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Introduction 

Uncertainty is pervasive in the world, and has implications for all kinds of economic 

decision-making. This essay provides a unified, elementary exposition of some aspects of 

how uncertainty and asymmetric information affect resource allocation. The motivation 

for this exercise is that the topics covered here are typically treated separately in 

textbooks (e.g., Mas-Colell et al., 1995; Varian, , making the conceptual unity of 

approach less than obvious. 

 

The first step is to develop a framework for understanding how decisions are made in the 

face of uncertainty. This framework can then be used to examine how the presence of 

uncertainty affects the working of markets. One key idea that is related to uncertainty is 

that of risk. Risk is different from uncertainty. While there are several aspects of this 

difference (and there is not always total agreement on what the two terms should mean), 

an illustration of this difference can be given from thinking about insurance. Suppose I 

face some probability of being in an accident. I am uncertain about whether I will have an 

accident or not. The accident involves the risk of a loss. However, if I can purchase 

complete insurance coverage, there is still uncertainty about the accident (and the 

uncertainty is exactly the same if my actions do not affect the probability), but my risk 

has gone away. The risk is now borne by the insurer, but it may be pooling many such 

risks, so its overall or average risk may be lower. This essay will provide the analytical 

machinery to explore such market transactions. 

 

Information is also related to uncertainty. In the case of an accident, there may be no 

information I can gather that affects my uncertainty – the probabilities I assign to having 

an accident or not. But suppose I am a farmer and my uncertainty is about the rainfall 

during the growing season. If I can get information about the likelihood of various levels 

of rainfall, I can modify my assessment of the uncertainty, and this may affect my 

planting and other farming decisions. In some cases, different economic actors have 

different information. I may know my exact probability of having an accident (I know 

how good a driver I am), but the insurance company may not be able to tell whether I am 

a good or bad driver. This asymmetry of information can exist even if there is no inherent 
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uncertainty. I may know perfectly well whether my car is sound or is a poor quality 

“lemon.” However, a prospective buyer does not have this information: she is uncertain 

about the quality of my car, even though I know for sure. Asymmetries of information 

can have serious implications for how well markets work, and we explain in this essay 

how such situations can be analyzed. 

 

Decision Making under Uncertainty 

There are two ways of building the framework for analyzing decision making under 

uncertainty. They lead to basically the same approach, but since they are both used, and 

have some subtle differences, it is useful to be aware of both starting points. Roughly, 

they correspond to two different views of uncertainty, familiar from basic statistics. The 

fundamental description of uncertainty is in terms of an outcome space. For example, if I 

toss a coin once, there are two possible outcomes, heads (H) and tails (T). If I toss the 

coin twice, there are four possible outcomes: HH, HT, TH, and TT. The outcome space is 

the set of all possible outcomes. In the case of two coin tosses, it is {HH, HT, TH, TT}. 

 

Often, in using statistics, we work with random variables. Technically, a random variable 

is defined by a mapping from the outcome space to the space of real numbers (or a higher 

dimensional real space, if the random variable is multi-dimensional). Suppose that I win 

$ 1 every time a head comes up in a coin toss, and win or lose nothing otherwise. Then 

the random variable that represents my monetary winnings with a single coin toss maps H 

to 1 and T to 0.  For the case of two tosses of the coin, HH is mapped to 2, HT and TH to 

1, and TT to 0.  

 

Continuing with the case of two coin tosses, we can describe the random variable by the 

three values it takes, and the associated probabilities, (0, ¼; 1, ½; 2, ¼), or, listing 

outcomes and probabilities separately, (0, 1, 2; ¼, ½, ¼), where the order obviously has 

to be preserved to match the numerical values and probabilities. We will use this second 

representation. We will refer to this vector of numerical outcomes and probabilities as a 

lottery. We can generalize the concept to include multi-dimensional outcomes, and any 

 2



number of possibilities.1 Thus if a consumer is faced with getting any one of N different 

consumption bundles, the lottery can be written (x1,…, xN; π1,…, πN), where the xn are 

different consumption bundles, and the pn are the associated probabilities. Of course, the 

probabilities sum up to 1, . 1
1

=∑N nπ

 

For developing a theory of individual decision making under uncertainty, working with 

lotteries (essentially, random variables) is convenient. However, in conceptualizing how 

markets work in situations of uncertainty, it is useful to start with underlying outcome 

spaces. The fundamental building block of markets in the face of uncertainty is a 

contingent contract, where the contingencies are exogenously determined, and not 

influenced by economic actors’ decisions. We call these exogenous contingencies states 

of the world or states of nature. Hence, if all the uncertainty in the world is the outcome 

of two coin tosses, there are four possible states of the world, the four components of the 

outcome space. There can be different consumption vectors associated with each member 

of the set of states of the world, but the set remains the same. Thus, the payoff structure 

above associates an amount 2 with HH, 1 with HT, 1 with TH, and 0 with TT, with each 

outcome having a probability of ¼. If I receive a dollar only for the first head, and 

nothing otherwise, the amounts are 1, 1, 0 and 0, but the probabilities are unchanged. In 

contrast, with the lottery representation, the vector is (0, 1; ½, ½) – this is a more 

compact representation, but varies with the payoffs. Of course, it could be also expressed 

as (0, 1, 2; ½, ½, 0). 

 

Von Neumann-Morgenstern Expected Utility 

If we begin with lotteries, we assume that an individual has preferences over these 

lotteries. We will call the numerical outcomes associated with a lottery prizes. Three 

basic assumptions about these preferences are: 

 

A1 Getting a prize with probability one is the same as getting that prize with 

complete certainty. 

                                                 
1 The outcomes of a lottery could also be further lotteries – this possibility will be addressed when we 
consider preferences over lotteries. 
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A2 Preferences are not dependent on the ordering of a lottery’s components. 

