the �ne are �q (1� q). Correspondingly,

the costs of auditing must be subtracted for these cases. Finally, the last terms are

the revenue from low reports and costs of auditing them. The same �ne is levied in

the cases of two �rms or only one �rm misreporting.

Rearranging and taking �rst order conditions with respect to aLL and aHL gives

aHL : � (�q (1� q) + (
 � �) (1� q)) + �q (1� q) (1 + s) p0
�
aHL

�
t� = 0;

aLL :
�
�q2 + q (
 � �)

�
(1 + s) t�p0

�
aLL
�
�
�
�q2 + 2q (
 � �) + 1� 2
 + �

�
= 0:

Working this out, we arrive at

gHL (q) : =
�q + 
 � �

�q (1 + s) t�
= p0

�
aHL (q)

�
;

gLL (q) : =
�q2 + 2q (
 � �) + 1� 2
 + �

(�q2 + q (
 � �)) (1 + s) t�
= p0

�
aLL (q)

�
;

where the equality holds for a > 0. In this case we can show that p0
�
aHL (q)

�
<

p0
�
aLL (q)

�
, as

gLL (q)� gHL (q) =
�q2 + 2q (
 � �) + 1� 2
 + �

q (�q + 
 � �) (1 + s) t�
�
�q + 
 � �

�q (1 + s) t�

=
� � 
2

�q (�q + 
 � �) (1 + s) t�
;
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which is positive for any positive correlation and zero for independent draws. Note

also that the di¤erence is decreasing and convex in q, so @2p0 (a (q)) = (@a@q) < 0,

@3p0 (a (q)) = (@a@q2) > 0.

Under concavity assumption second order conditions are trivially satis�ed and

aHL (q) > aLL (q). Our intuition is con�rmed: low reports paired with high reports

are audited more intensively than those paired with low reports.

Note though that because limq!0 g
HL (q) = +1, there may also be a corner

solution. Indeed, for any auditing function p (a) : lima!0 p
0 (a) < +1 there will be

a corner solution. Formally, for all such functions 9q0HL > 0 : aHL (q) = aLL (q) =

08q � q0HL. By construction it is also true that 9q
0
LL > q0HL : a

HL (q) > aLL (q) =

08q 2 [q0HL; q
0
LL]. These threshold values can be found from the auditing function.

For the di¤erent reports we have

q0HL =

=� � 1

p0 (0) (1 + s) t� � 1
:

For the similar reports the threshold value f the share of �rms with aggressive ac-

counting is implicitly de�ned by

1� 2
 + � = (p0 (0) (1 + s) t� � 1) �
�
q0LL
�2
+ q0LL (
 � �) ((1 + s) t� � 2) :

Since 0 � q0HL � 1, if p0 (0) < 1= ((1 + s) t�), tax authority will never audit, as the

marginal revenue from audit is negative. Furthermore, if p0 (0) < 
= (� (1 + s) t�), the

best response function is degenerate with a (q) � 0; if p0 (0) < 1 + 1= (� (1 + s) t�)�


=�, the similar reports are never audited: aLL (q) � 0.

Thus, both best responses (for mixed and similar reports) of the tax autority are

weakly increasing continuous functions of q.

B - Proof of proposition 2

To show that p�; q� is indeed a Bayesian Nash equilibrium, we need 1) p� is a best

response of tax authority given the belief about q; 2) each �rm plays best response to

p� and the share of cheating �rms q�; 3) the belief of the authority is consistent with

equilibrium play of the �rms.

For 1) we need (??) and (1); for 2) in a mixed equilibrium it is su¢cient that each

�rm is indi¤erent between cheating and honesty given that the partner is cheating

with probability q:

u (A) = u (C)
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or

� (qu (L;L) + (1� q) u (L;H)) + (
 � �) u (L;L)� (1� q) c =

� (qu (H;L) + (1� q) u (H;H)) + (
 � �) u (H;L)� qc

Rearranging, we get


 (t� b) ��(1� 2q) c =
�
(
 � � (1� q)) p

�
aLL
�
+ � (1� q) p

�
aHL

��
(1 + s) t�: (24)

Note that this expression depends on q unlike in the benchmark case, so we cannot

present the resulting equilibrium explicitly. However, the two sides of the equation

admit quite a straightforward intuitive explanation. The lhs is the bene�t from eva-

sion net of accounting costs b and coordination costs c. The rhs is the expected cost of

�nes in two types of matches: two low reports and high-low reports. Both costs and

bene�ts of evasion increase with q. The higher population share of evaders relieves

the coordination problem for a �rm that chose aggressive accounting. At the same

time, higher share of wrong reports calls for more auditing thus increasing expected

�ne.

Formally, from the properties of best response functions aLL (q) ; aHL (q) we can see

that rhs of (24) is weakly monotonically increasing in q. Namely, it is zero for q � q0HL,

it is � (1� q) p
�
aHL (q)

�
(1 + s) t� for q 2 [q0HL; q

0
LL], and it is the full expression for

q � q0LL converging to
�
(
 � � (1� q)) p

�
aLL
��
(1 + s) t� as q approaches unity. We

know that p0a (q) is convex (we can directly compute second derivatives). We also know

that p (p0a) is decreasing, but we did not impose anything on its convexity/concavity.

