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Abstract

This paper introduces the choice of identity characteristics, and, commitments to these characteristics,
in a network formation model where links costs are shared. Players want to link to the largest group given
that linking costs are decreasing (increasing) in commitments for same (different) identity. We study
conditions under which these choices allow for networks with multiple identities. We find that whether the
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and survive the dynamic process.
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1 Introduction

It has long been acknowledged in the social sciences that identity is fluid and it is a conscious choice. Here the

word “identity” can be decomposed into two sets of ideas - one, as the set of characteristics of an individual,

and two, as the degree of importance he attaches to each characteristic in that set. In his seminal paper,

Horowitz (1977) cites many examples of smaller identity groups assimilating to form a larger identity group;

as well as the opposite examples of differentiation, where smaller identity groups emerge from what used to

be a larger cohesive identity group. These changes in identity are clearly a result of the conscious choices

of these people and they clearly show that identity has an element of fluidity to it; that it is constantly

evolving. 1 An interesting example of demographically similar societies choosing different commitments to

their identity is to be found in Croatia where “In the years 1991 and 1992 the war between Serbs and Croats

was raging through Croatia, but the ethnically mixed region of Gorski kotar (located east of the Adriatic

seaport of Rijeka) managed to escape an armed conflict. The inhabitants there, Croats and Serbs alike,

overcame national tensions and tried hard to preserve an “active peace”.” 2

The question of interest then is, what economic motivation drives us to pick our respective identities?

We can think of identities evolving as a result of players choosing their networks and identity at the same

time. The networks are needed for the transfer of information, for the formation of bargaining units, for

insurance, etc. Identity serves as an adhesive to the formation of these economically useful networks - the

link needed to connect a pair is expensive, but by choosing similar identities, these costs can be lowered.

The first contribution of this paper is in the introduction of choice of identity. In the network formation

models, players choose to form links and their benefits are increasing in the number of other players they

are connected to (directly or indirectly) in the final network configuration. A player would like to belong to

the largest network possible and form the least possible links. We change the standard network formation

game by allowing players to simultaneously choose their identities as well as their links, where, the choice

of identity will have repercussions for the network profits. We define ‘identity’ along a single dimension and

each player is assigned a single characteristic along that dimension. The player could have this characteristic

exogenously given (or not), but he will always choose his “commitment” to that identity characteristic. The

choice of commitment for each player is captured by the variable θ ∈ [0, 1], where a higher number denotes

a stronger commitment to the characteristic. Identity and the commitment to identity then have an impact

on the cost of links; individuals with same characteristic will find it cheaper to link as each increases his

commitment, whereas, individuals with different characteristics will find it costlier to link as each increases

his commitment.

The other contribution of this paper to the literature on network formation, lies in the fact that in this

paper, links will be formed based on offers of contribution from both players. As seen in Figure 1, both

players will make an offer of how much of the link cost they are willing to bear, if the offers of the two

1Another good example is to be found in Chandra (2001) she cites the example of the Hindu-Muslim divide in India in 1989
giving way to a divide along caste lines by 1990.

2http : //www.cis.or.at/projects/gorski kotar.html
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Link offers enough for link to be formed

Link offers not enough for link to be formed

Figure 1: Link Cost Sharing

players add up to be enough to form the link, the link is formed, otherwise not. If the link is formed, players

bear a share of the cost as per their initial offer. The cost of the link depends on the choice of identity and

commitment as mentioned above. Each player’s link strategy is to choose how much to offer for each of

his possible links. The resulting network depends on the links actually made. Benefits of belonging to the

network are increasing in the set of players linked to, directly or indirectly. We also make the assumptions

that adding a profitable link is profitable, a link in a profitable strategy is profitable on its own and that

player labels are irrelevant. We study the level of fragmentation by identity in the Nash equilibrium of this

game. We also look at a dynamic version of the game, where a player is chosen each period, and this player

chooses his identity, commitment level and also the link offers he would like to make. In the same period,

the players to whom link offers are made, respond by choosing their identity, commitment level and also

whether to accept the link offer of the initiating player.

In the first part of the paper, we fix the identity characteristics exogenously. Hence, a player’s strategy

consists of choosing his commitment level and his link strategy. The resulting Nash network of the static

game will either be empty, separated by identity, or, all players will be connected. In other words, with

identity characteristics fixed, it is likely that the one-shot Nash outcome is a separated network when the

efficient outcome would have been a connected network. Neither will the dynamic version of the game always

converge to the efficient outcome, if the efficient outcome were connected.

In the next part of the paper, we allow players to choose their identity, commitment to the chosen identity

characteristic, as well as, their link strategies. First, we consider the case where the choice of identity itself

does not add any utility. In this case, we still find that the Nash network of the one-shot game will be

separated be identity or it will be a connected network with two identities or it will be a connected network

with one identity. We find that the presence of multiple identities will vanish if we consider the efficient or

the dynamic versions. Next, we allow the choice of identity itself to be of value depending on the set of

other players who also choose the same identity. We find in this case that separation based on identity is

3



indeed possible in both the one-shot game as well as in the dynamic version of the game. This segregation

will be possible only if the benefits from identity are decreasing for some group sizes. In other words, players

must have some intrinsic preference for some ideal identity-group size and this preference plays off against

their desire to belong to the largest network possible. If the Nash equilibria of this game allow for multiple

partitions of the network, then it must be that the benefits from identity has at least the same number of

peaks as the number of possible Nash partitions. For a range of profit functions, the dynamic version of this

game converges to the efficient Nash network.

Related Literature:

Previous work in economics including the choice identity includes work by Akerlof and Kranton (2000),

Fryer and Jackson (2002), Currarini, Jackson, and Pin (2008), Sen (2006), Bisin and Verdier (2000), Esteban

and Ray (1994). The Akerlof and Kranton (2000) model allows the self image (derived from identity) to

affect the utility function, but they take as given which dimension of identity is salient, instead of allowing

the individual to choose his salient identity. In Fryer and Jackson (2002), agents use identity to be able to

sorting device and how this leads to biases. Currarini, Jackson, and Pin (2008), consider a matching model

of friendship where agents have types/identities where players’ utilities depend on the number of friends of

the same type and those of different type. With this model they try to explain some empirical facts, among

them, the presence of segregation. Since this paper focuses on how networks partition with the introduction

of identity, it is also linked to the vast literature on club formation. Though most of this literature is not

concerned with the how the networks evolve within a club, the paper by Page Jr. and Wooders (2007)

bridges that gap. This work is strongly related to previous work Dev (2009) which also allows for players

with multiple identities choosing commitments to identity as well as links. But unlike that paper we allow

identity characteristics themselves to be chosen and we also allow link formation costs to be shared.

The network formation model used is the related to the literature on non-cooperative network formation

models pioneered by Bala and Goyal (2000a) and Bala and Goyal (2000b), with related work on heterogenous

players by Galeotti, Goyal, and Kamphorst (2006), Hojman and Szeidl (2008), Sarangi, Billand, and Bravard

(2006), Galeotti (2006) and Gilles and Johnson (2000). Galeotti, Goyal, and Kamphorst (2006) allow society

to be divided into groups and let connection within a group to be cheaper than connections across groups.

Galeotti (2006) studies a model in which players are heterogeneous with respect to values and the costs

of establishing a link. One type of heterogeneity considered is independent of partner or the cost/benefits

depend only on the agent forming the link/receiving the benefit and the other heterogeneity is partner

dependent.345

Within the network formation literature, this paper is also connected to the literature where links are

3The other strand in the network formation literature follows Jackson and Wolinsky (1996). The book by Jackson (2005) as
well as Dutta and Jackson (2003) provide an excellent review of the literature.

4The recent paper by Page Jr. and Wooders (2009) unifies the two strands by suggesting a common framework with which
to view all network games.

5Other important theoretical extensions of network formation models include Jackson and Dutta (2000), Watts (2001),
Deroan (2003), Feri (2004), Kranton and Minehart (2001), Goyal and Joshi (2003), Goyal and Vega-Redondo (2005), Slikker
and van den Nouweland (2001), Gilles and Johnson (2000), McBride (2006), Bramoulle and Kranton (2007).
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formed based on transfers or consent, since these in both these strands of the literature two players are

required to act for a link to be formed. The literature on transfers in networks includes important work by

Bloch and Jackson (2007), Mutuswami and Winter (2002), and Currarini and Morelli (2000). The literature

on consent in networks was developed from the paper by Gilles and Sarangi (2004).

