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Abstract 
 

This paper reports several entirely new results on financial market 
dynamics and option pricing We observe that empirical 
distributions of returns are much better approximated by an 
exponential distribution than by a Gaussian. This exponential 
distribution of asset prices can be used to develop a new pricing 
model  for options (in closed algebraic form) that is shown to 
provide valuations that agree very well with those used by traders. 
We show how the Fokker-Planck formulation of fluctuations can be 
used with a local volatility (diffusion coeffficient) to generate an 
exponential distribution for asset returns, and also how fat tails for 
extreme returns are generated dynamically by a simple 
generalization of our new volatility model. Nonuniqueness in 
deducing dynamics from empirical data is discussed and is shown 
to have no practical effect over time scales much less than one 
hundred years. We derive an option pricing pde and explain why 
it‘s superfluous, because all information required to price options in 
agreement with the delta-hedge is already included in the Green 
function of the Fokker-Planck equation for a special choice of 
parameters. Finally, we also show how to calculate put and call 
prices for a stretched exponential returns density. 

 



1. An empirical model for option pricing 
 
1.1 Introduction 
 

We begin with the empirical distribution of asset returns and show 
how to use that distribution to price options empirically correctly in 
closed algebraic form. In addition, we show how to deduce from 
our empirically-based model distribution of returns a stochastic 
differential equation (sde) and corresponding Fokker-Planck 
equation (F-P eqn.) with a returns- and time- diffusion coefficient. 
Studies of models with price-dependent diffusion coefficients exist 
in the literature but our method and conclusions differ considerably 
from those already published [1,2]. A large literature in 
econophysics exists on attempts to price options correctly [3,4], but 
our work is not based on those methods and requires no numerical 
evaluation of integrals. 

 
We begin by asking which variable should be used to describe the 
variation  of the underlying asset price p. Suppose p changes from 
p(t) to p(t+Δt)=p+Δp in the time interval from t to t+Δt. Price p can 
of course be measured in different units (e.g, ticks , Euros, Yen or 
Dollars), but we want our equation to be independent of the units of 
measure, a point that has been ignored in many other recent data 
analyses. E.g., the variable Δp is  additive but is units-dependent. 
The obvious way to achieve  independence of units is to study 
Δp/p, but this  variable   is  not additive. This  is a serious setback 
for a theoretical analysis. A variable that is both additive and units-
independent is x=ln(p(t)/p(to)), in agreement with Osborne [5] who 
reasoned from Fechner’s Law and was apparently the first 
econophysicist. In this notation Δx = ln(p(t+Δt)/p(t)). We agree with 
Dacorogna et al [6] that correct tail exponents for very large 
deviations (so-called ‘extreme values’) for the empirical distribution 
cannot be obtained unless one studies the distribution of 
logarithmic returns x. 

 
The basic assumption in formulating our model is that the returns 
variable x(t) is approximately described by a Markov process [7]. 
The simplest approximation is Gaussian distribution of returns 
represented by the stochastic differential equation (sde) [7]  

 

 
 (1) 

  dx = Rdt + !dB



 
where dB denotes the usual Wiener process with <dB>=0 and 
dB2=dt, but with R and σ constants, yielding lognormal prices as 
first proposed by Osborne [5]. The assumption of a Markov process 
[7,8] is a necessary evil; it may not be true because it requires a 
Hurst exponent [9] H=1/2, whereas we know from empirical data 
only that the average volatility σ behaves as  

 

 
 (2) 

 
with c a constant and H=O(1/2) after roughly Δt>10-15 minutes in 
trading [10]. With H≠1/2 there would be a nonMarkovian stochastic 
process, fractional Brownian motion, with long time correlations |9] 
that could in principle be exploited for profit. The assumption that 
H≈1/2 is equivalent to the assumption that it is very hard to beat 
the market [11], which is approximately true (economists call such a 
market ‘efficient’; such a market consists of pure noise plus hard to 
estimate drift, the expected return R). We assume a continuous time 
description for mathematical convenience, although this is also 
obviously a source of error. Levy distributions, with infinite 
variance, are not discussed here because the observed tail exponents 
for returns [6] are larger than the range required for Levy to be of 
interest. 
 
The primary assumption of the Black-Scholes model [12] is that the 
successive returns x follow a continuous time random walk (1) with 
constant mean and standard deviation. In terms of price this is 
represented by the simple stochastic differential equation (sde) 
[7,13] 

 

 (3) 
 
The lognormal price distribution  

 

 
 (4) 
 

then follows from the corresponding Fokker-Planck equation [7,8] 
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where g(p,t)=fo(x,t)=N is the Gaussian density of returns x with 
mean 

 
 (6) 
 

and   σ(Δt/2)1/2 is the variance.  
 