 

A3 If some or all of the prizes in a lottery are lotteries, preferences depend only on 

the net probabilities of receiving the different prizes. 

 

The first two assumptions are almost trivial. A1 simply connects preferences over 

lotteries to standard preferences over certain consumption bundles. A2 and A3 involve 

perceptions, and there is some evidence that the last assumption can be violated in actual 

behavior. Since it involves an aberration, we will not question it further. It is important 

for reducing the prizes to be numerical outcomes such as consumption bundles. 

 

As in the case of preferences over consumption bundles, we can assume that some 

rationality is built into the consumer’s preference ordering over lotteries. Thus, we 

assume that these preferences are complete, reflexive and transitive. Further assumptions 

of continuity and monotonicity, similar to those imposed in the case of certainty, ensure 

that there is a continuous utility function that represents preferences over lotteries. 

Formally, if Lj denotes a lottery we have: 

 

 . )()( kjkj LVLViffLL >

 

Representing preferences over lotteries by a utility function does not really simplify 

analysis, nor is the concept of preferences or utility with respect to lotteries very intuitive. 

Luckily, there is a further simplification that provides a much more intuitive analysis of 

decision-making in the face of uncertainty. Another assumption is needed, however, in 

addition to all those we have implicitly or explicitly imposed. 

 

A4 (The independence axiom) 

A preference relation  on the space of lotteries satisfies the independence axiom if for 

all Lj, Lk, Lm and α ∈ (0, 1) we have 
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Lj  Lk   iff  αLj + (1-α) Lm  αLk + (1-α) Lm 

 

This says that mixing in any third lottery does not affect the original preference ordering 

of the original two lotteries, or that the original preference ordering is independent of 

adding in the new lottery. 

 

With the independence axiom, we have the result that the utility function has a particular 

form, namely that it is linear in the probabilities that are contained in the lottery. Suppose 

that the lottery L can be written out fully as (x1,…, xN; π1,…, πN). The result states that  

 

V(x1,…, xN; π1,…, πN) = , )(
1

nN n xU∑ π

 

for some function U.  

 

Note that this new utility function U is defined over the space of certain outcomes. This 

makes the simplification a very intuitive one for analyzing decision-making in the face of 

uncertainty. The function U does not represent preferences over the different uncertain 

situations (the lotteries) faced by the decision maker. That role is played by the original 

utility function, which is V.  

 

The last equation says that the original preferences over lotteries can be represented by 

the functional form on the right hand side of the equality. Sometimes the entire right hand 

side is referred to as the von Neumann-Morgenstern expected utility form. In other usage, 

just the function U is termed the von Neumann-Morgenstern utility function. U is also 

called the Bernoulli utility function. 

 

Savage Expected Utility 

An alternative derivation of an expected utility representation of preferences begins with 

the underlying outcome space rather than numerical values associated with the outcomes 

(e.g., {H,T} for a coin toss, rather than possible payoffs (1, 0)). In general, we can 

assume a set of states of nature {1, …, S}, and suppose that there is a preference relation 
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 defined over all random variables that map from this set to the space of real numbers, 

or vectors of real numbers. In the latter case, if the vectors are restricted to be 

nonnegative, they are again interpretable as consumption bundles. 

 

The Savage derivation of expected utility starts from this framework. It generalizes the 

earlier framework, because it allows probabilities to be subjective, and therefore to differ 

across individuals. These probabilities are derived as part of the expected utility 

derivation, rather than being given. Furthermore, the Bernoulli utility function can differ 

across states of the world. Getting to the expected utility representation of preferences 

requires a generalized version of the independence axiom (in addition to completeness, 

transitivity and continuity). Since the end result is very similar in form to that of the 

earlier approach, we omit any further mathematical details or discussion.2 In the 

following, we will put aside the possibility of the utility function varying with the state of 

the world. 

 

Uniqueness of Bernoulli Utility Function 

In the case of representing certain consumption bundles by a utility function, we saw that 

the utility function was not an exact numerical scale. Thus, any positive, strictly 

monotonic transformation of the utility function would represent the same preferences. 

This implied that diminishing marginal utility could not be a core concept for the theory 

of consumer choice. Instead, we relied on the marginal rate of substitution and its 

properties in analyzing consumer behavior. 

 

In the case of the Bernoulli utility function, which forms part of the expected utility 

representation of preferences in situations of uncertainty, the only freedom we have in 

transforming the utility function is applying a positive linear (affine) transformation. 

Thus, if U is a Bernoulli utility function that is part of an expected utility function that 

represents preferences over lotteries or random variables, then any transformation βU + γ, 

β > 0, represents the same preferences. Furthermore, only such transformations are 

allowed. Hence the utility function is unique up to a positive linear transformation. An 

                                                 
2 See Kreps (1990) or Mas-Colell et al. (1995) for mathematical details. 
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important implication of this is that the sign of the marginal utility is preserved under 

admissible transformations: in the case of Bernoulli utility functions, marginal utility has 

an economic meaning and implications. 

 

Risk and Risk Attitudes 

Having introduced a convenient framework for analyzing decision making in uncertain 

situations, we can now begin applying it. To proceed with economic interpretation and 

applications, it is useful to simplify to the case where there is a one-dimensional 

numerical outcome. This can be interpreted as money payoffs, as in the coin toss example. 

We will assume that the payoff is a continuous variable, so that we can continue to use 

calculus tools. In a similar spirit to our analysis of choice under certainty, we will also 

assume that the utility function is increasing and differentiable (as many times as we 

need). 