The rest of the paper is organised as follows. Section 2 explains the model in detail and Section 3

outlines the assumptions used. In the next three sections, we present three versions of the game and their

Nash equilibriums and dynamic equilibriums. Section 4 considers the game where identity characteristic is

given exogenously and players choose commitments and links. Section 5 presents the game where identity

is a variable of choice but this choice does not directly impact the utility of the player, whereas in Section

6, we allow the choice of identity to directly impact the utility. The next section presents the conclusion

followed by the appendices with all the proofs.

2 Model

The set of all players is N = {1, ..., n}. Identity is defined along a single dimension which consists of a set

of characteristics, {c1, c2}. Each persons i’s identity, Ii consists of one of the characteristics. The identity

profile of the population is given by I. I define a ‘block’ as a group made up of completely homogenous

players who have the same characteristic. Each person has the following choices to make:

- Identity, player i chooses identity Ii such that, Ii ∈ {c1, c2}. In the paper, we study both cases, one

where identity is fixed and another in which it is a variable of choice.

- Commitment, player i chooses commitment to his identity θi such that, θi ∈ [0, 1]. In general, a higher

commitment to any characteristic will make linking with people with the same characteristic cheaper but

make links more expensive with people who don’t have this characteristic. Let the n × 1 matrix Θ denote

the commitment profile of the population.

- Link Offers, player i chooses how much he offers to pay for each link li = {li1, ..., lii−1, lii = 1, lii+1, ..., lin}

where lij ∈ [0, 1]. A link between i and j is formed if lij + lji ≥ 1. Let £ = {l1, .., li, .., ln} be the population

link profile. Let Li be a n-dimensional vector such that

Lij =

{

lij/(lij + lji) if lij + lji ≥ 0
0 otherwise

Let the vector of dimnesion n, gi = {gi,1, .., gi,i−1, gi,i, .., gin} , denote the direct links that i has, where

gi,k = 1 if lij + lji ≥ 0 and 0 o.w. The links are undirected and if a link exists between l and k, they both

have access to each other’s information. The strategy for links generates a network denoted by g, where

g = {g1, ..., gn}. Define g = cl(g) where an element of g is gkl = max{gkl, glk} for all l, k ∈ N. We say a path

exists between agents k and l if either gkl = 1 or there exist j1, ..., jm such that gkj1 = ... = gljm = 1. A path

is denoted by k
g
←→ l. A component within a graph g is C(g) ⊆ N such that all agents within the component

have a path connecting each other and there are no link going from any player in C(g) to any player not in

C(g). A component is said to be minimal if deleting any link will lead to it not being a component anymore
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and a network is called minimal is all its components are minimal. A network is said to be connected if it

has only one component made up of all players. A network is said to be empty if no player makes any links.

A network is said to be separated if there are no links between players with different identities.

Let N i(g) be the set of players that i is linked to directly or indirectly in the network (assuming no

decay). Besides the profit from the network, profit function of i will additionally depend on Nsi which is the

set containing all the players with the same identity as i. The profits are broken up into two components -

the first is profits from the network and the other is profits from the choice of identity itself.

Πi(£,Θ, I) = π(N i(g), Li,Θ, I) + φ(Nsi) (1)

As an illustration, network profits could be of the form:

π(N i(g), Li,Θ, I) = f(N i(g))−
∑

j:lij+lji≥1

lij
lij + lji

c(θi, θj)

In this profit function, the first term denotes the benefits of belonging to the network and the second

denotes the costs. The cost depends on commitments, but the share of cost paid depends on his offer of lij .

Definition 1 The Nash equilibrium is a set of strategies {£,Θ, I} which result in network g, such that for

each player i

Π(£,Θ, I) ≥ Π(l′i,£−i, θ
′
i,Θ−i, I

′
i, I−i)

where l′i 6= li and/or θ
′
i 6= θi and/or I

′
i 6= Ii

Definition 2 The Efficient Nash Network is a network g supported by strategies {£∗,Θ∗, I∗} such that:

{£∗,Θ∗, I∗} ∈ argmax
n
∑

i=1

π(N i(g′),£′,Θ′, I)

where in the R.H.S, {£,Θ, I} is a Nash equilibrium.

In the dynamic version of the game, one player is selected to act each period. In each period, first, the

chosen player chooses his identity, commitment and link strategy. Link offers can be simple offers of how

much he is willing to pay for the link; they can also be contingent on the aceptee changing to a certain

commitment and/or identity. In the next part of the period, the other players simultaneously make the

decision to accept or not his link strategy. The dynamic version will be said to have converged when no

player has any incentive to change his identity/commitment or to change the component they belong to.

Since, player form links by sharing costs, there will always be scope for renegotiating the share of the link

bourne by each player; and in this way the dynamic game will never be free of movement within a component.
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3 Assumptions for Network Profit Function

• A1: Strictly increasing in N i(g). Or that for any x ⊂ N , where x ∩N i(g) = φ, and for any Li, Θ

and I,

π(N i(g) ∪ x, Li,Θ, I) > π(N i(g), Li,Θ, I)

• A2: Strictly decreasing in all elements Li. Moreover, the marginal effect of the Lij depends on

{θi, Ii} and {θj , Ij}. If identity is the same, the higher are the commitments, the lower is the effect. If

identity is different, the higher are the commitments, the higher is the effect.

• A3: Only Adding a Profitable Link is Profitable. Suppose player i currently makes profits of

π(N i(g), Li,Θ, I) ≥ 0, and ∃ a neighbourhood X, a strategy Y , such that

X ∩N i(g) = ∅

Yj > 0⇒ Lij = 0

then

π(N i(g) ∪X,Li + Y,Θ, I) > π(N i(g), Li,Θ, I) iff π(X,Y,Θ, I) > 0

Where Li + Y is a simple element by element addition and we need to keep in mind that might not

yield the set of neighbours N i(g) ∪X in the new network.

• A4: Player Labels are Irrelevant

if xp denotes a permutation of vector x, then

π(N i(g), Li,Θ, I) = π(N i(g), Lii, L
p
i , θ,Θ

p
−i, Ii, I

p
−i)

The first assumption is about the benefits of being in the network and it implies that each link is valuable

to every player. In other words any group of players has something of value to offer to each other player

and also that each player in the neighbourhood of say player y adds value to y irrespective of who the other

players in y’s neighbourhood are. The second assumption is about the costs and it implies that costs are

increasing in the ‘amounts’ offered. The impact of the link strategy on costs also depends on the identity

as well as commitment choices. For any link offer between players of the same identity; the impact on

costs will be lower the higher are (any or both of) the commitments. On the other hand, for any link offer

between players of different identity, the impact on costs will be higher; the higher are (any or both of) the

commitments.
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The next assumption concerns both cost and benefits. It first implies that adding a link which is profitable

is profitable for any player who is not already linked to the players accessed by this link. In other words,

combining two individually profitable link strategies, will yield higher profits than either of the two strategies

individually. It also implies that if a player has a link strategy which includes offers of links to more than

one player, each one of these link decisions made by the player is individually profitable irrespective of the

rest of the player’s strategy. The benefits from each link decision within a player’s linking strategy might

well depend on the entire strategy, but even so, each one of these link decisions must at least yield positive

profits in isolation. With this assumption we want to limit the extent of negative externalities.

The fourth assumption states that for any strategy, the benefits only depend on the neighbourhood

accessed. The costs only depend on the offers made, the choice of commitment by the player and the

choice of commitments by the players to whom the link offers are made. The name labels of the players are

irrelevant.

The last assumption, A5, is used to facilitate the discussion in the last sections where we allow players

to choose identity and for this choice to directly impact the utility. It says that all players are ex-ante equal.

In other words, all players are the same as far as their informational value to the network is concerned or

that profit from the network depends only on the number of people linked to. It helps to keep the focus on

the choice of identity rather than on player values.