The empirical distribution of returns is far from Gaussian. Let us 
denote the empirical density, whatever it is, by f(x,t). European 
options are then priced as follows. At expiration a call is worth  
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where θ is the usual step function. We want to know the call price C 
at time t<T. Discounting money from expiration back to time t at 
rate rd, and writing x=ln(pT)/p) where pT is the unknown asset price 
at time T and p is the observed price at time t, we simply average (7) 
over pT using the empirical returns distribution f(x,t) to get 
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where Δt=T-t is the time to expiration. Likewise, the value of a put 
at time t<T is 
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(9) 
 
The Black-Scholes approximation is given by replacing the empirical 
density f by the normal density N=fo in (8) and (9).  

 
It has long been known empirically that options far from the money 
generally trade at a higher price than in Black-Scholes theory [14]. 
The deviation is taken into account in financial engineering by 
considering the so-called implied volatility as a function of strike 
price K. This indicates that the assumption that σ in (1) is constant is 
wrong. In other words, a model sde for returns 

 

 
(10) 

 
with constant diffusion coefficient D, independent of (x,t), cannot 
possibly reproduce either the correct returns distribution or the 
correct option pricing. We will show how to start with the empirical 
distribution of returns and then deduce an explicit expression for 
the diffusion coefficient D(x,t).  
 
We begin the analysis with one assumption, and then from the 
historical data for US Bonds and for two currencies we show that 
the distribution of returns x is in fact much closer to exponential 
than to Gaussian for intraday trading. After describing some useful 
features of the exponential distribution, we then calculate option 
prices in closed algebraic form in terms of the two undetermined 
parameters in the model. We show how those two parameters can 
be estimated from data and discuss some important consequences 
of the new model. We finally compare the theoretically predicted 
option prices with actual market prices. In part 2 we formulate a 
general theory of fluctuating volatility of returns, and also a 
stochastic dynamics with nontrivial volatility describing the new 
model. 
 
Throughout the next section the option prices given by formulae 
refer to European options. When the need arises to determine the 
value of an American option we can use the quadratic 
approximation to evaluate the early  exercise premium. 
 
 

  dx = (µ ! D / 2)dt+ DdB



1.2 The Empirical Distribution 
 

The objections raised above lead us to analyse the actual 
distribution of returns x and to see if any conclusion can be drawn 
about their analytic form. The frequencies of returns for US Bonds 
and some currencies are shown in figures 1, 2, and 3. It is clear from 
the histogram, at least for short times Δt, that x is distributed very 
close to an exponential that is generally skew. We describe some 
properties of the new distribution here and deduce it’s 
consequences for the pricing of options in part 1.3. The tails of the 
exponential distribution fall off much more slowly than those of 
normal distributions, so that large fluctuations in returns are much 
more likely. Consequently, the price of out of the money options 
will be larger than that given by the Black-Scholes theory. 

 
Suppose that the price of an asset moves from p(0) to p(t) in time t. 
Then we assume that the variable  x = ln(p(t)/p(0)) is distributed 
with density 

 
 
 (11) 
 

Here,  δ, γ and ν are the parameters that define the distribution. The 
normalization is not unique. The condition 

 

 
(12) 
 
follows from normalization of probability to unity. For reasons of 
local conservation of probability explained in part 2 below, we 
impose the condition 
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With this choice we then obtain 
 

(14) 
 

Note that the density of the variable y=p(t)/p(0) has fat tails in price 
p, 

 
 
 
(15) 
 

where g(y,t)=f(x,t)dx/dy. The exponential distribution describes 
intraday trading for small to moderate returns x. The empirical 
returns distribution has fat tails for large x. The extension to include 
fat tails in returns x is presented in part  3 below. 

