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Abstract 
 
In their path-finding 1973 paper Black and Scholes presented two 
separate derivations of their famous option pricing partial 
differential equation (pde). The second derivation was from the 
standpoint that was Black’s original motivation, namely, the 
capital asset pricing model (CAPM). We show here, in contrast, 
that the option valuation is not uniquely determined; in particular, 
strategies based on the delta-hedge and CAPM provide different 
valuations of an option although both hedges are instantaneouly 
riskfree. Second, we show explicitly that CAPM is not, as 
economists claim,  an  equilibrium theory. 
 
 

1. The CAPM portfolio selection strategy 
 
The Capital Asset Pricing Model (CAPM) is very general: it 
assumes no particular distribution of returns and is consistent with 
any distribution with finite first and second moments. Therefore, 
in this section, we generally  assume the empirical distribution of 
returns but also will apply the model to Gaussian returns 
(lognormal prices) in part 2 below.  The CAPM is not, as is often 
claimed, an equilibrium model because the distribution of returns 
is not an equilibrium distribution. We will exhibit the time-
dependence of some of the parameters in the model in the familiar 
lognormal price approximation. Economists and finance theorists 
(including Sharpe [1| and Black [2]; see also Bodie and Merton 
[3])) have adopted and propagated the strange notion that random 



motion of returns defines ‘equilibrium’, which disagrees with the 
requirement that in equilibrium no averages of any moment of the 
distribution can change with time. Random motion in the market is 
due to trading and the excess demand of unfilled limit orders 
prevents equilibrium at all or almost all times.  Apparently, what 
many economists mean by ‘equilibrium’ is more akin to assuming 
the EMH (efficient market hypothesis), which has nothing to do 
with vanishing excess demand in the market.  The only 
dynamically consistent definition of equilibrium is vanishing 
excess demand: if p denotes the price of an asset then excess 
demand ε(p,t)  is defined by dp/dt= ε(p,t) including the case 
where the right-hand side is drift plus noise, as in stochastic 
dynamical models of the market. These issues have been discussed 
in detail in a previous paper [4]. Bodie and Merton [3] claim that 
vanishing excess demand is necessary for the CAPM, but one sees 
in part 2 below that no such assumption comes into play during 
the derivation and would even cause all returns to vanish in the 
model! 
 
The CAPM [5] can be stated in the following way: Let Ro denote 
the risk-free interest rate,  
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is the fluctuating return on asset k where pk(t) is the price of the 
kth asset at time t. The total return x on the portfolio of n assets 
relative to the risk free rate is given by 
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where fk is the fraction of the total budget that is bet on asset k. The 
CAPM minimizes the mean square fluctuation 
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subject to the constraints of fixed expected return R, 
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and fixed normalization 
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where σij is the correlation matrix 
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Following Varian, we solve 
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for the f’s where ΔRe = Re–Ro and Re is the expected return of the 
‘efficient portfolio’, the portfolio constructed from f’s that satisfy 
the condition (7). The expected return on asset k can be written as 
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where σee is the mean square fluctuation of the efficient portfolio, 
σke is the correlation matrix element between the kth asset and the 
efficient portfolio, and βΔRe is the risk premium for asset k. 
 
For many assets n in a well-diversified portfolio, studying the 
largest eigenvalue of the correlation matrix σ seems to show that 
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that eigenvalue represents the market as a whole, and that clusters 
of eigenvalues represent sectors of the market like transportation, 
paper, etc. [6]. However, in formulating and deriving the CAPM 
above, nothing is assumed either about diversification or how to 
choose a winning portfolio (the strategies of agents like Buffet, 
Soros and Lynch have not been mathematized and apparently do 
not depend on the CAPM notion of diversification and risk 
minimization), only how to try to minimize the fluctuations in any 
arbitrarily-chosen portfolio of n assets, which portfolio may or may 
not be well-diversified relative to the market as a whole, and which 
may well consist of a basket of losers.  Negative f represents a short 
position, positive f a long position. Large beta implies both greater 
risk and larger expected return. Without larger expected return a 
trader will not likely place a bet to take on more risk. Negative 
returns R can and do occur systematically in market downturns, 
and in other bad bets.  
 