A5: Equal Values If each player has the same value to add to any network we get:

π(N i(g), Li,Θ, I) = π(#N i(g), Li,Θ, I)

4 Fluid Commitments

In this section we study the game where only the choice of commitment is possible or in other words,

commitment is fluid but the population identity profile, I, is given exogenously. The choices available to

each player i then are, commitment strategy, θi, and link strategy, li. We first look at the one-shot static

Nash Network and its properties.

4.1 The Static Game

The following proposition shows that the Nash Network will have one of three types of connectivity -

connected; separated with each block forming either a component or all players of the block remaining

singletons; and finally, empty with no links being formed.6

Proposition 1 Under assumptions A1-A4, the Nash Network of the game, where players choose their com-

mitment levels and link strategies, will have one of the following structures:

• Connected

6If we were to allow for more than two characteristics, another possible equilibrium structure would involve some blocks
being connected, and all other blocks isolated from each other and the connected blocks.
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• Separated, where each block will either form a component or each player of the block remains a singleton

• Empty

The proof is presented in the form of the following lemma. The lemma says that each block either

belongs to the same component or all members of the block are singletons. The intuition for this lemma is

as following. Suppose i ∈ B, where B is a block. Further suppose that i is linked with k. Now we know

from our assumptions that it must be profitable for i to link to k and similarly, it must be profitable for k

to link to i. Individually, both of these strategies are not feasible. But, the sum of these two strategies is

feasible, because it involves sponsoring the entire link between i and k. Moreover, the sum of the strategies

must also be profitable by A3. If there is some player j ∈ B who is not linked to i, he could use the sum of

the strategies explained above to profitably link to i. Given this lemma, it is clear that either the two blocks

are separated or linked.

Lemma 1 In a Nash Network, each block belongs either to the same component or everyone from the block

is a singleton

Proof. Suppose there are players i and j, and a block B and components C and C ′ such that {i, j} ∈ B

but i ∈ C and j ∈ C ′.

• Suppose C ′ is a singleton. But C is not, and i participates in a link with k ∈ B in C. Let πik denote

i’s profits from linking to k, then by A3

πik = π(N ik(g), Lk
i , θi, θk,Θ{−i,−k}) ≥ 0

where N ik(g) are the people accessed by i through this link and the strategy Lk
i is such that Lk

ik = Lik

and all other elements are zero.

If j were to choose a link strategy L′
j which had only one non-zero element, L′

ji = Lik, and choose

θj = θk, and if by doing this he could observe N ik(g), then by A4 we would have:

π′
ji = π(N ik(g), L′

j , θi, θj = θk,Θ{−i,−j}) = πik

Similarly, let πki denote k’s profits from linking to i, then by A3

πki = π(Nki(g), Li
k, θi, θk,Θ{−i,−k}) ≥ 0

Now again, if j were to choose a link strategy L′′
j which had only one non-zero element, L′

ji = Lki, and

choose θj = θk, and if by doing this he could observe Nki(g), then by A4 we would have:

π′′
ji = π(Nki(g), L′′

j , θi, θj = θk,Θ{−i,−j}) = πki
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Let πji denote the profit to j from linking to i by choosing L′′′
j where he chooses to make no other

links except l′′′ji = 1 and θ′j = 1

πji = π(C,L′′′
j , θ

′
j ,Θ−j) ≥ π(N

ik(g) +Nki(g), L′
j + L′′

j , θ
′′
j ,Θ−j)

≥ max{πik, πki} ≥ 0

{where θ′′j = θk} The second inequality uses assumptions 1, 2 and 3.

A similar conclusion would hold if it were the case that k /∈ B.

• Now suppose C ′ is not a singleton. If j only links to players from B, then j must have θj = 1 and by

the previous logic, he could add a profitable link to i. Similarly, if i only links with players from B, i

could profitably add a link to j. If both i and j are linking to players outside B, then changing θ’s is

costly. Suppose j links to j′ and i links with i′, where j′ and i′ do not belong to B. Suppose, wlog,

θj = min{θj , θ
′
j , θi, θ

′
i}. Then j could add a link to i′ by offering to pay for all of it and this additional

link by j would add to his profits.

Next, within the set of Nash Networks, we wish to find the ones which are efficient. Under assumptions

A1-A4, the Efficient Nash Network of the game, where players choose their commitment levels and link

strategies, will be such that:

• A block is internally connected iff there exists any Nash network in which the block is connected.(R1)

• The existence of a Connected Nash equilibrium will not imply the connected network is efficient.

Though if it is that the efficient network is connected, there will be exactly one player from each block

participating in an external link.

To see this, firstly observe that, if in any Nash network a block is internally connected, each individual

of that block should prefer to be linked over not having any links at all. In other words, the connected block

will be increase total welfare over an empty network. Next, if the efficient network is connected, we must

have only a single player participating in the external link to minimise the overall costs. (Note that in the

following text we will be referring to the first condition, that a block is internally connected iff there exists

any Nash network in which the block is connected, as R1 )

4.2 The Dynamic Results

We now consider the dynamic version of the game, where one player is selected to act each period. This

player chooses his commitment and link strategy. Link offers can be simple offers of how much he is willing

to pay for the link; offers can also be contingent on the acceptee changing to a certain commitment. The

acceptees simultaneously choose whether to accept or reject the offers.
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The next proposition shows how the dynamic game will evolve. Firstly, the dynamic version of the game

will converge to the empty network if that is the only static Nash equilibrium. This is the case where costs

are just too high to sustain any links at all. Next, for any block, if there exists at least one static Nash

network where the block is connected, this block will converge to be connected in the dynamic version of

the game as well. We also show that if the dynamic process converges to a connected network, each block

will be internally linked. Finally, if the static Nash network could be both separated or connected, the

dynamic version will transition to connected iff there exists a connected network such that just breaking the

inter-block links (between the two highest valuation blocks) and giving everyone a theta of 1 and keeping

everything else the same, leaves at least one of the blocks in equilibrium.

Proposition 2 Under the assumptions, A1-A4, the dynamic version of the fluid commitment game will

converge to:

• The empty network, if that is the only static Nash equilibrium.

• A block will be connected if R1 holds.

• If R1 holds for at least one block and there is no Connected Nash equilibrium, the dynamic game will

converge to a separated network.

• If R1 holds for each block, the network will transition to a connected network only if there exists a

connected network such that just breaking the inter-block links and giving everyone a theta of 1 and

keeping everything else the same, leaves at least one of the blocks in equilibrium.

The proof of this proposition is presented in Appendix A. It is presented in the form of a series of lemmas.

The first lemma shows that if a block is connected in any Nash equilibrium, it must be possible to construct

a Nash equilibrium where a given player has just one link. To give an intuition for the proof, suppose not,

i.e., there existed a player who was willing to pay the maximum he could to link to the rest of the players in

his block, but no other player could profitably participate in this link with him. In other words, using A3,

this entire link between the player and his block would be unprofitable. Which would mean that if we were

to invent a new player in this block, he would find it unprofitable to sponsor an entire link to the existing

block. But we know that this block can be profitably linked and any new player added to the block will

find it profitable to sponsor an entire link to the block. Hence, it must be that there exists a profitable and

feasible strategy where a player makes a single link to the rest of the block. Knowing that there is some link

offer at which each player of this block can be individually linked to, in the second lemma, we show that the

first player from this block called on to act will have a link strategy offer in the form of a star network with

him linking to all players of the block. Which means that in any dynamic setting this block could always

converge to being connected - the player chosen to act will just propose to form links with everyone. The

proof is illustrated in the Figures 2 and 3, where all players have the same identity and characteristics, and

11



b

e

a

d

c

link
ba

link
de

Figure 2: Initial Connected Network

b

ea

d

c

link
ca

=

link
ba

link
ce

=

link
de

Figure 3: Possible Star Network

12



they are initially connected with player ‘a’ linking to player ‘b’ and player ‘e’ linking to player ‘d’. This

initial network could transform to that in Figure 3 is players ‘a’ and ‘e’, switch to linking with player ‘c’.

If the dynamic network is connected, it will converge to a network where there each block is internally

connected and there is one player from each block participating in the external link. To get an intuition of

this, consider two players from the same block participating in external links. If one of them were to link to

the other, the player’s benefit in terms of number of players linked to would not change, but it might be that

this internal link is more expensive than his current external link. But then given the dynamic nature of the

game, there would come a time when one of these players will be making zero profits from the external link.