 
Typically,  a large amount of data is needed to get a definitive form 
for the histograms as in figures 1-3. With smaller amounts of data it 
is generally impossible to guess the correct form of the distribution. 
Before proceeding let us describe a scheme to deduce that the 
distribution is exponential as opposed to normal or truncated Levy. 
The method is  basically a comparison of mean and standard 
deviation for different regions of the distribution. Define  
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to be the mean of the distribution for x>δ  
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(17) 
 
as the mean for that part with x<δ.  The mean of the entire 
distribution is 
 

 
 (18) 
 

The analogous expressions for the mean square fluctuation are easily 
calculated. The variance σ2 for whole is given by 

 
 

 
(19) 

 
With Δt = .5 – 4 hours γ and ν are on the order of 500 for the time 
scales Δt of data analysed here. Hence the quantities γ and ν can be 
calculated from a given set of data. The average of x is generally 
small and should not be used for comparisons, but one can check  if 
the relationships between the quantities are valid for the given 
distribution. Their validity   will give us confidence in the assumed 
exponential distribution. The two relationships that can be checked 
are σ2 = σ +

2 + σ -
2 and σ + + σ - = x+ + x-. Our histograms do not 

include extreme values of x where f decays like a power of x [6], and 
we also do not discuss results from trading on time scales Δt greater 
than one day. 

 
Assuming that the average volatility obeys 
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where H=O(1/2) and c is a constant, we see that the fat tailed price 
exponents in (11) must decrease with time, so we assume that 
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(21) 
 
and 

 
(22) 

 
where b and b’ are constants. In our data analysis  we find that the 
exponential distribution spreads consistent with  2H on the order of 
unity, but whether 2H ≈ 1, .9, or 1.1, we cannot determine with any 
reasonable degree of accuracy. We will  next see that the divergence 
of γ and ν as Δt vanishes is absolutely necessary for correct option 
pricing near the strike time. In addition, only the choice H=1/2 is 
consistent with our assumption in part 2 of a Markovian 
approximation to the dynamics. For H≠1/2, in contrast, one has 
fractional Brownian motion with persistence or antipersistence [9].  
 

 
1.3  Option pricing 
 
Our starting point for option pricing is the assumption that the call 
prices are given by averaging over the final option price max(pT-K,0), 
where x=lnpT/p, with the exponential density 
 
 

 
 
 
 (23) 
 
but with money discounted at rate rd from expiration time T back to 
observation time t.  Puts are given by by 
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(24) 
 

where f(x,t) is the empirical density of returns, which we approximate 
next as exponential. Here, po is the observed asset price at time t and 
the strike occurs at time T, where Δt = T-t. 
 
In order to determine δ empirically we impose the traders’ assumption 
that the average stock price increases exponentially at the rate of cost 
of carry r‘,  
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where 

 

 
 
(25b) 
 
follows from the using the exponential density f(x,t). Choosing a 
value for r‘ then fixes δ(t). For the exponential density of returns we 
find that the call price of a strike K at time T is given for xK=ln(K/p) 
<δ by 
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where p is the asset price at time t, and A and B are given by (14). For 
xK >δ  the call price is given by 

 
  
(27) 
 
Observe that, unlike in the standard theory, these expressions and 
their derivatives can be calculated explicitly. The corresponding put 
prices are given by 

 
  
(28) 
 
for xK<δ and by 
 

 
 
 

(29) 
 
for xK>δ. 
 
Note that the backward time initial condition at expiration t=T, 
C=max(p-K,0)=(p-K)θ(p-K), is reproduced by (26) and (27) as γ and ν 
go to infinity, and likewise for the puts (28) and (29).  To see how this 
works, just use this limit with the density of returns (11) in (23) and 
(24). We see that f(x,t) peaks sharply  at x=δ and is approximately  zero 
elsewhere as t approaches T.  A standard largest term approximation 
(via Watson’s lemma [15]) in (23) yields 
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(30) 
 
as δ vanishes. For xK>δ we get C=0 whereas for xK<δ we retrieve  C=(p-
K), as required. Therefore, our pricing model recovers the initial 
condition for calls at strike time T, and likewise  for the puts. 
 
With r’ fixed as the cost of carry, all that remains empirically is to 
estimate the two parameters γ and ν from data (we do not attempt to 
determine b, b’ and H empirically here). We outline a scheme that is 
useful when the parameters vary in time. We assume that the options 
close to the money are priced correctly, i.e., according to the correct 
frequency of occurrence. Then by using a least squares fit we can 
determine the parameters γ and ν.  We typically  use six option prices 
to determine the parameters, and find the rms deviation is generally 
very small; i.e., at  least for the options close to the money, the 
expressions (26) - (29) give consistent results. Note that when fitting, 
we use the call prices for the strikes above the future and put prices for 
those below. These are the most often traded options, and hence are 
more likely to be traded at the ‘correct’ price. 
 