 

While there are exceptions, much human behavior is guided by a dislike for uncertainty, 

in the following sense. A decision maker who dislikes uncertainty will prefer to receive 

the expected value of a lottery for sure to facing the uncertain outcome of a lottery. 

Mathematically, 

 

  (1) 
1 1

( ) (
N Nn n n nU x Uπ π>∑ ∑ )x

 

A decision maker whose Bernoulli utility function satisfies this property is called risk 

averse. Risk aversion is equivalent to always preferring the expected value of a lottery to 

facing the lottery itself. In this sense, risk and uncertainty are essentially identical in this 

theoretical framework.  

 

A general mathematical result (Jensen’s inequality) tells us that the inequality holds if 

and only if the function U is strictly concave. If U is twice differentiable, and x is a real 

number, then this is equivalent to the following inequality for the second derivative: 

. 0)( <′′ xU

 

 7



If the inequality is reversed, then U is strictly convex, and the individual is risk loving. If 

the relationship holds with equality, then the individual is risk neutral, and the utility 

function is linear. 

 

It is entirely possible that a decision maker could display different risk attitudes over 

different ranges of the outcome variable. This might explain why people gamble as well 

as buy insurance. However, the true explanation for such combinations of behavior may 

lie in aspects of preferences in uncertain situations that do not fit the expected utility 

model at all. In practice, we will work almost exclusively with examples where 

individuals are risk averse or risk neutral, on the grounds that this covers the vast bulk of 

economically important situations (portfolio choice in asset allocation, smoothing 

consumption over time, insurance, and so on).  

 

Next we provide some conceptual tools for analyzing risk averse behavior in the face of 

uncertainty. These concepts will also help to further understand the relationship between 

risk and uncertainty, in the context of the standard theoretical framework. 

 

Markets with Uncertainty 

First, consider the case where there are two states of the world, 1 and 2. An individual’s 

expected utility with money as the payoff is π1
U(x1) + (1 – π1)U(x2). We can also think of 

this as a utility function V(x1, x2; π1). If we draw the indifference curves of V in x1-x2 

space, they must be downward sloping as long as U is strictly increasing in x (and hence 

V is strictly increasing in each x). In fact, we can show that these indifference curves are 

strictly convex precisely when the individual is risk averse.  

 

The behavior of risk averse consumers is therefore amenable to the mathematical tools 

used for choice under certainty. In particular, a consumer’s (expected) utility-maximizing 

choice is determined by the tangency of the budget line to the highest affordable 

indifference curve. However, the interpretation of the goods and prices is different from 

the certainty case. In the case of two states of the world, with only one good (money) the 

two goods in the expected utility function are contingent amounts of money. Hence x1 is 
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the amount of money that the consumer will have if and only if state 1 comes to pass. If 

state 2 occurs, the consumer will have an amount of money x2 to consume. 

 

How will the individual’s prospective consumption be financed? Let us first suppose that 

the consumer has some money now to allocate toward consumption once the uncertainty 

is resolved. This could be denoted by I as before. The money cannot be stored, so must be 

spent now, or used to get commitments to money that will be received once the 

uncertainty is resolved. Also, suppose that she can spend x0 now, which gives her utility 

U(x0). The price of consumption now is just 1, i.e., good 0 is the numeraire good.  

Suppose that the price of consumption in state s is ps, s = 1, 2. Her choice problem is now 

 

  (2) 0 1 1 1 2 0 1 1 2 2Max ( ) ( ) (1 ) ( ) subject toU x U x U x x p x p x Iπ π+ + − + + =

 

What is the nature of the purchase of “money in state 1”? The consumer pays $ p1 now, 

sacrificing that much in current consumption, and in return will receive 1 unit of money 

($ 1) if state 1 actually occurs. The fulfillment of the other side of the contract is 

contingent on state 1 occurring. If state 2 is what actually comes about, then this contract 

pays nothing. A similar description can be given for contracts that pay off in state 2.  

 

What is exchanged when the consumer pays money now? She receives a promise to pay 

if the relevant state occurs. Hence, if she pays $ p1 now, she can get a claim that 

guarantees her $ 1 if state 1 actually occurs – a state-1 contingent claim. Similarly, she 

can buy state-2 contingent claims at $ p2 each. She can also guarantee a dollar after the 

resolution of the uncertainty, by purchasing one unit of each type of contingent claim, 

which costs her $ (p1+ p2). 

 

Now suppose that the consumer has no money now, but knows that she will have some 

money in each of the states. If state s occurs, her endowment of money will be sω . Thus, 

her contingent endowment vector is 1 2( , )ω ω . To keep matters simple, suppose that she 

does not consume anything or get any utility until the uncertainty is resolved. Now her 

choice problem is 
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 1 1 1 2 1 1 2 2 1 1 2Max ( ) (1 ) ( ) subject toU x U x p x p x p p 2π π ω+ − + = + ω

2

 (3) 

 

Now the nature of the consumer’s market transactions is as follows. Unless she is best off 

with her contingent endowment vector, she will sell contingent claims for one of the 

states, and buy contingent claims for the other state. Her motivation could be as follows. 

Suppose she is risk averse and 1ω ω . Thus, she will be much worse off if state 2 

occurs than if state 1 occurs. Depending on the probabilities and prices, she may 

plausibly choose to sell state 1 contingent claims and buy state 2 contingent claims, to 

reduce the difference across her consumption in the two states – her exposure to risk. 