And if they are chosen to move at a time when they are making zero profits from the external link, they

would always choose to drop the external and form the cheaper internal link.

Finally we show that if the dynamic network is currently separated, but a Connected Nash equilibrium

exists, then the transition from separated to connected will take place only if breaking the inter-block links

in one of the connected equilibriums and giving everyone in one of the blocks a theta of 1 is also a static Nash

equilibrium. This is so because the player who will offer to make the external link will have the opportunity

to adjust his internal link as well. The player making the offer of the external link will reduce his commitment

to make this external link more profitable, at the same time, with this change in commitment he might want

to pay less for his internal link. But the player who accepts the offer of the external link will not be able to

make this adjustment to his internal link. The player who is offered the external link, will then accept this

offer only if such an acceptance increases his overall profits even though his profit from the internal link has

reduced.

5 Fluid Identity, Choice of Identity has no Direct Impact on Util-

ity

From this section on we allow players to chose their identity as well as commitments and links. They don’t

have any characteristics given, but rather they choose which identity they want to adapt to and their level

of commitment to the identity chosen. As explained in the model, this choice of identity is to choose either

of the two characteristics in the set of possible characteristics; Ii ∈ {c1, c2}.

In this section, we study the special case where the choice of identity itself has no implications on the

utility or that φ(Nsi) = 0 for all players i and all Nsi. The assumptions on network profits remain the same.

5.1 The Static Game

We show that the static Nash network will be one of three types. It will either be empty, with no links being

formed and identity being indeterminate.7 The Nash network could be Separated, but under very special

7This equilibrium would always be possible when the cost of a single link to a person of the same identity choosing any
commitment below θ was too expensive to leave any positive profits. Similary, when the cost of a single link to a person of a
different identity choosing any commitment above θ was too expensive to leave any positive profits. It will involve all players
being indifferent in the choice of identity but choosing some θ ≤ θ ≤ θ.
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conditions, such that the profit function and the network structure must be so that everyone makes exactly

zero profits. Lastly, we could see a Connected Nash network with all the players choosing the same identity

and also a commitment of one or a Connected Nash network with players choosing either identity.

Proposition 3 Under the assumptions A1-A4, when players choose identity, commitment and links, but

φ(.) = 0, the static Nash network will have one of the following structures:

• Empty network.

• Separated, with some of the players choosing one identity and the rest of the players choose the other

identity. Moreover the network structure and profit function must be such that all players make zero

profits.

• Connected with two identity blocks.

• Connected with all players choosing the same identity.

The proof is presented in the Appendix B in a series of lemmas. The first two lemmas together show

that the profits for each player must be zero in a Separated Nash network. In particular, the first lemma

shows that in a Separated Nash network, all players making a single link, must make the same profits. To

give an intuition for the proof, consider player i participating in a single link in the first block making less

profit than a player i′ in the second block participating in a single link. From assumption A3, we know

then that sponsoring an entire link to the second block will be more profitable than the profits of i′. Thus,

i could then increase his profits by switching his identity and offering an entire link to the other block. In

other words, all players in either block making a single link, must be making the same profits. The second

lemma just extends the same idea to conclude that all players must be making exactly the same profits -

else, a player making lower profits in one block would switch to changing his identity and offering a link to

the other block where higher profits are to be made. This leads us into the third lemma which says that

any deviation should also give these same profits. Finally, the next lemma shows that in a Separated Nash

network, the blocks must be such that all players make exactly zero profits. We already know that everyone

makes the same profits, this lemma shows these profits must be zero. Suppose not, then a player making a

single link will be making positive profits, moreover, the total profits from this (and any other link) must

equal the profits made by any player. Or using assumption A3, we get that player participating in the link

with a single other player must make zero profits from that link. In other words, he must make profits from

other links. But since each sequence of link ends and begins with a player making a single link, it is not

possible to sustain positive profits. In other words, a Separated Nash network will be possible only if the

profit function is such that it allows for a split of the population into two identity blocks where each player

would make exactly zero profits.

The final lemma in this section outlines the conditions for the presence of a Connected Nash network

with two identities. For a partition to be supported as Connected Nash Network, we need at least one player
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each from both blocks that is participating in an external as well as internal link. And we must have both

these contributions strictly positive. These players must not want to severe either connection or to switch

identity. Further more, the players linking to these players making external links should better off keeping

those links than severing them.

To concretize the concept of the Separated network , consider the following figure. In the Figure 4,

� = 1

� = 1� = 1

� = 1

� = 1

Cost Share = 4

Cost Share = 1

� = 1

� = 1

� = 1

Figure 4: Separated Network

players can choose to be either a Square or a Circle. Their profits are from the number of players observed

less the sum of link costs. In particular, for this separated network to be sustained as Nash, it must be that

link costs between players of similar identity are exactly 5. And we must have the center of the Square star

paying 1 for each of his 4 links, whereas, the periphery players pay 4. In other words, each Square player is

linked to 4 other players and pays 4 for his links, making zero profits. The Circle players make zero profits

since they are unlinked, but deviating to being a Square and linking to the Square star would still leave

them with zero profits.

We next consider efficient Nash networks. Where we find that the Efficient Nash Network will be either

• Connected with a single identity block or

• Empty with players choosing either identity.

Since choice of two identities only serves to distort the costs of link formation, the Efficient Nash Network

must either be connected with a single identity block or it could be empty, but in that case the choice of

identity is irrelevant to network payoffs.

5.2 The Dynamic Results

We now consider the dynamic version of the game. Again one player is selected to initiate each period. This

player chooses his identity, commitment and links strategy. Link offers can simple offers of how much he is
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willing to pay for the link, offers can also be contingent on the aceptee changing to a certain commitment

and/or identity. The other players choose to accept or not his link strategy.

The important result we get out of this setup is that when choice of identity has no direct impact on

utility, no equilibrium with links being formed will feature two identities. In all cases, the dynamic game will

converge to everyone choosing the same identity and the network being connected. The only other possibility

is the empty network with players indifferent in the choice of identity - but this will be possible only if the

static Nash equilibrium allows for only the empty network.

Proposition 4 Assuming A1 - A4, when players choose identity, commitment and links, but φ(.) = 0, in

the dynamic version of the game the equilibriums with two identities will not survive. The only exception is

the case where the only static Nash network was the empty network.

The proof is presented in a series of lemmas. The first shows the impossibility of separated identity

blocks. This follows easily, once we see that the player participating in a single link in one of the blocks,

can change his identity and follow the same link strategy with the other block. This will lead to one of the

identity blocks unraveling. The next three lemmas show that connected identity blocks will also not survive

the dynamic process. The first of these three shows that a player participating in an external link will have

exactly one internal link. If a player with a θ < 1 participates in two internal links, one of the recipients of

the internal link will find it profitable to link to the other recipient, hence, linking to a player with θ = 1

and lowering his costs. The next lemma shows that there will be only one external link between the two

identity blocks. If there were more than one external link, one of the players participating in the external

link would prefer to break the external link and link to the other player with the same identity participating

in the other external link. Finally the last lemma shows that connected identity blocks will not survive

the dynamic process. This will be so because one of the players participating in the external link will have

the incentive to disinvest from the internal link and switch to the other identity, which will set off a chain

reaction of everyone from the identity block switching their identities.

In other words, in this scenario where players choose identity, but this choice has no direct impact on the

utility function, we will see the dynamic game converge to the Efficient Nash network.

6 Fluid Identity, Choice of Identity has Direct Impact on Utility

Till now we have that the choice of identity could lead to two separate identities in the static Nash equilibrium,

and these separate identities would vanish only under the dynamic version of the game. We now drop the

assumption that the choice of identity has no direct impact on utility. It is but obvious that this addition

of direct benefits from identity will allow more Nash equilibria where the network is separated by identity,

the interesting question is relating different kinds of direct benefits from identity to different possible sets of

Nash equilibria.

The benefits of identity will mean that the profit function of i will now additionally depend on Nsi

which is the set containing all the players with the same identity as i. The profits are broken up into two
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components - the first is profits from the network and the other is profits from the choice of identity itself.