Table 1 shows a comparison of the results with actual prices. The 
option prices shown are for the contract US89U whose expiration day 
was 18 August 1989 (the date at which this analysis was performed). 
The second column shows the end-of-day prices for options (C and P 
denote calls and puts respectively) , on 3 May 1989 with 107 days to 
expiration. Column C gives the equivalent annualized implied 
volatilities assuming Black-Scholes theory. The values of γ and ν are 
estimated to be 10.96 and 16.76 using prices of three options on either 
side of the futures price 89.92. The rms deviation for the fractional 
difference is 0.0027, suggesting a good fit for six points. Column 4 
shows the prices of options predicted by equations (26-9). We have 
taken into account the fact that options trade in discrete tics, and have 
chosen the tick price by the number larger than the actual price. We 
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have added a price of 0.5 ticks as the transaction cost. The last column 
gives the actual implied volatilities from the Black-Scholes formulae. 
Columns 2 and 4, as well as columns 3 and 5, are almost identical, 
confirming that the options are indeed priced according to the proper 
frequency of occurrence in the entire range. Figure 4 compares the 
implied volatilities with those determined from equations (26-9). Note 
that in all of the above calculations we have used the quadratic 
approximation [11] to evaluate the early  exercise option. 
 
The model above contains a flaw, the option prices can blow up and 
go negative at extremely large times Δt where ν≤1 (the integrals (23-4) 
diverge for ν=1). But since the annual value of ν is roughly 10, the 
order of magnitude of the time required for divergence is about 100 
years. This is irrelevant for trading. More explicitly, ν = 540 for I hour, 
180 for a day (assuming 9 trading hours/day) and 10 for a year, so that 
we can estimate roughly that  b≈1/540hour1/2. 
 
We now exhibit the dynamics of the exponential distribution. 
Assuming Markovian dynamics (stochastic differential equations) 
requires H=1/2. The dynamics of exponential returns leads 
inescapably to a dynamic theory of volatility, in contrast with the 
standard theory. 

 
 
2. Dynamics of Volatility of Returns and Option 
Pricing  
 
2.1 Introduction 
 
We extend stochastic market dynamics to include exponential and 
other distributions of returns that are far from Gaussian. An important 
point is that an exponentially-distributed returns density f(x,t) cannot 
be reached perturbatively by starting with a Gaussian returns density 
because the required perturbation is singular. We discover the 
diffusion coefficient D(x,t) that is required to describe the exponential 
distribution, with global volatility σ2~Δt at long times, from a Fokker-
Planck equation. After introducing the exponential model, which 
describes intraday empirical returns that are not too large, we extend 
the diffusion coefficient D(x,t) to include the fat tails that describe 
extreme events in x in part 3. For extensive empirical studies of 
distributions of returns, see Dacorogna et al [6]. Most other empirical 
and theoretical studies, in contrast, have used price increments, but 



that variable cannot be used conveniently to describe the underlying 
market dynamics model below. 
 

 
2.2 Local vs. Global Volatility 

 
The theory of volatility of fat tailed returns distributions with H=1/2 
can be formulated as follows. Beginning with a stochastic differential 
equation for x(t)=lnp(t)/p(to), 
 

 
 (31) 
 
where B(t) is a Wiener process, <dB>=0, <dB2>=dt, the solution is 
given by iterating the stochastic integral equation  
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where R=µ(t)-D(x,t)/2. Iteration is possible whenever both R and √D 
satisfy a Lipshitz condition [7]. The last term in (32) is the Ito product 
defined by the stochastic integral [7] 
 
 
 
 

(33) 
 
Forming the mean square fluctuation and averaging over Gaussian 
noise increments δB we obtain the conditional average  
 
 

b •!B = b(x(s), s
t

t+!t
" )dB(s)

  

!x = R(x, t)dt
t

t+!t

" + (D(x, t))
1/ 2
• !B

  dx = (µ(t) ! D(x, t) / 2)dt+ D(x, t )dB(t)



 
 
 (34) 
 
where g satisfies the Fokker-Planck equation 
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corresponding to the sde (31) and is the transition probability density, 
the Green function of the F-P eqn. If the moments of order three and 
higher don’t vanish fast enough with Δt to permit a F-P description 
then we must use the master equation instead. Next, we discuss the 
volatility of the underlying stochastic process (31). 
 
For very small time intervals Δt=s-t the conditional probability g is 
approximated by its initial condition, the Dirac delta function δ(z-x), 
so that to lowest order in Δt we obtain the result 
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which is necessary for the validity of the F-P equation as Δt vanishes. 
Note that we would have obtained exactly the same result by first 
iterating the stochastic integral equation (32) one time, truncating the 
result, and then averaging.  
 