 

Measuring Risk and Risk Aversion 

Inequality (1) notes that for a risk averse decision-maker, the expected utility of a lottery 

is less than the certain utility of the expected value of the lottery. Therefore, by continuity, 

there is some amount ( )1 N 1 N( ; ) , , ; , , ;C L U C x x Uπ π≡ … …  that is smaller than 
1

N n nxπ∑ , 

such that  

 

 1 N 1 N

1
( ( , , ; , , ; )) ( )

N n nU C x x U U xπ π π… … =∑  (4) 

 

The amount is called the certainty equivalent of the lottery. It is the amount that 

will make the decision maker indifferent between taking a certain amount and facing the 

lottery. For a risk lover, 

( ;C L U )

1
( ; )

N n nC L U xπ>∑ , while for a risk neutral person, 

. 
1

( ; )
N n nC L U xπ=∑

 

We can also define the difference between the certainty equivalent and the expected 

value as the risk premium. Thus, the risk premium is defined by 

 

 
1

( ; ) ( ; )
N n nL U x C L Uρ π= −∑  (5) 
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or, equivalently, by 

 

  (6) 
1

( ( ; ))
N n n n nU x L U Uπ ρ π− =∑ ∑1

( )
N

x

 

In an analogy to an insurance premium, the risk premium is the maximum amount that a 

risk averse person will pay to avoid the uncertainty she faces. For a risk loving person, 

the risk premium can also be defined as above, but it is negative – she will pay to take the 

risk or face the uncertainty. 

 

The certainty equivalent and risk premium depend on the uncertainty faced (the lottery), 

as well as the decision-maker’s attitude toward risk, the latter being captured in the utility 

function. Next, we explore precisely how the attitude toward risk is measured by the 

shape of the utility function. 

 

A simple first idea for measuring risk aversion is to use the second derivative of the 

Bernoulli utility function – this extends the idea that the sign of the utility function 

provides a dividing line between risk aversion and risk loving. For risk averse people, 

. We can multiply by -1 to make it a positive number, so that a higher value 

would indicate greater risk aversion. Hence, 

( ) 0U x′′ <

( )U x′′−  would be the level of risk aversion 

at consumption x (this is a local measure, and can vary along the utility function). The 

problem is that the utility function is not uniquely defined. Anyone with βU + γ, β > 0, 

has exactly the same attitude toward risk at every point and in every situation. Hence, 

using the second derivative is misleading, because linear transformations change its 

magnitude. 

 

Normalizing the measure of risk aversion takes care of the problem. The coefficient of 

absolute risk aversion is therefore defined as 

 

 
( )

( )
( )

U x
A x

U x

′′
= −

′
 (7) 

 

 11



This measure stays the same even if the utility function is subjected to a linear 

transformation, since the β in the numerator and denominator will cancel out. 

 

The coefficient of absolute risk aversion is related to the risk premium as follows. In (6), 

denote the expected value of the lottery by x , and the risk premium simply by ρ. So (6) 

can be written as 

 

 
1

( ) (
N n nU x U xρ π− = )∑  (8) 

 

Suppose that the risk is small, so that the risk premium is small. Now consider the Taylor 

series approximation (we go to second order because the term in the first derivative turns 

out to be zero): 

 

 21
( ) ( ) ( )( ) ( )( )

2
U x U x U x x x U x x x′ ′′≈ + − + −  (9) 

 

Using this expression for each of the terms on the right hand side of (10.8), we get  

 

 

2

1 1 1 1

2

1
( ) ( ) ( ) ( ) ( ) ( )

2

1
( ) ( )

2

N N N Nn n n n n n nU x U x U x x x U x x x

U x U x

π π π π

σ

′ ′′≈ + − +

′′= +

∑ ∑ ∑ ∑ −
 (10) 

 

The second term is zero from the definition of x , and 2σ is the variance of x. 

 

If we take the (first-order) Taylor series expansion of the left hand side of (10.8), we get 

( ) ( ) ( )U x U x U xρ ρ′− = − . If we equate (allowing for the approximation) these last two 

right hand side expressions, and simplify, we finally get 

 

 
2

21 ( ) 1
( )

2 ( ) 2

U x
A x

U x

σρ σ
′′

≈ − =
′

 (11) 
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The risk premium is higher, the higher is the individual’s coefficient of risk aversion, and 

the greater is the uncertainty as measured by the variance of the lottery. 

 

An alternative measure of risk aversion modifies the coefficient of absolute risk aversion 

to take account of the level of consumption. The coefficient of relative risk aversion is 

therefore defined as 

 

 
( )

( )
( )

xU x
R x

U x

′′
= −

′
 (12) 

 

The coefficient of relative risk aversion is also the elasticity of the marginal utility of 

consumption. Since we began our discussion of measurement with the connection 

between the level of consumption and the behavior of marginal utility, calculating this 

elasticity is a natural approach to measuring risk aversion. 

 

It is easy to show that a utility function of the form Axe−− (where A>0) implies a constant 

absolute risk aversion coefficient equal to A. Similarly, a utility function of the form 

1 Rx − (where 1 > R > 0) has a constant relative risk aversion coefficient equal to R, while 

ln x has R(x) = 1. 

 

Riskiness 

The risk premium, as we saw in (11), depends on the decision-maker’s attitude to risk 

and the riskiness of the situation she faces, where riskiness is approximately captured by 

the variance of the lottery. The idea of riskiness can be made more general. In doing so, it 

is convenient to work with distribution functions. A distribution function is the 

cumulative probability function, and has the virtue of being defined across discrete and 

continuous random variables. If the random variable is continuous, the distribution 

function is also continuous, and if the random variable is discrete, it is a step function. It 

is also convenient to scale outcomes so that they always lie within an interval [a,b], 
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where a and b are finite. We shall suppress these limits of integration in the subsequent 

notation. 

 

Now consider two lotteries, described by their distribution functions  and . 