For the rest of this section, to focus attention on the choice of identity rather than on individual values, we

will work with the assumption A5 or that profit only depends on the number of people. Or using small caps

to denote the number of elements in the set, we get that profits must be:

Πi(g,Θ, I) = π(ni(g), Li,Θ, I) + φ(nsi) (2)

6.1 The Static Game

Let’s try to find conditions where the Nash network will feature two identities under the assumption that

identity does affect utility. Suppose in a Nash equilibrium there are two identity blocks, block 1 consists of

the set B1 (with b1 players) and block 2 consists of the set B2 (with b2 players); such that, b1 ≤ b2. Any

player trying to switch from one identity block to another will have to sponsor a whole link to someone from

the new identity block and will have no other links, let’s denote this strategy by Ls. All players considering

such a switch to block Bi will make the same profits, they will sponsor one whole link and observe bi + 1

players in all; let us denote the profits of switching to block Bi by π
s(bi+1). If any i ∈ B1 decides to switch

to block 2, his profit from this deviation must be less than his current profit or:

πs(b2 + 1) + φ(b2 + 1) ≤ π(b1, Li,Θ, I) + φ(b1)

(where the input Θ is a vector of one’s)

Similarly for any player j ∈ B2 we have

πs(b1 + 1) + φ(b1 + 1) ≤ π(b2, Lj ,Θ, I) + φ(b2)

Both these above equations must be satisfied for the smallest profit maker, i ∈ B1 and the smallest profit

maker j ∈ B2. In particular, for any network size, let’s choose the network configuration which gives the

maximum such smallest profit and let’s call these profits, for block size bi as πe(bi). Then as long as the

above two conditions are satisfied for πe(b1) and π
e(b2), then we know there is at least one network structure

that will allow the partition to exist.

Now let’s define a new function for all bi ≤ n/2

ψ(bi) = φ(bi)− φ(n− bi + 1)

Also define these bounds

ψ(bi) = πs(n− bi + 1)− πe(bi)

and

ψ(bi) = πe(n− bi)− π
s(bi + 1)

Notice ψ(bi) ≥ ψ(bi) for all bi. Also that ψ(bi) and ψ(bi) are both decreasing. But, at n/2 they are both

exactly the same absolute value. The first lemma in Appendix D shows that ψ(bi) ≥ ψ(bi) for all bi ≤ n/2.
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The next proposition shows the kinds of φ(.) functions under which a separated identity blocks are

possible. It is interesting to note that if network profits were always zero and the only profits were from

identity directly; b1, b2 could be supported as a Separated Nash equilibrium, if and only if φ(b1) ≥ φ(b2 + 1)

and φ(b2) ≥ φ(b1+1). In particular, if φ were single-peaked, then the only Separated Nash equilibria possible

would be at n/2. With that in mind, we see that in the general case when networks are beneficial, we see

that Separated Nash equilibria will not necessarily be at n/2, if fact, we see that when φ is symmetric around

n/2 no Separated equilibria is possible. Further we see the possibility of multiple Separated equilibria if φ

has more than one peak.

Proposition 5 Under A1-A5 and profits are as defined in equation 2; for any partition bi, n − bi to be

supported as a Separated Nash equilibrium, we must have ψ(bi) ≥ ψ(bi) and ψ(bi + 1) ≤ ψ(bi + 1). For

bi = n/2 to be a partition supported by a Nash equilibrium, we must have ψ(n/2) ≥ ψ(n/2). For the entire

network to be connected with a single identity we need, ψ(0) ≤ ψ(0).

• If φ is symmetric around n/2, no Separated Nash equilibrium will be possible.

• If φ is concave, at most one partition could be supported as Separated Nash equilibrium. Further, for

a partition to exist, the peak of φ must be before n/2.

• If φ is convex, a Separated Nash equilibrium is possible only if the lowest point is beyond n/2

• If φ is such that it can be partitioned into regions that are concave around peaks and convex around

troughs, the number of Separated Nash equilibrium will be at most the number of peaks in φ.

The proof is presented in the Appendix D as a series of lemmas. We first show that ψ(bi) ≥ ψ(bi). We

prove this by showing that πs(n− bi + 1) ≥ πe(n− bi) and π
e(bi) ≤ π

s(bi + 1). We show the first inequality

by showing that the player making the least profits makes a profitable link with another player, where the

sum of these two strategies would be where a player outside the block sponsored an entire link to the n− bi

players and made profits greater than the lowest profit maker in n − bi block. Or πs(n − bi + 1) is greater

than πe(n− bi). The other inequality is proven similarly.

Next we claim that for a Separated Nash equilibrium to exist, φ(.) cannot always be increasing. We

already know that sponsoring an entire link to a larger block yields higher network profits to the smallest

network profit maker in the smaller block, if the larger block also yielded higher identity benefits, the smaller

block would just unravel.

Now if φ(.) were symmetric around n/2, then we would find that ψ(.) would always be zero; which rules

out the possibility of Separated Nash equilibria. We next consider the case where φ(.) is concave. Here, we

show that only if the peak occurs before n/2 will ψ(.) be positive in the relevant region, and otherwise it

will be negative in the relevant region. Hence, a Separated Nash equilibrium might exist only if φ(.) peaks

before n/2. Moreover, there could be only one such partition where a Separated Nash equilibrium is possible.

Similarly, if φ(.) is convex, a necessary condition for the Separated Nash equilibrium to exist will be that the
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trough of φ(.) be after n/2. Finally, we show that the number of separated equilibria will be less than the

peaks of φ(.), since those correspond to the maximum number of changes in inflexion of the ψ(.) function.

Next we will check for the partitions at which Connected Nash equilibria could exist. Assuming a

Connected Nash equilibria exists for the partition under fixed identity, for fluid identity we have three

possible deviations from each block where the player switched identity. The three deviations are by the

player who makes the external link, the player who makes the internal link with the player making the

external link and finally a player from the rest of the block. Let me call these players - i, i′ and i′′. (the

counterparts in the other block are j, j′ and j′′). Suppose when i switches his identity and deviates to

strategy L′
i, θ

′
i, he makes δi(bi,£, L

′
i, θ

′
i) more in network profits from the new network as compared to the

old one. For any given network, let his best increase in profits be captured by δi(bi,£). Remember, this

player can switch identity and maintain his link with j from the other block or he could sponsor an entire

new link with some player from the other block who has a θ = 1, which one is a better strategy would depend

on the exact profit function. Further, i could choose to keep his link with i′, again this would depend on

how sensitive network profits are choice of θ’s. For player i′, we similarly define δi′(bi,£). Finally, we have

δi′′(bi,£), which would be highest possible benefit from switching identity for a player making internal links

only with other players who have θ = 1. If each such player in the original network was in effect paying for

less than one link, then these benefits of switching would always be negative. For a partition at bi, n − bi

with the network structure of £, to be a supported by a Connected Nash network, we would need ψ(bi) to

be greater than:

ψ(bi,£) = max{δi(bi,£), δi′(bi,£), δi′′(bi,£)}

Defining similarly the bounds for other block, we would also need ψ(bi + 1) to be less than:

ψ(bi + 1,£) = min{−δj(bi,£),−δj′(bi,£),−δj′′(bi,£)}

Proposition 6 A Connected Nash network at bi, n − bi will emerge as one of the Nash equilibria if there

exists some link strategy £ and the corresponding optimal choice of Θ such that

- £, Θ comprise a Connected Nash equilibrium in the game with fixed identity

- ψ(bi) ≥ ψ(bi,£) and ψ(bi + 1) ≤ ψ(bi + 1,£)

Proof. For a Connected Nash network to exist at a particular partition, we must have that that network

and commitment strategy is an equilibrium for the game with fixed identity. Further, we need to ensure that

no player makes any profits from switching identity.

Corollary 1 If at n/2 there exists a Connected Nash equilibrium of the game with fixed identity and if φ

is decreasing at n/2, then there will be Connected Nash equilibrium at n/2 for the game with fluid identity.

The second condition is met for instance in φ symmetric, in φ concave with the maximum before n/2 and in

φ convex with the minimum after n/2.

As opposed to separated networks, we cannot draw a connection between the number of humps in the

φ function to the number of possible Connected Nash equilibria. In fact, the flatter is the φ function, the
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more are the possible connected equilibria. The extreme case being of φ being absolutely flat and then all

the Connected Nash networks of the game with fixed identity will be carried over as connected equilibria in

the game with fluid identity.