Now, p (q) can be written as p (p0a (q)). It is increasing, and it is also concave if p (p
0

a) is

not too convex. Thus, rhs is concave under a mild ansumption on the third derivative

of the function p (a).

At q0LL, the left derivative of rhs is
�
(1� q0LL) pq

�
aHL (q0LL)

�
� p

�
aHL (q0LL)

��
� (1 + s) t�,

the right derivative has an additional term
�
(
 � � (1� q0LL)) pq

�
aLL (q0LL)

�
+ �p

�
aLL (q0LL)

��
(1 + s) t�,

which is positive.

Lhs is linearly increasing in q with the slope 2c, starting with 
� (t� b)� c. The

intersection(s) de�ne Bayesian Nash equilibrium. Because of a jump in the deriv-

ative of rhs at q0LL, we may have up to 6 intersections (with up to 3 locally stable

equilibria). However, the more interesting case for us is the stable unique equilib-

rium, which indeed results for small values of c, if either (1� q0LL) pq
�
aHL (q0LL)

�
�

p
�
aHL (q0LL)

�
� 0 or 
 (t� b) �

�
� (1� q0LL) p

�
aHL (q0LL)

��
(1 + s) t or 
 (t� b) �
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(1 + s) tmax
q2[q0HL;q0LL]

�
� (1� q) p

�
aHL (q)

��
. At the limit of no coordination costs,

the equilibrium is de�ned by one of the conditions 
 (1� b=t) =
�
(
 � � (1� q)) p

�
aLL
�
+ � (1� q) p

�
aHL

��

or 
 (1� b=t) = � (1� q) p
�
aHL

�
(1 + s), depending on the auditing technology. Namely,

the �rst happens, if 
 (t� b) � � (1� 2q0LL) c > � (1� q0LL) p
�
aHL (q0LL)

�
(1 + s) t�,

and the second otherwise.

This equilibrium is unique and stable. By continuity, the same is true for small

values of c.

Note that with increase of c lhs simply rotates around horizontal line given by


 (t� b) �. It retains this value at q = 0:5, while going down by c at q = 0 and up by

c at q = 1. This immediately leads us to the following corollary:

Corollary With q = 1=2, the e¤ect of coordination costs is completely neutralized.

This is very intuitive: when the two populations are balanced, there is neither

potential gain nor loss in terms of coordination from playing either strategy.

Note that the equilibrium will only be stable, if at the intersection the slope of

the evasion costs (rhs) exceeds the slope of the bene�ts from evasion (lhs). Thus,

stability requires the following condition to be satis�ed:

2c <
��
(1� q�) pq

�
aHL (q�)

�
� p

�
aHL (q�)

��
� + (
 � � (1� q�)) pq

�
aLL (q�)

�
+ �p

�
aLL (q�)

��
(1 + s) t�;

where q� is the equilibrium share of the �rms that employ aggressive accounting.

If there is no stable interior equilibrium, the full cheating is stable. A general

condition for existence of full cheating equilibrium is u (A) � u (C) given q = 1. This

can be rewritten, similarly to (24), as


 (t� b) � + c � 
p
�
aLL (1)

�
(1 + s) t�; (25)

with p0
�
aLL (1)

�
= 1= (
 (1 + s) t�).

Full honesty may also be an option, if the auditing is cheap or payment for evasion

high. A general condition for the existence of full honesty euilibrium is u (A) � u (C)

given q = 0. This can be rewritten as


 (t� b) � � c � 0:

However, this equilibrium is globally stable only if


 (t� b) � �
�
1� 2q0HL

�
c � 0: (26)
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C - comparative statics results

By inverse function theorem

aHLq =
�
p0�1

�0
�
�q + 
 � �

�q (1 + s) t�

�0

q

= �

 � �

�q2 (1 + s) t�

1

p00 (aHL)
; (27)

aLLq =
�
p0�1

�0
�
�q2 + 2q (
 � �) + 1� 2
 + �

(�q2 + q (
 � �)) (1 + s) t�

�0

q

= (28)

�

�
�


 � �

(�q + 
 � �)2 (1 + s) t�
+ (2�q + 
 � �)

1� 2
 + �

(�q2 + (
 � �) q)2 (1 + s) t�

�
1

p00 (aLL)
:

(29)

and

aHLk =
�
p0�1

�0
�
�q + 
 � �

�q (1 + s) t�

�0

q

= �

 � �

�q2 (1 + s) t�

1

p00 (aHL)
; (30)

aLLq =
�
p0�1

�0
�
�q2 + 2q (
 � �) + 1� 2
 + �

(�q2 + q (
 � �)) (1 + s) t�

�0

q

= (31)

�

�
�


 � �

(�q + 
 � �)2 (1 + s) t�
+ (2�q + 
 � �)

1� 2
 + �

(�q2 + (
 � �) q)2 (1 + s) t�

�
1

p00 (aLL)
:

(32)
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