The random variable represented by the outcome x could be the level of money, so that a 

decision maker views a higher x as a more favorable outcome. Suppose that 

over the range of x. This means that for any given outcome,  has at 

least as great a chance as of producing an outcome at least as good as the given 

outcome. Not surprisingly, we have that  

( )F x ( )G x

( ) ( )F x G x≤ ( )F x

( )G x

 

  (13) 
( ) ( ) for every   

( ) ( ) ( ) ( ) for every nondecreasing ( )

F x G x x

U x dF x U x dG x U x

≤

⇒ ≥∫ ∫
 

Less obviously, the reverse implication also holds. Only if ( ) ( )F x G x≤ is it true that the 

expected utility is higher with  than with for every decision-maker who prefers 

more of x to less. 

( )F x ( )G x

 

In this case, we say that  first-order stochastically dominates ( )G x . ( )F x

 

First order stochastic dominance gives a partial ordering of probability distributions that 

will be unanimously agreed on by all decision-makers. What about the subset of risk 

averse individuals? It turns out that there is another partial ordering of probability 

distributions that works in this case. First order stochastic dominance involves shifting 

probability weight from lower to higher outcomes, so that one distribution function is 

never above the other. If we weaken this requirement so that the distribution functions 

can cross, but there is a limit to how much probability weight can be moved around. 

Specifically, we will say that  second-order stochastically dominates ( )G x  if the 

following holds: 

( )F x
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  (14) ( ) ( ) for all 
x x

a a
F t dt G t dt x≤∫ ∫

 

This is clearly a weaker condition than first-order stochastic dominance, since if  

first-order stochastically dominates then  also second-order stochastically 

dominates . Condition 910.14) compares the areas under the distribution functions, 

so that they may cross, but only if the cumulative area under  does not exceed that 

under . 

( )F x

( )G x ( )F x

( )G x

( )F x

( )G x

 

We have the result that, if  second-order stochastically dominates , it is the 

case that 

( )F x ( )G x

 

  (15) ( ) ( ) ( ) ( ) for every nondecreasing concave ( )U x dF x U x dG x U x≥∫ ∫
 

In other words, second-order stochastic dominance gives a (partial) ordering of 

distributions that every risk averse or risk neutral decision maker will agree on. 

 

Second order stochastic dominance ensures that the mean of the distribution is not any 

lower. It is useful to also impose the restriction that the means be the same for the two 

distributions (sometimes this condition is assumed in the stochastic dominance definition, 

but is strictly not part of it). This additional condition allows separation of the impact of 

differences in average return from that of higher risk. The condition of equal means is  

 

  (16) ( ) ( )
b b

a a
F t dt G t dt=∫ ∫

 

If (16) also holds, then we say that is a mean-preserving spread of . The result 

in (15) also justifies the assertion that is at least as risky as , since all risk 

averse individuals will find the uncertain situation described by  at least as good as 

that described by . If the relevant inequality is strict, then we can say that is 

( )G x ( )F x

( )G x ( )F x

( )F x

( )G x ( )G x
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riskier than . Note that this property is more general than that of a higher variance; 

though if a distribution is completely defined by its mean and variance, then the two 

concepts coincide: increasing risk is the same as higher variance. 

( )F x

 

Insurance and Asset Markets 

We will now connect the consumer’s behavior under uncertainty to some real world 

market institutions and phenomena. We begin with the choice problem as described in (3): 

 

1 1 1 2 1 1 2 2 1 1 2Max ( ) (1 ) ( ) subject toU x U x p x p x p p 2π π ω+ − + = + ω  (17) 

 

We assume that the consumer is risk averse. The first order conditions for utility 

maximization, where λ  is the Lagrange multiplier associated with the budget constraint, 

are: 

 

 
1 1 1

1 2 2

( ) 0

(1 ) ( ) 0

U x p

U x p

π λ

π λ

′ − =

′− − =
 (18) 

 

These conditions can be rearranged to give the usual condition for the marginal rate of 

substitution: 

 

 
1 1

1 2

( )

(1 ) ( )

U x p

U x p

π
π

′
=

′−

1

2

2

 (19) 

 

The ratio of probabilities on the left hand side is the odds of the two states, while the 

other part of the right hand side is the ratio of marginal utilities. If the odds equal the 

price ratio, then the ratio of marginal utilities is 1, and with risk aversion, it must be true 

that consumption in the two states of the world is equalized.  

 

What is the significance of the equality of the odds and the price ratio? Suppose that 

1ω ω> , and that the consumer sells 1 1xω −  state 1 contingent claims, while buying 
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2x 2ω−  state 2 contingent claims. From the budget constraint, 1 1 1 2 2 2( ) (p x p x )ω ω− = − . 

Suppose that the counterparty to the trades is an insurance company. It also satisfies this 

equality, so has no net inflow or outflow before the uncertainty is realized. However, 

once the uncertainty is resolved, it either has to provide 2x 2ω−  units of money if state 2 

occurs, with probability 1(1 )π− , or receives 1 1xω −  units of money with probability 1π . 

Hence, its expected future profit is 1 1 1 1 2 2( ) (1 )(x x )π ω π− − − −ω

2

. This is zero if and only 

if the odds equal the ratio of contingent claim prices. If there is competition, so that 

expected profits are zero, then that must be true. Hence, a competitive insurance market 

(with no operating costs) will lead to complete insurance. 