We define a liquid market as one where an agent can reverse his 
trade over a very short time interval Δt with only very small 
transaction  costs  and net losses, as in the stock market on the scale 
of seconds during normal trading. A market crash is  by definition 
a liquidity drought where limit orders placed for selling 
overwhelmingly dominate limit orders placed for buying. Large 
deviations in the theory of Gaussian returns (lognormal price 
distribution) are by far too unlikely to match the empirical data on 
crashes and bubbles. 
 
In what follows we consider a portfolio of 2 assets, e.g. a bond 
(asset #1) and the corresponding European call option (asset # 2). 
For two assets the solution for the CAPM portfolio can be written 
in the form needed in part 2 below, 

 
 
 (9) 
 
Actually there are 3 assets in this model because a fraction xo can 
be invested in a risk free asset, or may be borrowed in which case  
xo < 0.  
 
So far we have used the notation of the CAPM. In all that follows 
we will write x=ln(p(t)/p(0)) and Δx=ln(p(t+Δt)/p(t)). 
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2. Black-Scholes theory of option pricing 
 
Let p denote the price of asset #1, a bond or stock, e.g., and w(p,t) 
the price of a corresponding European call option. In this section, 
in order to discuss the original Black-Scholes derivation [7], we 
follow Osborne [8] and assume that  asset returns are distributed 
normally, with stochastic differential equation 
 

 
(10) 

 
where ΔB(t)=B(t+Δt)-B(t) is an identically and independently 
distributed Gaussian random variable (B(t) is a Wiener process 
with<ΔB>=0, <ΔB2>=dt), and σ1 is assumed constant. Throughout 
this article we use Doob’s notation [9] for stochastic calculus [10]. 
For very small returns over very small time intervals Δt we can 
approximate (10) for small returns as1 

 
(11) 

 
In the corresponding Langevin equation for price p(t), 

 
 (12) 
 
with η white noise, the right hand side represents the excess 
demand ε(p,t) for the asset,  dp/dt=ε(p,t), as is emphasized in [4]. 
The excess demand does not vanish, either in the market or in the 
stochastic model, nor (due to limit orders) does the total excess 
demand of the market vanish. There is no equilibrium, either in the 
market or in the model.  
 

                                                
1
 We note that the corresponding equation (10.7) in Hull {11} cannot be correct for all values of Δp/p, only 

for very small returns. 
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The stochastic differential equation for the price change of the 
option is then (by Ito’s lemma [10]) 

 
 (13) 
 
In equations (12) and (13) the initial data  p(t), w(p,t), w’ and w’’ 
are deterministic  at the first instant (p,t) while the changes dp and 
dw as well as p(t+dt) and w(p+dp,t+dt) are random due to noise 
dB. In deriving a deterministic diffusive equation of motion for the 
option price w(p,t), two separate methods were presented in the 
original Black-Scholes paper [7]. The claim there is that both 
methods yield the same option pricing pde but we will show that 
this is not so. 
 
 
2.1. The Delta Hedge Strategy 
 
The standard idea is to construct a riskfree hedge [7,11]. The delta 
hedge, defined as a portfolio with value 
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does this because the portfolio is instantaneosly riskfree: the 
variance of the return rate (ΔΠ/ΠΔτ−R)  vanishes to O(dt), 
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 for any expected rate of return R. Setting the portfolio return equal 
to a constant yields the Black- Scholes  pde 
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 (16) 

 
for the option price w(p,t) if in addition we assume the no-
arbitrage coondition R=Ro where Ro is the riskfree rate of return.  

 
 Note that the ratio invested is given by 

 

  
(17) 
 
We will need this result below for comparison with the 
corresponding CAPM strategy of option pricing, and will see, in 
contrast with the claim of the original Black-Scholes  paper [7], that 
these two strategies do not and cannot agree with each other, even 
in the limit where Δt goes to zero.  

 
 

2.2. The CAPM option pricing strategy 
 
 
From (13) the fluctuating option price change over a finite time 
interval Δt is given by 
 

 
(13b) 
where the dot in the last term denotes the usual Ito product. In 
what that follows we assume sufficiently small time intervals Δt to 
make the small returns approximation whereby ln(w(t+Δt)/w(t)≈ 
Δw/w and ln(p(t+Δt)/p(t)≈Δp/p. In the CAPM strategy of 
portfolio construction the expected return on the option is given by 

 
(17) 

where from the small returns approximation (local solution of 
(13b)) 
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(13c) 
we get 

 
  
(18) 

 
The expected return on the stock is given from CAPM by 

 
(19) 
 
According to Black  and Scholes [7], we should be able to prove 
that 

 
 
 (20) 
 
Were this the case then, combining (17), (18) and (19), we would 
get a cancellation of the two beta terms in (21) below: 
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leaving us with the riskfree rate of return and the original option 
pricing pde (16).  
 