We next consider the Efficient Nash Networks in this setup. Assuming that a non-empty Nash network

exists, Efficient Nash Networks will be such that for:

• If φ is symmetric around n/2, the efficient network will be a connected network with block sizes of

n/2, n/2.

• If φ is concave, with the peak occurring before n/2, the connected network at n/2 will be efficient for

large n, whereas, for small n it will be the Separated Nash network if it exists.

• If φ is first convex, with the peak occurring after n/2, the connected network at n with a single identity

will be efficient.

For φ with multiple peaks, finding efficient Nash networks is more tedious as we need to rank amongst

the many possible separated networks and the connected networks.

6.2 The Dynamic Results

The dynamic game is the same as before where again the selected player chooses identity, commitment and

offers. The recipients of the offer then chooses his identity, commitment and whether to accept the offer or

not. We continue with assumption A5 as well as that the benefits from identity depend only on the number

of players with the same identity.

We are now interested in finding out which Nash equilibria will survive as Dynamic equilibria. Also are

multiple Dynamic equilirbia possible - i.e. starting at two different initial networks, will the final network

be different? Clearly, under our current assumptions, some Nash equilibria partition will be ruled out under

the dynamic game. One, because, now switching identity and component does not require sponsoring the

entire link and; two, given that under dynamic game, block deviations are possible.

Let Lmin denote the minimum that a player with a single link has to pay for his link with a player of

same identity and commitment of 1. If the chosen player is with a single link, he will either make an offer

of Lmin to his current link; or he will choose to switch his identity and make a link with some player of the

other block, again offering Lmin. Given this and letting Ii denote the identity profile where player i switched

identity; we know that necessary bounds for the Separated Dynamic equilibrium are

ψDE(bi) = π(n− bi + 1, Lmin,Θ, Ii)− π(bi, L
min,Θ, I)

and

ψDE(bi) = π(n− bi, L
min,Θ, I)− π(bi + 1, Lmin,Θ, Ii)

In other words, in any Separated Dynamic equilibrium, it must be that ψ(bi) ≥ ψDE(bi) and ψ(bi +1) ≤

ψDE(bi + 1)
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Proposition 7 Assuming A1-A5 as well as that for any B1, B2 and strategy profiles L1, L2:

π(B1, L1,Θ, I)− π(B1, L2,Θ, I) = π(B2, L1,Θ, I)− π(B2, L2,Θ, I)

Then we have that the equilibrium of the dynamic game if it exists is unique and is a Nash equilibria of

the static game. Further, given that the dynamic network converges;

• If φ is symmetric around n/2, the dynamic equilibrium will be a connected network with block sizes of

n/2, n/2.

• If φ is concave, with the peak occurring before n/2, the dynamic equilibrium will be connected at n/2

will be efficient for large n, whereas, for small n it will be the Separated Nash network.

• If φ is convex, with the peak occurring after n/2, the connected network at n with a single identity will

be the only possible dynamic equilibrium.

The condition used in the proposition, is essentially saying that change in network profits from changing

link strategy should be the same irrespective of players linked to. One way to attain this restriction is to

consider the set of profit functions that can be separated into benefits and costs.

The proof is presented in Appendix E. We start by showing that the dynamic equilibrium must be a

Nash equilibrium. Next we show that the dynamic equilibrium allows for groups of players to deviate to

linking to the other identity block. This is possible in a case where a player is the center of star with say k

spokes. Now when this player moves in the dynamic game, he can ask all these k players to change identity

and keep their link; and he can himself change identity and link to the other identity block. In this manner

k + 1 players could move to the other block. If there were no star with k spokes right now, we show that

at some point of time such a star must exist. Consider a player making a single link, we know that given

the nature of the dynamic game, this player must be making zero (or the minimum possible) profits at some

time. When at such a time this player moves, he is indifferent to which player he links to - which gives rise

to the possibility of the star. Finally, we show that the dynamic equilibrium must be unique. If it were

connected, we know players (or groups of players) will keep changing their identities till no improvements

can be made from identity benefits. Similarly, if the dynamic game converged to being separated, and there

were another separated dynamic equilibrium which gave higher profits, the original separation would not

survive the dynamic process.

The proposition also points out the link of the dynamic game with that of the efficient Nash equilibria for

different types of identity benefits. We see that if φ is symmetric around n/2, the dynamic network will be

a connected network with block sizes of n/2, n/2. Since we know that no Separated Nash equilibrium exists

for this case, the dynamic equilibrium must be connected; and the only network at which identity benefits

cannot be improved upon is where block sizes are n/2, n/2. If φ is concave, with the peak occurring before

n/2, we find that the dynamic network as well as the efficient Nash network, will be connected at n/2 will be

efficient for large n, whereas, for small n it will be the Separated Nash network if such a network exists. It
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is important to note that for the dynamic network to be connected, a larger set of players might be required

than for the efficient Nash network to be connected. If φ is convex, with the peak occurring after n/2, the

connected network at n with a single identity will be the only possible dynamic network. This must be the

case because at any separation, the smaller identity block will be better of switching identity and joining a

larger network and getting larger identity benefits. Finally, for φ with multiple peaks, we know there are

multiple Nash equilibria possible. Here, the dynamic equilibria if it exists will be the one where individual

profits are the maximum. Hence, we see that the dynamic equilibrium often turns out to be the efficient

Nash equilibrium.

7 Conclusion

If the only desire is to have the maximum number of connections, the choice of identity cannot divide the

population in the long run, (though it may very likely lead to two connected identity groups in the Nash

equilibrium ). Only if the desire to have the maximum number of connections is coupled with the desire to

have the optimal number of same identity-group members would we see a division of the network both in

the Nash equilibrium and in the dynamic setting.

To sustain a partition, the benefits from identity must be such that the smaller identity-group must

have very strong benefits from identity, so much so that switching to the larger identity-group (and having

more connections in the case of a separated equilibrium) does not attract them. On the other hand, the

larger-group should prefer to stay in the large group for the benefits of larger connections and no one from

this group should want to deviate to the smaller identity-group.

If we try to extrapolate from the model to the actual world, it would follow that the long run existence

of distinct identity groups stems from an innate desire within each person for such groups; even though

the absence of this desire and the lack of different identity-groups would increase benefits for all involved.

Another way of looking at it is, that it is not that these separate identities were simply imposed on us; it is

rather that as individuals and as a collective, we have chosen to have and retain these separate identities.
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A Proof for Fluid Commitments, The Dynamic Game

The proof of the proposition on the presented in the following series of lemmas.

Lemma 2 If R1 holds for a block, for any player i ∈ B, there must be a network which satisfies R1 such

that i forms only one link.

Proof. Suppose not, then ∃i, such that in no network configuration is it possible for i to just have one

link. In other words for player j 6= i and any strategy L∗
i where L∗

ij > 0 and L∗
ik = 0 for k 6= j, such that

π(N/i, L∗
i ,1) = 0

but

π(i, L∗
j ,1) < 0

where L∗
j is such that L∗

ji = 1 − L∗
ij and L∗

jk = 0 for k 6= i. i.e. even though i is willing to pay the

maximum possible to link with the rest of the players using just one link to player j, player j can not

profitably link to him. And this is true for any player j 6= i

But since R1 is satisfied and we assume A3, there must exist some Nash network where the block is

connected or i forms some profitable links. Suppose in one such Nash network, one of i’s link’s is to player

j′, such that ∃ a subset B1 ⊂ B and i’s strategy Li is such that Lij′ > 0, such that

π(N/B1 ∪ i, Li,1) = 0

but

π(B1 ∪ i,1− Li,1) ≥ 0

where again Lj is such that Lji = 1− Lij and Ljk = 0 for k 6= i.

Now think of the hypothetical scenario of adding another player x to B, then using A3 and A4, he could

link to i combining the previous strategies Lij′ and Lj′i and get a positive profit sponsoring all of the link

to i and observing all N . But if he used a combination of strategies L∗
i and L∗

j , he would make negative

profits sponsoring all of the link to i and observing all N ! (Remember, the two scenarios are exactly alike

for x since the profit function does not depend on the rest of the network structure after having accounted

for his neighbours.) Which is contradictory and hence it must be that

π(i, L∗j ,1) ≥ 0

Lemma 3 If R1 holds for a block, there must be a network which satisfies R1 which is of the form a star.
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Proof. Using the above lemma, we know that for each player has a feasible strategy L∗ that allows him

to profitably link to all other players using a single link. Or we can allow one player to be the central player

and be the counter-party to all of these offers L∗ and this central player will also make non-negative profits

using the assumption of a sum of profitable strategies is a profitable strategy.