 

We have interpreted the consumer’s market transactions as a kind of insurance. Real 

world insurance contracts are not defined in terms of state contingent claims. However, 

the transaction above is equivalent to a standard insurance contract. To show this, we 

introduce some new definitions. Let 1d ω ω= − be the damage that the individual suffers 

in state 2 (suppose this is a state in which she has an accident or illness or other adverse 

condition), against which she wishes to purchase insurance. Let P be the insurance 

premium she pays per unit of coverage, and I the indemnity or compensation she receives 

if state 2 occurs. Thus, I is the number of units of insurance, and her payment is PI. Now 

her choice problem is: 

 

  (20) 1 1 1 1Max ( ) (1 ) ( )U PI U d PI Iπ ω π ω− + − − − +

 

The only choice variable is I, and her first order condition is 

 

  (21) 1 1 1 1( ) (1 )(1 ) ( )P U PI P U d PI Iπ ω π ω′ ′− − + − − − − + 0=

 

Rearranging and writing more compactly, this becomes 

 

 
1 1

1 2

( ) 1

(1 ) ( )

U x P

U x P

π
π

′ −
=

′−
 (22) 
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Hence, if 
1

2

1 P p

P p

−
= , the first order conditions are identical for the contingent claims 

case and the traditional formulation of insurance. Also, the budget constraint can be 

written as 

 

 

2
1 1 2 2 1 2 2

1

1 1 2 2

( ) ( )
1

or (1 )( ) ( )

or (1 ) (1 )

p P
x x x

p P

P x P x

P PI P P I

ω ω ω ω

ω ω

= − − = − −
−

− − = − −
− − = − −

 (23) 

 

Hence the two budget constraints are also identical, so the solutions to the two consumer 

choice problems are identical. 

 

We can think of state contingent claims as special kinds of assets, ones that payoff in 

specific states of the world. Next we show how the contingent claim formulation also 

covers more general kinds of assets. 

 

A state 1 contingent claim can be described by the vector of returns that it promises in 

each state of the world, which is (1,0). Similarly, a state 2 contingent claim is described 

by its return vector (0,1). Since holding a state contingent claim now involves a 

specification of payments once some uncertainty is resolved, such claims are assets, or 

securities. An asset with return vector (1,1) is a safe, or fixed-income asset (the income in 

this case being zero). In general, any asset is equivalent to a return vector . 

These returns could be negative, positive or zero. Let us denote a security with return 

vector r by . Let ,  denote state 1 and state 2 contingent claims, respectively. 

Then, based on the relationship between the return vectors, we can see that holding one 

unit of the security is equivalent to holding units of and units of . We can 

express this as 

1 2( , )r r r=

rS 1S 2S

rS 1r 1S 2r 2S
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  (24) 1 2
1rS r S r S= + 2

We can also assert a relationship between the price of the security and the prices of the 

two state contingent claims. If markets for all three securities are available, then an 

individual could make infinite profits by appropriate trades (called arbitrage) of the 

securities. In the presence of the possibility of arbitrage, therefore, it must be true that 

rS

 

 1 1 2 2rp r p r p= +  (25) 

 

For example, if the left hand side of (25) is greater, then the individual could sell any 

number of units of , while simultaneously buying the same number of units of , , 

and make a profit on that trade, without any risk or net outlay of funds.  

rS 1S 2S

 

Another important property of general securities is that if there are as many securities as 

states of the world, and the return vectors of all the securities are linearly independent (so 

that no return vector can be expressed as a linear combination of the others), then any 

pattern of returns that can be achieved with a full set of state contingent claims can also 

be achieved with this set of securities.  

 

Essentially, this is a property of linear spaces. A linear space of dimension N can be 

spanned by N linearly independent vectors. Such a set of vectors is said to form a basis 

for the space, and to span the space. Any N linearly independent vectors will do. The full 

set of state contingent claims is a special case, of an orthonormal basis: the vectors are all 

orthogonal to each other, and have length 1. 

 

We will illustrate with the case of two states, and choose two kinds of general securities, 

a safe asset , with return vector f = (1,1), and a risky asset, , with return vector 

. Consider any other security , with return vector . Then 

.  The returns to security can be obviously achieved by holding  units 

0S rS

1 2 1 2( , ),r r r r r= ≠

2

tS 1 2( , )t t t=

1 2
1tS t S t S= + tS 1t

 19



of and  units of . Is there a holding of  and  that achieves this pattern of 

returns?  

1S 2t 2S 0S rS

 

Suppose the quantities of the two securities are  and . The pattern of returns that this 

holding implies is . Hence, we require that the following two 

equations are satisfied: 

0q rq

1
0 0( ,r rq q r q q r+ + 2 )

2
 

1 1
0

2
0

r

r

q q r t

q q r t

+ =

+ =
 (26) 

 

As long as , the two equations are linearly independent, and we can always solve 

them: 

1r r≠ 2

 

 
2 1 1 2 1 2

0 1 2 1 2

( ) (
,

( ) ( )
r

t r t r t t
q q

r r r r

−
= =

− −
)−

2

 (27) 

 

Hence, with the ability to purchase a safe and a risky asset, and two states of the world, 

the decision maker can achieve any desired pattern of returns, and hence consumption. 

 

We can also note that if all four securities  are available, then the arbitrage 

argument implies that (25) holds as well as 

0 1 2, , , rS S S S

0 1p p p= + . 

 

Remark: While consumption levels must be nonnegative (and positive for an interior 

solution), there is nothing to prevent quantities of assets from being negative. Hence short 

sales are permitted in the above formulation. The constraint that the decision maker can 

always deliver on promises is inherent in the budget constraint. 