In general the average or global volatility is given by [16] 
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At  very short times Δt we again obtain 
 

 
(38) 
 
so that we call D(x,t) the local volatility. Our use of the terms local 
and global are motivated by nonlinear dynamics and differential 
geometry. By local, we mean a relationship like (38)  that holds 
approximately only for a limited time in the neighborhood of a point 
x. By global, we mean a relationship like (37) that holds for arbitrarily 
long times and for any initial condition x(t) of the sde at time t. Our 
use of the phrase local volatility therefore should not be confused 
with any different use of the same phrase in the finance literature (we 
make no reference whatsoever here to ‘implied volatility’, e.g.). 
 
The Δt-dependence of the average volatility at long times is model-
dependent. We take the empirical data seriously, so that we have 
already assumed in part 1.2 that 
 

 
 
  (39) 
 
which is known to hold approximately after about 10 minutes of 
trading [10].  
 
Conditional averages and variable diffusion coefficients have been 
studied both empirically and theoretically both in turbulence1 [17,18] 
and finance [1,2].  

                                                
1 In [2,17] an equilibrium density is misidentified as the general stationary solution of a local probability 

conservation equation. The equilibrium density (which exists iff. R and D are t-inedpendent) is given by 
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2.3 Dynamics of the Exponential Distribution 

 
In our statistical theory of returns of very liquid assets (stock, bond or 
foreign exchange) we begin with the stochastic differential equation 
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and note the corresponding sde for price, 
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where in (40b) the arguments of D and R must be transformed to the 
variable p by using x=lnp/po. The solutions below lead to the 
conclusion that R is continuous across the discontinuity, so R+D/2 is 
discontinuous at x=δ.  
 
The corresponding Fokker-Planck equation, the local probability 
conservation equation is 

 

 
(41) 
 

                                                                                                                                            
solving j=0, where the probability current density is j=Rf-(Df)‘/2, whereas the general stationary state 

follows from solving j=constant≠0. But even if R and D do not depend on t, it cannot be assumed that time-

dependent solutions aproach equilibrium [16]. 
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with current density 
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In order to satisfy conservation of probability at the discontinuity at 
x=δ it is not enough to match the current densities on both sides of the 
jump. Instead, we have to use the more general condition  
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which is the same as  (11), and 
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we obtain a delta function at x=δ. The delta function has vanishing 
coefficient if we choose 
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at x=δ. Note that we do not assume the normalization (14) here. The 
condition (46), along with (12), determines the normalization 

  
j = Rf !

1

2
(Df " ) 

  f(x, t) = !(x " #)f+ + !(# " x)f"

  
D(x, t) = !(x " #)D+ + !(# " x)D "

  D +f+ = D !f!

  

d

dt
( f!(x, t)dx
!"

#

$ + f+ (x, t)dx
#

"

$ ) = ((R ! ˙ # )f !
1

2
(Df % ) )

#

= 0



coefficients A and B once we know both pieces of D at x=δ. In 
addition, there is the extra condition on δ, 
 
 

(47) 
 

We now solve the inverse problem: given the exponential distribution 
(11) with (12) and (46), we use the F-P equation to determine the 
diffusion coefficient D(x,t) that generates the distribution dynamically. 
 
In order to simplify solving the inverse problem, we assume that D(x,t) 
is linear in ν(x-δ) for x>δ, and linear in γ(δ-x) for x<δ. The main 
question is whether the two pieces of D(δ,t) are constants or depend on 
t.  In answering this question we will face a nonuniqueness in 
determining the local volatility D(x,t) and the functions γ and ν. That 
nonuniqueness could only be resolved if the data would be accurate 
enough to measure the t-dependence of both the local and global 
volatility accurately at very long times, times where γ and ν are not 
necessarily large compared with unity. However, for the time scales of 
interest, both for describing the returns data and for pricing options, 
the time scales are short enough that the limit where γ,ν>>1 holds to 
good accuracy. In this limit, all three solutions to be presented below 
cannot be distinguished from each other empirically, and yield the 
same option pricing predictions.  
 
To begin, we assume that 
 

 
 
 
(48) 
 
where the coefficients d+,d- may or may not depend on t. Using the 
exponential density (11) and the diffusion coefficient (48) in the 
Fokker-Planck equation (41), and assuming that R(x,t)=R(t) is 
independent of x, we obtain by equating coefficients of powers of (x-δ) 
that 
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 (49) 

 
Assuming that d+=b2=constant, d-=b’2=constant (thereby enforcing the 
normalization (14)) and integrating (49), we obtain 

 
 
(50) 
 
The diffusion coefficient then has the form 

 
 
(51) 
 

This is the solution that we used to price options in part 1.4 and was 
derived in [19] using a ‘Galilean invariance’ argument.  
 