Lemma 4 Suppose there is a single block. Starting with any arbitrary network, if R1 holds, this block will

be connected.

Proof. If we start at an empty network, we know from the previous lemma that a player can initiate a

star network.

If we start at any other network, first all non-profitable links will be broken off. (Since this is an infinite

process this will indeed be the case eventually.) Since there is only one block, the commitments will converge

θ = 1.

If there are no profitable links, we return to the empty network. If not, suppose it is the case that players

i and j have a profitable link, but k is a singleton. But then k can use a combination of the strategies lij

and lji to sponsor an entire link to either one of i or j

Lemma 5 If the network is connected, it will converge to a network, where each individual block is internally

connected.

Proof. Suppose the network is connected but i, i′ ∈ B are not internally connected. Suppose wlog, i

only has an external link to j and i′ only has an external link to j′. If j is the player chosen to act, he will

extract the maximum link contribution from i, leaving i with zero profits. The if i is chosen to act, he could

increase his profits by switching to θ′i = 1 and a link to i′.

Lemma 6 The network will transition from separated to connected only if the connected network is such

that, breaking the inter-block links and giving everyone a theta of 1 is also a static Nash equilibrium.

Proof. A network will converge to connected from separated only if the player receiving the offer for

the external link can support his internal link under the changed lower θ. In that sense, we need that the

minimum this player pays when he is forming only the internal link be still profitable when he forms the

external link. The basic problem is that the player offering the link can change his internal link contribution

simultaneously, but the player receiving the external link offer cannot.

B Proof for Fluid Identity, Choice of Identity has no Direct Im-

pact on Utility, Static Game

The proof of the proposition on Nash equilibrium in the case with fluid identity with identity not directly

affecting the utility is presented in the form of the following lemmas.
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Lemma 7 In a Separated Nash equilibrium, players making just one link, should be making equal profits.

Proof. Suppose i ∈ B1 participates in just one link with j ∈ B1. Similarly let there be a link between

i′, j′ ∈ B2. Now suppose that i′ makes higher profits than i. i can then switch identity and make the same

offer to j′ as i′ or lij′ = li′j′ and this strategy will give him higher profits than before. Moreover, if to this

strategy, he adds j′ strategy, he will make it feasible and since j′ link to i′ must profitable, in all i will now

have a feasible strategy making strictly more than before.

Lemma 8 A Separated Nash equilibrium must have all players making equal profits.

Proof. Suppose not. Suppose i ∈ B1 makes higher profits than i′ ∈ B2 who participates in a single link.

If i links to j ∈ B1 and this individual link is profitable (one of i’s links must be profitable, so that in all he

makes profits), then using the same reasoning as before, i′ could profitable deviate to switching identity and

forming a link with the other identity block.

Lemma 9 In a Separated Nash equilibrium, the profit from deviation and adding a link to the other block

must be the same as the profits made by the players making just one link

Proof.

We know that for a player making single link in one of the blocks, it must be more profitable to stay in

the current block that to change identity and sponsor an entire link to the other block. But since the players

making a single link in any block must make the same profits, the lemma follows.

Lemma 10 A Separated Nash equilibrium must have all players making zero profits.

Proof. Suppose i ∈ B1 makes single link to i1. Suppose i makes positive profits, πi > 0. In any case,

i1 must make zero profits from this link to i, otherwise the total link between i and i1 will become more

profitable than the profit of i. Which would mean that a player from the other block who makes a single

link and the same profits as πi, would want to deviate to make a link with i. But in all i1 must make the

same profits as i, otherwise he could deviate to join the other block. So i1 must have a profitable strategy,

say with i2 and i3. The total profits from these two links must be πi and both link individually also yield

profits. Now i2 must also make exactly πi profits; and since from his link with i1 he makes less than πi, he

must be making at least one more profitable link. Any player with whom he makes a profitable link, will

again need to make other profitable links to have total profits of πi. But this will lead into an infinite cycle

given that we know player’s who make a single link make πi from that link. In other words it must be that

πi = 0.
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Lemma 11 Identity Blocks B1 and B2 will be supported as Connected Nash network if for some i, i′ ∈ B1

and j, j′ ∈ B2, we have

π(N,Li,Θ, I) > 0, π(N,Li′ ,Θ, I) > 0, π(N,Lj ,Θ, I) > 0, π(N,Lj′ ,Θ, I) > 0

where θi, θj ≤ 1, θi′ = θj′ = 1, lij , lji, lii′ , li′i, ljj′ , lj′j > 0, lij + lji ≥ 1, lii′ + li′i ≥ 1 and ljj′ + lj′j ≥ 1. And

none of these players can do better by breaking one of these links or switching identity.

Proof. For a partition to be supported as Connected Nash Network, we need at least one player each

from both blocks that is participating in an external as well as internal link. And we must have both these

contributions strictly positive. These players must not want to severe either connection or to switch identity.

Further more, the players linking to these players making external links should better off keeping those links

than severing them.

C Proof for Fluid Identity, Choice of Identity has no Direct Im-

pact on Utility, Dynamic Results

Lemma 12 Separated Identity Blocks will not survive the dynamic process.

Proof. Let i ∈ B1 be player who makes only one link with i′ ∈ B1. i
′ offers li′i for this link which must be

profitable to him, by A4. If some player j ∈ B2 offers lji = li′i to i, it must be profitable for j, by A3. But

if i switches to linking with j and changing his identity, he has the same costs as before, but he is connected

to a ‘bigger’ block now.Or i will switch to a link with j, and the block B1 will unravel and we will be left

with one identity for all players.

Lemma 13 In Connected Identity Blocks, the player making external links will participate in at most

one internal link.

Proof. Suppose i makes external links and also internal links with say i′ and i′′. If i is chosen to act at

some point, he will extract the maximum possible from both i′ and i′′. But that leaves i′ with the profitable

deviation of switching to a link with i′′ and offering the same as to i or offering li′i′′ = li′i. The deviation is

profitable because i′ now has the same benefits as before but by making a cheaper link. i′′ would choose to

accept this offer rather than not be linked to i′ at all.

Lemma 14 In Connected Identity Blocks, there will be exactly one link connecting the two identity

blocks.

Proof. Suppose i, i′ ∈ B1 both participate in external links. Then it must be that they are connected via

these external links. Then either one of them has the profitable deviation of switching to a link with the

other and breaking the external link.
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Lemma 15 Connected Identity Blocks will not survive the dynamic process.

Proof. Consider the case where i ∈ B1 participates in one external link with j ∈ B2 and one internal link

with i′ ∈ B1. Since i does not want to switch identity while keeping the same link strategy, it must be that

lii′ > lij . let’s assume wlog that lij ≥ 1/2. But if i were to switch his identity, there would be one more

person in the block B2 and so i′ would be willing to change his offer to l′i′i such that l′i′i > lij ≥ 1/2 to

maintain the link with i and hence with the other identity block. Or in other words, i could profitably move

to the other identity and pay less than 1/2 for his now external link with i′ and more than 1/2 for his now

internal link with j. Earlier he was paying more than 1/2 for both links. But then i′ will have a similar

incentive to switch identity and the process will converge to a unique identity for all.

D Proof for Fluid Identity, Choice of Identity has Direct Impact

on Utility, Static Game

Again the proof for the proposition on Nash networks is presented in the following lemmas.

Lemma 16 Assuming A1-A5, for all bi ≤ n/2, ψ(bi) ≥ ψ(bi)

Proof. Wlog assume that player j makes πe(n− bi) = π(n− bi, Lj ,Θ, I), where Lj involves a link offer

to only one player k to access the entire block. Also, player k’s profit from this link to j must be positive,

or πkj(1, Lkj ,Θ, I) ≥ 0. Now, playing Lj and Lkj will yield higher profits than πe(n − bi) by A3, but this

addition will mean that a player observing bi + 1 players and paying for the cost of one entire link is better

off than making πe(n− bi). In other words we have:

πs(n− bi + 1) ≥ πe(n− bi)

Similarly, we can show

πe(bi) ≤ π
s(bi + 1)

Together they imply ψ(bi) ≥ ψ(bi)

Lemma 17 If a Separated Nash equilibrium exists at b1, n− b1

πs(b1 + 1) > πe(b1) > πs(b1)

Proof. The first inequality follows from the previous lemma. The second inequality must hold from the

definition of πe(.)