 

Now consider the choice problem in (3) (there is no consumption before the uncertainty 

is resolved), but with a fixed money income rather than endowments (as in (2)). The 

choice problem for the purchase of contingent claims is: 
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  (28) 1 1 1 2 1 1 2 2Max ( ) (1 ) ( ) subject toU x U x p x p x Iπ π+ − + =

 

Our argument about spanning the space of returns or consumption patterns tells us that 

this problem is equivalent to the following: 

 

 
1 1 1 2

0 0 1 1 2 2
0 0

Max ( ) (1 ) ( )

subject to , ,r r

r r

U x U x

p q p q I x q q r x q q r

π π+ −

+ = = + = +
 (29) 

 

Substituting in the second and third constraints, and therefore making  and the 

choice variables, the first-order conditions are 

0q rq

 

 
1 1 1 2 0

1 1 1 2 1 2

( ) (1 ) ( ) 0

( ) (1 ) ( ) 0r

U x U x p

r U x r U x p

π π ν

π π ν

′ ′+ − − =

′ ′+ − − =

0

 (30) 

 

It is easy to check, using the relationships among prices implied by arbitrage, that these 

conditions are equivalent to the conditions for the choice problem with two state 

contingent claims. This is just a reiteration of the conclusion that two assets with linearly 

independent return vectors will allow the achievement of any pattern of returns with two 

states of the world, just as would two state contingent claims. 

 

The first order conditions in (30) can also be written more compactly as: 

 

 
0 0

0

( ) 0

[ ( )]

r

r

r r

r

E U q q r p

E rU q q r p

ν

ν

′ + − =

′ + − =
 (31) 

 

Here r is a random variable, and Er denotes the expectation over r. If we normalize 

 (as would be required if there were also initial pre-uncertainty consumption from 

the same income I), we can simplify (31) to: 

0 1p =

 

 21



  (32) 
0 0[ ( )] ( ) o

[( ) ( ( )] 0

r r r

r r

r r r

r

E rU q q r p E U q q r

E r p U I q r p

′ ′+ = +

′− + − =

r

 

The last expression comes from substituting in the budget constraint, and is expressed in 

terms of the net return on the risky asset, .  ( )rr p−

 

We started with the case of two states of the world, but the last expressions are quite 

general, and apply to the choice problem with any number of states, or even a continuum 

– so that the random variable is continuous – as long as there is a single safe and a single 

risky asset. In the case of two states of the world, this was equivalent to having complete 

contingent claim markets (one contingent claim for each state), but obviously in the more 

general case of many states, the equivalence does not hold. 

 

Typically, in finance, choice problems are immediately framed in terms of continuous 

random variables, and conditions such as (32) are derived directly. We have taken the 

indirect route here, to show the connection of portfolio choice to the more fundamental 

idea of contingent claim markets. In turn, the contingent claim formulation is the 

conceptual generalization to the uncertainty case of the theory of competitive markets 

under certainty. 

 

We close this section with another illustration of the connection between finance and the 

contingent claim-based formulation of assets and choice under uncertainty. Suppose first 

that there is a single asset, , with return vector rS 1 2 1 2( , ),r r r r r= ≠ . There is no safe 

asset, nor any contingent claims. Then a decision maker would not be able to achieve any 

arbitrary pattern of returns – markets are no complete.  

 

Now introduce a new asset, which is an option to buy security at a pre-specified price, 

say 

rS

p . This purchase can be made after the state is revealed, but before the returns are 

paid. It makes sense to exercise this option only if the return exceeds this price, i.e., 

sr > p . The return vector for this option is therefore given by 
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1 2( ) (max{ ,0},max{ ,0})r p r p r p= − − . For example, if 1 2r p r> > , then 

1( ) ( ,0)r p r p= − . This option therefore has a return vector that is linearly independent of 

the original return vector of . The option is not a fundamental security, but instead a 

derivative security, or just a derivative. Nevertheless,  and the option to purchase  

together allow spanning of the space of all possible returns: this is equivalent to a 

complete set of contingent claims. In general, derivatives can expand the set of 

achievable returns, even if they do not result in complete markets. 

rS

rS rS

 

Information 

We have assumed so far that the nature of the uncertainty faced by an individual is given 

and exogenous. It is possible, however, that some information becomes available before a 

decision has to be made. In the decision problem (10.3), the consumer chooses purchases 

and sales of contingent claims for the two possible states of the world. Suppose that 

before this decision is made, this consumer receives new information about the likelihood 

of the two states. In general, this can be in the nature of an imperfect signal. A signal is 

defined by the probabilities of observing signal values. If there are two states, a natural 

assumption is that the signal takes on two values, also indexed 1 and 2. However, the 

signal may be imperfect, and the value 1 may be observed even if the underlying state of 

the world is 2. The signal is therefore defined by the probability matrix 

 

 11 12

21 22

, where Pr(signal | state )ts t
σ σ

σ σ
σ σ
⎛ ⎞

s= ≡ =⎜ ⎟
⎝ ⎠

=  (33) 

 

Hence, the posterior probability that the state of the world is s, when the observed signal 

is s, is given by 

 

 |
( )

ss s ss s
s s

ss s st t ss st s st

σ π σ ππ
σ π σ π σ σ π σ

= =
+ − +

 (34) 
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Note that if the signal probabilities are all ½, then the posterior probability is the same as 

the initial probability: the signal is completely uninformative, since it does not affect the 

decision maker’s beliefs. On the other hand, if a correct signal is more likely than an 

incorrect signal, then 
1

2
ss stσ σ> > , and the posterior probability of state s is higher when 

that state is signaled, |s s sπ π> . In the limit, if the signal is perfectly informative, then 

1, 0ss stσ σ= =  and | 1s sπ = . 

 

Consider for simplicity the perfectly informative case, and assume that only this 

consumer receives the perfect signal of which state of the world will occur. The 

individual is too small relative to the market to have any impact on prices, so the market 

prices of contingent claims are unaffected by what this consumer does. With perfect 

knowledge, the consumer will buy the maximum number of state 1 contingent claims if 

the signal value is 1, and similarly the maximum number of state 2 contingent claims if 

the signal value is 2. The perfect foresight gives the consumer the opportunity to avoid 

any risk at all. The maximized expected utility (viewed before the signal is received) in 

this case becomes 

 

  (35) 1 1 1 2 2 1 1 1 1 2 2 2(( ) / ) (1 ) (( / ))U p p p U p p pπ ω ω π ω ω+ + − +

 

Since consumption in each state is greater than the endowment in that state, this is clearly 

better for the consumer than the solution to (3), where the consumer will be worse off ex 

post in one of the states (but better off in expected utility terms). 