In the Black-Scholes model there are only two free parameters, the 
constants µ and σ. The model was easily falsified, because for no 
choice of those two constants can one fit the data for either the market 
distribution or option prices correctly. In the exponential model there 
are three constants µ, b and b’. For option pricing, the parameter µ(t) 
is determined by the condition  (25b) with r’ the cost of carry. Only 
the product bb’ is determined by measuring the variance σ, so that 
one parameter is left free by this procedure. Instead of using the 
mean square fluctuation (19) to fix bb’, we can use the right and left 
variances σ+ and σ- to fix b and b’ separately. Therefore, there are no 
undetermined parameters in our option pricing model. 
 
Unfortunately, the solution presented above cannot be brought into 
exact agreement with risk neutral option pricing by any parameter 
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choice, as we will show in the next section by deriving the pde that 
can be used to price options ‘locally risk free’. Therefore, we present 
two other solutions where we use the x-dependent drift coefficient 
R(x,t)=µ(τ)-D(x,t)/2 in (41), so that both µ and D are discontinuous 
across the jump because R is continuous there. 

 
We next solve the inverse problem for the F-P eqn. 
 

 
 
(52) 
 

where the corresponding price sde is 

 
� 
(53) 
 

Substituting (11) and (48) into the F-P eqn. (52) and equating 
coefficients of powers of x-δ, we obtain 
 

� 
(54) 
 

The second equation, the collection of terms in the F-P eqn. that is 
independent of x-δ, agrees with the condition (47) on dδ/dt. To prove 
that one uses (12), differentiated once. 

 
So far, no assumption has been made about the form of A and B. There 
are two possibilities. If we assume (51), so that the normalization (14) 
holds, then we obtain that  
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(55) 
 
and also get an analogous equation for γ. When γ,ν>>1, then to good 
accuracy we recover (50), and we again have the first solution 
presented above. 
 
The second possibility is that (49,50) holds. In this case, we find that 
 

 
(56) 
 
but the normalization is not given by (14). However, for γ,ν>>1, which 
is the only case of practical interest, we again approximately recover 
the first solution presented above (with the normalization given 
approximately by (14)), so that options are priced approximately the 
same by all three different solutions, to within good accuracy. 
 

That one meets nonuniqueness in trying to deduce deterministic 
dynamical equations from empirical data is well-known from 
nonlinear dynamics, so it is not a surprise to meet nonuniqueness 
here as well. The problem in the deterministic case is that to know the 
dynamics with failry high precision one must first know the data to 
very high precision, which is generally impossible. The predictions of 
distinct chaotic maps like the logistic and circle maps cannot be 
distinguished from each other in fits to fluid dynamics data at the 
transition to turbulence [20]. A seemingly simple method for the 
extraction of deterministic dynamics from data by adding noise is 
proposed in [21], but the problems nonuniqueness due to limited 
precision of the data are not faced in that interesting paper.  
 
In reality, there is an infinite nonuniqueness in the theory because we 
cannot determine d± a priori. Instead, it would be necessary to 
measure the diffusion coefficient experimentally and find d±(t), γ(t) 
and ν(t). Then, one could test the predictions (48) based on (49) and 
(54). Christian Renner et al [1] measured the diffusion coefficient 
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directly, but used price increments as the variable and had too much 
noise in their plots for the time scales of interest here. Testing our 
predictions would require measurements using logarithmic returns. 

 
In contrast with the theory of Gaussian returns, where 
D(x,t)=constant, the local volatility (51) is piecewise-linear in x. Local 
volatility, like returns, is exponentially distributed  with density 
h(D)=f(x)dx/dD, but yields the usual Brownian-like mean square 
fluctuation σ2

≈cΔt on the average on all time scales of practical 
interest. But from the standpoint of Gaussian returns the volatility 
(51) must be seen as a singular perturbation: a Gaussian would follow 
if we could ignore the term in D(x,t) that is proportional to x-δ, but 
the exponential distribution doesn’t reduce to a Gaussian even for 
small values of x-δ! 

 
There is one limitation on our predictions. Our exponential solution 
(11) of the F-P eqn. using either of the diffusion coefficients written 
down above assumes the initial condition x=0 with x=lnp(t)/po, 
starting from an initial price po=p(to). Note that the density peaks 
(discontinuously), and the diffusion coefficient is a minimum 
(discontinuously), at a special price P=poe

δ corresponding to x=δ. We 
have not studied the time-evolution for more general initial 
conditions than the case where x=0. That case cannot be solved 
analytically in closed for, so far as we know. One could try to 
calculate the Green function for an arbitrary initial condition x’ 
numerically via the Wiener integral, but we have not carried out that 
tedious piece of work. 
 