Lemma 18 If there exists a Separated Nash equilibrium, it cannot be that φ(.) is always increasing.

Proof. From the previous lemma, we know that the network profits from sponsoring an entire link to

any larger block size are greater than being the lowest profit maker in a smaller block. If to that, we add

higher benefits to identity to larger blocks, the lowest profit maker in the smaller block will always want to

deviate to sponsoring an entire link to the larger block if φ(.) were always increasing.
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Lemma 19 The only Nash equilibrium if φ is symmetric around n/2 will be the connected equilibrium with

a single identity chosen.

Proof.

Consider any partition b1 ≤ n/2 and n − b1 ≥ n/2. Since φ is symmetric, it must be that ψ is always

at zero. Or in other words, its always profitable for the player of the smaller block to deviate to the larger

block, since, ψ > 0 by the first lemma. Since this is true for any arbitrary division, it must mean that a

Separated Nash equilibrium with two identities is not possible.

Lemma 20 For a φ that is concave, at most one partition could be supported as Separated Nash equilibrium.

Further, for a partition to exist, the peak must be before n/2. The smaller block size will be bigger than the

block size at which the peak occurs. (this includes the case of a continuously decreasing phi, here the peak

would be at bi = 1)

Proof.

Suppose the peak in φ occurs at x1. Then we will see ψ will also increase till min(x1, n − x1 + 1) and

then decrease. Moreover, if x1 ≤ n/2, then ψ will be positive throughout; but if x1 ≥ n/2, then ψ will be

negative throughout and there will be no Separated Nash equilibrium possible. If x1 ≤ n/2, then a necessary

condition for the equilibrium is that ψ(x1) ≥ ψ(x1) and either ψ(n/2) ≥ ψ(n/2) or ψ(n/2) ≥ ψ(n/2).

Lemma 21 For a φ that is convex, at most one partition could be supported as Separated Nash equilibrium.

Further, for a partition to exist, the trough must be after n/2.

Proof.

Suppose the trough in φ occurs at x1, then we will see ψ will also increase till min(x1, n − x1 + 1) and

then decrease. Moreover, if x1 ≤ n/2, then ψ will be negative throughout and there will be Separated Nash

equilibrium possible; but if x1 ≥ n/2, then ψ will be positive throughout.

Lemma 22 If φ is such that it can be partitioned into regions that are concave around peaks and convex

around troughs, the number of Separated Nash equilibrium will be at most the number of peaks in φ.

Proof.

Since for a Separated Nash equilibrium to exist, ψ has to cross from being above ψ to being below ψ, we

must have that the number of Nash equilibrium is less than the number of peaks in ψ. Now suppose that

φ has four peaks, moreover it has peaks at x1, x2 ≤ n/2 and troughs at x3, x4 ≥ n/2. It follows that ψ will

have peaks at most at {x1, x2, n− x3 + 1, n− x4 + 1}

Moreover, if the the function φ has troughs at y1, y2 ≤ n/2 and peaks at y3, y4 ≥ n/2, then ψ will have

troughs at most at {y1, y2, n− y3 + 1, n− y4 + 1}

The necessary condition for a Separated Nash equilibrium to exist between a peak of ψ, say x1, and its

corresponding trough. say y2, is that ψ(x1) ≥ ψ(x1) and ψ(y1) ≤ ψ(y1).
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E Proof for Fluid Identity, Choice of Identity has Direct Impact

on Utility, Dynamic Result

Lemma 23 Dynamic equilibria are also Nash equilibria.

Proof. We will show that Separated Dynamic equilibria are also Separated Nash equilibria. The proof

for the connected case is very similar and is omitted.

We must have

ψDE(bi) ≥ ψ(bi)

because

ψDE(bi)− ψ(bi) = π(n− bi + 1, Lmin,Θ, Ii)− πs(n− bi + 1) + πe(bi)− π(bi, L
min,Θ, I)

or

ψDE(bi)− ψ(bi) = π(bi, L
min,Θ, Ii)− π(bi, L

s,Θ, Ii) + πe(bi)− π(bi, L
min,Θ, I)

or

ψDE(bi)− ψ(bi) = πe(bi)− π(bi, L
s,Θ, Ii) > 0

Similarly, we must have

ψDE(bi) ≤ ψ(bi)

Lemma 24 Any subgroup of an identity block can deviate to switching identity and linking to the other

identity block.

Proof. Consider a network where b1 players have chosen identity characteristic c1 and b2 players have

chosen identity characteristic c2. Let us consider a deviation by a subgroup b′1 of b1 to identity characteristic

c2.

Suppose the block b1 is arranged in such a way that player i ∈ B1 is the center of a star with b′1 spikes

and another link to the rest of the players. If i is the chosen player in any period, then he can retain links

with b′1 players on the condition that they switch identity to c2, sever his link with the rest of his block and

offer a new link to the other identity block.

If b1 does not already have that form, then we know with positive probability it will attain that form.

Consider any other player j ∈ B1 who wlog forms a single link with j′. In any period if j is chosen to act,

one of his best responses will be to sever link with j′ and offer to link with i. Since j forms a single link,

linking to any player in his identity block is a best response. By A3, this link offer will be acceptable by

i. And continuing thus, i would in some periods end up as the center of a star with b′1 spokes which would

then have to choice to deviate to a link with the other identity block.
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Lemma 25 The dynamic game will not converge to block sizes b1 ≤ b2, if there exists some n3 > b2 such

that φ(n3) ≥ φ(b1)

Proof. If it were so, then n3 − b2 players from B1 would migrate to the bigger block to make higher

network profits and higher profits from identity.

Lemma 26 If

π(B1, L1,Θ, I)− π(B1, L2,Θ, I) = π(B2, L1,Θ, I)− π(B2, L2,Θ, I)

then, the dynamic game will converge to separated blocks of b1 ≤ b2 if for any b′1 ≥ b1 and/or any b′2 ≥ b2,

it were true that

π(b′1, 0,Θ, I
b′
1
,n−b′

1) + φ(b′1) ≤ π(b2, 0,Θ, I) + φ(b2)

π(b′2, 0,Θ, I
n−b′

2
,b′

2) + φ(b′2) ≤ π(b1, 0,Θ, I) + φ(b1)

(Ix,y denotes the identity profile where x players have identity c1 and y players have identity c2)

Proof. From the previous lemmas we know that a move to any partition that involves players migrating

from one of the current blocks to the other is not possible. The assumption ensure this to be true for all

strategy profiles, in particular for the profile at which no costs are bourne.

Lemma 27 A necessary condition for the dynamic game to converge to connected identity blocks of sizes

b1 ≤ b2 if for any b′1 ≥ b1 and/or any b′2 ≥ b2, it were true that

φ(b′1) ≤ φ(b2)

φ(b′2) ≤ φ(b1)

(Ix,y denotes the identity profile where x players have identity c1 and y players have identity c2)

Proof. These conditions must hold because any player/block choosing to deviate to the other identity

block will make the same network profits, they will be making the decision based only on the identity benefits.

Lemma 28 If a dynamic equilibrium exists, it is unique.

Proof. Suppose a Separated Dynamic equilibrium exists at b1, b2 as well at n1, n2. We know that either

b2 < n1 < n2 < b2 or n1 < b1 < b2 < n2. Suppose the former case is true , then we show that n1, n2 cannot

be a Separated Dynamic equilibrium. This is so because for b1, b2 to be a Separated Dynamic equilibrium,

it must be that the profits at n1 are less than profits at b2. In other words, some players from n1 will wish

to join the other identity block to form a block of size b2. Similarly, in the latter case b1, b2 cannot be an

equilibrium.

Suppose a Connected Dynamic equilibrium exists, then players will keep moving between identities till

no improvements can be made on identity benefits.
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