Equation (20) is in fact impossible to derive without making a 
serious error. Within the context of CAPM it is impossible to use 
(20) in (21). Let us now calculate correctly and show this.  
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We can easily calculate the fluctuating option return x2≈Δw/wΔt at 
short times. With x1≈Δp/pΔt denoting the short time 
approximation to the asset return, we obtain  
 

 
  (22) 
 
Taking the average would yield (20) if we were to assume that (16) 
holds, but we are trying to derive (16), not assume it. Therefore, 
taking the average yields  
 

  
(23) 
 
which is true but does not reduce to (20), in contrast with the claim 
made by Black and Scholes [7] in their otherwise very beautiful 
paper. 
 
To see that assuming (16) in order to get (20) from (23) is wrong, 
we go further and calculate the ratio invested f2/f1 by our 
hypothetical CAPM risk-minimizing agent. Here, we need the 
correlation matrix for Gaussian returns only to leading order in Δt: 
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 (26) 
 
The variance of the portfolio vanishes to lowest order, but it is also 
easy to show, also to leading order in Δt, that 
 

 
(27) 
 
and 

 
 
 (28) 
 
so that  it is impossible that (20) could be satisfied! Note that the 
ratio f1/f2 is exactly the same as for the delta-hedge. It is also easy 
to show that the CAPM portfolio is instantaneously riskfree, like 
the delta hedge. 
 
That CAPM is not an equilibrium model is exhibited explicitly by 
the time dependence of the terms in (24-26). It would be a serious 
mistake to try to think of an arbitrary time t dynamically as a point 
of equilibrium: the self-contradiction in the economists’ notion of 
‘temporary price equilibria’  [12] has been exhibited elsewhere [4].  
 
 The CAPM simply does not predict either the same option pricing 
equation as does the delta-hedge. Furthermore, if traders actually 
would use the delta-hedge in option pricing then this means that 
agents do not trade in a way that minimizes the mean square 
fluctuation ala CAPM. The CAPM and the delta-hedge do not try 
to reduce risk in exactly the same way. In the delta-hedge the main 
fluctuating terms are removed directly from the portfolio return, 
thereby lowering the expected return, whereas in CAPM nothing is 
subtracted from the return in forming the portfolio and the idea 
there is not only diversification but also increased expected return 
through increased risk. This is illustrated explicitly  by the fact that 
the expected return on the CAPM portfolio is not the risk-free 
return, but is instead proportional to the factor set equal to zero by 
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Black and Scholes, shown above as equation (20). With 
Rcapm=Ro+ΔRcapm we have 
 
 
 
(29) 
 
Note also that the expected return ΔRcapm in excess of the risk-free 
rate depends on time, not only through the term pw’/w, but also 
through the terms of higher order neglected in (26-28), even if the 
β’s were t-independent (but we know that they are not).  Note also 

from (29) that beta for the CAPM hedge is given by 
 
(30) 
 
The notion of increased expected return via increased risk is not 
present in the delta-hedge strategy, which tries to eliminate risk 
and to minimize return. We see now that the way that options are 
priced (even in the riskfree Gaussian returns case) is strategy-
dependent, which may be closer to the notion that psychology 
plays a role in trading.  The CAPM option pricing equation 
depends on the expected returns for both stock and option, 
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and so differs from the original Black-Scholes  equation (16) of the 
delta-hedge strategy. There is no such thing as a universal option 
pricing equation independent of the chosen strategy, even if that 
strategy is reflected in this era by the market. Economics is not like 
physics (non-thinking nature), but depends on human behavior 
and expectations [13]. 
 
In a paper to follow we will show how to use the empirical 
distribution of returns, which is far from Gaussian, to construct a 
stochastic differential equation and corresponding Fokker-Planck 
equation that not only reproduces the empirical distribution but 
also prices options correctly without the use of ‘implied volatility’. 
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Instead of implied volatility we use the returns distribution to 
deduce a correct local volatility, namely, an (x,t)-dependent 
diffusion coefficient. 
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