Next, we explain why solutions for the F-P equation (52) is of special 
interest for option pricing. 
 
2.4 The Delta Hedge Strategy 

 
Given the diffusion coefficient D(x,t) that reproduces the empirical 
distribution of returns f(x,t), we can price options ‘risk neutrally’ by 
using the delta hedge.  
 
The delta hedge portfolio has the value 

(57) 
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where w(p,t) is the option price. The instantaneous return on the 
portfolio is 
 

 
(58) 
 

where we take 

 
 
(59) 
 
and d(p,t)=D(x,t). We can formulate the delta hedge in terms of the 
returns variable x. Transforming to returns x=lnp/po, the delta hedge 
portfolio has the value  

 
 

(60) 
 
where u(x,t)/p=w(p,t) is the price of the option. If we use the sde (40) 
for x(t), then the portfolio’s instantaneous return is (by Ito calculus) 
given by   
 

  
(61) 
 

 
 
and is deterministic, because the stochastic terms O(dx) have 
cancelled. Setting r(t)=dΠ/Πdt we obtain the equation of motion for 
the average or expected option price u(x,t) as 
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 (62) 
 

With the simple transformation 
 

 
 
(63) 
 
Equation (62) becomes  

 

 
(64) 

  
If we choose µ=r in (64), then that pde is exactly the same as the 
backward time equation, or Kolmogorov equation, corresponding to 
the F-P eqn. (52) for the market density of returns. With the choice µ 
=r both pdes have exactly the same Green function, so that no new 
information is provided by solving the option pricing pde (64) that is 
not already contained in the solution f of the F-P equation (52). 
Therefore, in order to bring the ‘expected price’, option pricing 
formulae (23) and (24) into agreement with the delta hedge, we see 
that it would only be necessary to choose µ=rd=r in (23) and (24). 
Those predictions then become locally risk neutral, meaning that the 
hedge’s return rate (61) has vanishing mean square fluctuation to 
O(dt). We must still discuss how we would then choose r, which is 
left undetermined by the delta hedge condition. 
 
Let r denote any rate of expected portfolio return (formally, r may be 
constant or may depend on t and p). Calculation of the mean square 
fluctuation of the quantity (dΠ/Πdt-r) shows that the hedge is risk-
free to O(dt), whether or not D(x,t) is constant or variable, and 
whether or not the portfolio return r is chosen to be the risk free rate 
of interest ro. Practical examples of the risk free rates of interest ro are 
provided by the rates of interest for the money market, bank deposits, 
CDs, or US Treasury Bills, e.g. So we are left with the important 
question: what is the right choice of r in option pricing. A standard 
application of the no-arbitrage argument would lead to the choice 

  
r(t)u = ˙ u + (r(t) ! D(x, t) / 2)u' +

D(x, t)

2
u' '

  
0 = ˙ v + (r(t) !D(x, t ) / 2)v' +

D(x, t)

2
v' '

  u = e

r( s )ds

T

t

!
v



r=ro. This is what is taught in finance theory texts [13,14].  However, 
that is not what traders are doing.  
 
The no-arbitrage argument assumes that the portfolio is kept globally 
risk free via dynamic rebalancing. The delta hedge portfolio is 
instantaneously risk free, but has finite risk over finite time intervals 
Δt unless continuous time updating/rebalancing is accomplished to 
within observational error. However, an agent cannot afford to 
update too often (this would be quite expensive due to trading fees), 
and this introduces errors that in turn produce risk. This risk is 
recognized by traders, who do not use the risk free interest rate  for r’ 
in (23) and (24) (where r’ determines µ’(t) and therefore r), but use 
instead an expected asset return r’ that exceeds ro by a few percentage 
points. The reason for this choice is also theoretically clear: why 
bother to construct a hedge that must be dynamically balanced, very 
frequently updated, merely to get the same rate of return ro that a 
money market account or CD would provide? This choice also agrees 
with historic stock data, which shows that from 1900 to 2000 a stock 
index or bonds would have provided a better investment than a bank 
savings account. Every hedge is risky, as the catastrophic history of 
the hedge fund Long Term Capital Management so vividly 
illustrates. We therefore choose r through (25b) by fixing r’ at the cost 
of carry of the financial instrument. 
 