 

The key idea in the example above is that the market does not respond to this consumer’s 

additional information, because it is not known that the consumer has this special 

knowledge, nor can anyone else infer anything about that information or its existence 

from the consumer’s behavior. 

 

What happens if the market knows that the consumer is informed? Then any attempt by 

the informed consumer to trade will signal what she knows, and other market participants 
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could conceivably adjust their behavior to take account of this inferred knowledge. How 

precisely this inference takes place and is incorporated in market prices is a complicated 

matter, and a delicate one in the sense that changes in the precise assumptions can have 

significant impacts on the market equilibrium. 

 

To pursue these ideas further, we will use the specific case of a competitive insurance 

market, and assume that there are two types of individuals, high risk and low risk. Each 

type of individual knows her risk level, as defined by the probability of having an 

accident. This is a bit different from the earlier perfect signal formulation, in the sense 

that individuals are perfectly informed about their risk level, but do not know for sure if 

they will have an accident or not. Their information is akin to an imperfect signal.  

 

Insurance companies do not observe individual risk levels (accident probabilities), but 

know that there are these two types of individuals, what the two possible risk levels are, 

and what the probability is of any given individual being high risk or low risk. Consider 

again the insurance problem for a consumer 

 

1 1 1 1Max ( ) (1 ) ( )U PI U d PI Iπ ω π ω− + − − − +  (36) 

 

The insurance company’s expected profit is  

 

  (37) 1 1(1 )( ) (1 )PI PI I PI Iπ π+ − − = − − 1π

 

This is zero (when there is competition) if 1(1 )P π= − . In this case, 11 P π− = , and the 

price ratio faced by the consumer is equal to the odds, and she purchases full insurance, 

so that 1 2 *ori i ix x I= d= . She faces no risk with the insurance, which covers the entire 

damage or loss. 

 

If there are consumers with different levels of risk, measured by different levels of 1π , 

and the insurance company knows what the probability of not having an accident is for 
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each consumer, the price can be adjusted accordingly. Thus, the premium per unit of 

insurance can be set as 1(1 )iP iπ= −  for each I, i.e., the premium price is the accident 

probability. On the other hand, if the insurance company does not have this information, 

it cannot tailor contracts in this precise way. Note that the implicit assumption is that 

identities can be used to determine the prices paid by individuals, so there is some 

institutional mechanism for enforcing this. 

 

Instead, suppose that the company knows the proportion or probability of each type of 

risk level. Let the proportion of low-risk individuals be μ . The ideas can be illustrated 

with just two levels, 1
Hπ  and 1

Lπ , where H stands for high risk and L for low risk, so that 

1 1
H Lπ π< . Thus H-types have a higher accident probability. The first order condition (21) 

defines the demand function for each risk-type, denoted  

 * 1( , ), ,i iI P i Hπ = L

* ]H

1

 (38) 

 

If both types do purchase insurance, the insurance company’s expected profit is therefore 

 

  (39) 

1 * 1 *

* * 1 * 1

[ (1 )] (1 )[ (1 )]

or

[ (1 ) ] [ (1 ) (1 )(1 )

L L H H

L H L L H

P I P I

P I I I I

μ π μ π

μ μ μ π μ π

− − + − − −

+ − − − + − −

 

With competition, this expression is zero, and can be solved for the equilibrium price of 

insurance. In this case, it is easy to see that 1 *(1 ) (1 )H LPπ π− > > − . Hence, the high risk 

type gets better than fair odds, while the low risk type gets worse. With fair insurance, we 

would have *
iI d= . Now the low-risk type buys less than full insurance. 

 

It is possible, however, that the higher price of insurance deters low-risk types from 

purchasing insurance at all. As μ, the proportion of low-risk individuals, goes down, 

increases, which reduces *P *
LI . It is possible that there is a corner solution for low-risk 
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individuals, in which case they drop out of the market (their proportion in the pool of 

customers goes to zero), and * 1(1 )HP π= − .  

 

This phenomenon of low-risk types dropping out is called adverse selection. The term 

was originally applied to the insurance market, but can also be used in labor markets 

(where abilities differ), product markets (qualities differ), and so on. In the illustrative 

case of automobiles, this phenomenon has been termed the lemons problem, where a 

lemon is a low quality used car. In the original formulation of the lemons problem, the 

distribution of qualities was a continuous variable, and the argument we have sketched 

here led to every type dropping out of the market except the lowest qualities (which 

would have probability mass zero in the case of a continuous density function). In other 

words, the market basically would cease to function in that extreme case. 

 

Two kinds of actions by insurance companies can limit the adverse selection problem. 

First, companies can gather information on an individual’s risk type. Age, gender, 

location and employment can all be used, as can the history of previous accidents or 

claims. In the case of health insurance, a medical examination can be required by the 

insurer. All these information gathering methods are signals that improve the insurance 

company’s knowledge of the true 1
iπ for an individual i. Second, insurance companies can 

offer contracts, which are not simply agreements to supply any quantity of insurance at a 

market determined price. Instead, an insurance contract can place limits on coverage, 

including deductibles, copayments and maximum payouts. A menu of contracts can be 

designed and offered that leads individuals with different risk-levels to self-select 

different contracts. For example, low-risk individuals may be willing to accept higher 

deductibles or lower payout limits, since their odds are better of avoiding damage or loss. 

These contracting approaches are considered in Singh (2010). 
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