 
3.1 Volatility, Fat Tails, and Scaling Exponents 

 
  

The exponential density f(x,t) (11) rewritten in terms of the variable 
y=p/p(0)  

 
� 
(15b) 
 
has fat tails with time-dependent tail price exponents γ-1 and -ν-1. 
These tail exponents become smaller as Δt increases. However, trying 
to rewrite the dynamics in terms of p or Δp rather than x would lead 
to excessively complicated stochastic differential equations, in 
contrast with the simplicity of the theory above written in terms of 
the returns variable x. From our standpoint the scaling itself is neither 
useful or important in applications like option pricing, nor is it 
helpful in understanding the underlying dynamics. In fact, 

˜ f (y, t) = f(lny, t)/y



concentrating on scaling in price p would have sidetracked us from 
looking in the right direction for the solution.  

 
We know that for extreme values of x the empirical density is not 
exponential but has fat tails, f(x,t)≈x-µ. This can be accounted for in our 
model above by including a quadratic term in the diffusion coefficient, 
e.g., 
 

 
�  
(65) 
 
and likewise for x<δ. The parameter ε is to be determined by the 
observed returns tail exponent µ, which is nonuniversal 4≤ µ ≤7 [6], so 
that the correction in (65) does not introduce a new undetermined 
parameter into the otherwise exponential model.  
 
Option pricing during normal markets, empirically seen, apparently 
does not require the consideration of fat tails in x because we have fit 
the observed option prices accurately by taking ε=0. However, the 
refinement based on (65) is required for using the exponential model 
to do Value at Risk (VaR), but in that case a numerical solution of the 
F-P equation (51) is required. 
 
  
3.2 Interpolating Singular Volatility     
 
We can interpolate from exponential to Gaussian returns with the 
following volatility, 
 

  
 
 

(66) 
 
where 1≤α≤2 is constant. Presumably the probability density in x has 
no fat tails in x with 1<α<2 because there are none for α=1 or 2, but 
fat tails do not seem to matter in option pricing. We know that (66) is 
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not generated by a simple stretched exponential of the form 
 
 
  
 
 
 
(67) 
 
However, whatever is the probability density for (65) it interpolates 
between exponential and Gaussian returns, with one proviso. In 
order for this claim to make sense we would have to retrieve 
 

 
 (68) 
 
independent of Δt, otherwise (67) could include 
fractional Brownian motion, violating our assumption of a Markov 
process.  
 
 
4. Option Pricing via Stretched Exponentials 
 
 
Although we do not understand the dynamics of the stretched 
exponential density (65) we can still use it to price options, if the need 
should arise empirically. First, using the integration variable 
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and correspondingly 
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(70) 
 
we can easily evaluate all averages of the form 
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for n an integer. We next estimate the prefactors A and B from 
normalization, but without any dynamics. For example, 
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where Γ(ζ) is the Gamma function, and  
 
 
 

 
 
(73) 
 
Calculating the mean square fluctuation is equally simple, but without 
an underlying dynamics we cannot assert a priori that H=1/2 when 
1<α<2. 
 
Option pricing for α≠1 leads to integrals that must be evaluated 
numerically. For example, the price of a call with xK>δ is 
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 (74) 
 
where  
 
 

  

 

 (75) 
 
and Γ(1/α,zK) is the incomplete Gamma function. The average and 
mean square fluctuation are also easy to calculate. Retrieving initial 
data at the strike time follows as before via Watson’s lemma. 
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Figure Captions 

 
1. The histogram for the distribution of relative price increments for 

US Bonds for a period of 600 days. The horizontal axis is the 
variable x = ln(p(t+Δt)/p(t)), and the vertical axis is the logarithm of 
the frequency of it’s occurrence (Δt=4 hours). The piecewise 
linearity of the plot implies that the distribution of returns x is 
exponential. 

 
2. The histogram for the relative price increments of Japanese Yen for 

a period of 100 days with Δt=1 hour. 
 
3. The histogram for the relative price increments for the Deutsche 
Mark for a period of 100 days with Δt=0.5 hours. 
 
4. The implied volatilities of options compared with those using 
equations (60-63) (solid line). This plot is made in the spirit of 
‘financial engineering’. The time evolution of γ and ν is described by 
(55), and a fine-grained description of volatility is presented in part 4 
below. 
 

 
Tables 
 



1. Comparison of an actual price distribution of options with the results given by 
(60-63). See the following text for details. The good agreement of columns 2 and 4, 
as well as columns 3 and 5, confirms that the options are indeed priced according 
to the distribution of relative price increments. 
 
 
 
 
 
 
 
 
  
 
 
 


