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Summary:  

Using self-assessed health status together with several indicators of individual morbidity 

and socio-demographic characteristics, we study the quality of health and income related 

health disparity in five racial/ethnic groups as well as across 17 geographic areas of New 

York State. The American Indian/Alaskan Natives and Hispanics are found to do the 

worst, whereas, geographically, the North Country in Upstate New York and Bronx 

County in Downstate score the worst on both counts. Three major contributing factors to 

income related health disparity are found to be household income, employment status, 

and education. However, the contribution of each of these determinants varies 

significantly among racial/ethnic groups as well as across geographic areas, suggesting 

targeted public policy initiatives to eliminate health disparity between rich and poor. 
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INTRODUCTION 

Persistent health inequality in the United States along multiple dimensions has 

been put at the forefront by one of the challenging goals of Healthy People 2010 (US-

DHHS, 2000): to eliminate health disparities among all segments of the population, 

including differences that occur by gender, race, or ethnicity, education or income, 

disability, geographic location, and sexual orientation. In this paper we study the quality 

of health and health inequality among racial/ethnic groups as well as across geographic 

areas of the State of New York. Even though certain aggregate indicators of health (e.g., 

life expectancy at birth, mortality rate, etc.) in New York have improved during last few 

decades (see NCHS, 2006), health disparities among racial/ethnic groups and among 

regions continue to exist. For example, as we will show below, the prevalence of diabetes 

is almost twice as high among Blacks compared to that among Whites; on the other hand, 

many New York City neighborhoods and unsuspecting areas of Upstate New York are 

characterized by extreme poor health. This is the first study to look at the health status 

and its disparity among New Yorkers along these dimensions.  

A question arises as to what causes poor health and health disparities. A large 

number of studies have reported that socioeconomic status (SES) is a key factor affecting 

quality of health and health disparity (see for example, Adler & Newman, 2002; Cutler & 

Lleras-Muney, 2006; Adams, Hurd, McFadden, Merrill, & Ribeiro, 2003; Cutler, Deaton, 

& Lleras-Muney, 2006; Deaton, 2006). There are four broad pathways—health care, 

environmental exposure, health behavior, and chronic stress—through which SES affects 

health (Adler & Ostrove, 1999). Because SES is an important mediator for quality of 

health, studying health disparity cannot be separated from studying disparity in SES.  



 3

Rawls’ First Principle of Justice (1971) requires that all individuals should have 

the same opportunity to achieve their potential health levels; see Bommier and Stecklov 

(2002). An egalitarian viewpoint of social justice requires that people in equal need of 

health care be treated equally, irrespective of characteristics such as income, place of 

residence, race, and so forth. Since discrimination in access to health care is likely to be 

based on income, we focus on income-related health inequality in this paper. There seems 

to be broad consensus among health policy analysts that socioeconomic inequality in 

health is indeed inequitable and unjust, and is consistent with the Institute of Medicine 

(2002) definition of health disparity—any difference in health after adjusting for health 

care needs. This definition recognizes that factors such as income may be mediators of 

disparity in health care.2  

Numerous studies on measuring quality of health and health distributions have 

focused on mortality rates, prevalence of diseases/risk factors, psychological morbidity, 

quality of or access to health care services, and health care utilization rates.3 In addition 

to looking at many of these factors, in this study we focus on a measure of health more 

generally, and calculate an index of health and health inequality based on self-assessed 

health (SAH) status. SAH is defined as the response to the survey question “Would you 

say that in general your health is: excellent, very good, good, fair, or poor?” (Centers for 

Disease Control and Prevention (CDC), 1999-2004).  

SAH has been shown to be a good measure of overall health status. In their 

review, Idler and Benyamini (1997) show that SAH has strong predictive validity for 

                                                 
2 We found that between 40% and 50% of the total health inequality in our sample is due to income-related 
health inequality—an estimate that is much higher than 25% reported by Wagstaff and van Doorslaer 
(2004) for Canada. 
3 See, for instance, Williams and Collins (1995), Ayanian, Weissman, Chasan-Taber, and Epstein (1999), 
and Shishehbor, Litaker, Pothier, and Lauer (2006). 
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mortality. Sickles and Taubman (1997) compiled results from worldwide studies on the 

association between self-assessed health and mortality, and reported that a lower level of 

SAH has higher mortality odds. Manor, Mathews, and Power (2001) found that SAH has 

a strong association with longstanding illness. Furthermore, Lahiri, Vaughn, and Wixon 

(1995) show that SAH is a useful predictor of the severity of diseases and disability. 

Humphries and van Doorslaer (2000) found that health inequality calculated on the basis 

of SAH status gives similar results to the results calculated based on a more objective 

health indicator (viz. McMaster Health Utility Index). More recently, Safaei (2006) finds 

SAH to be statistically more reliable than the binary chronic conditions as a measure of 

overall health.  

In this paper we generate a continuous measure of health by modeling the five-

category SAH as an Ordered Probit Model (McKelvey & Zavoina, 1975) conditioned by 

several objective determinants including different diseases, behavioral risk factors, and 

socio-demographic characteristics. The estimated values from this model are used as a 

measure of individual health and income related health inequality using concentration 

index and concentration curve (Kakwani, Wagstaff, & van Doorslaer, 1997). 

Furthermore, to be useful for policy purposes, the income related health inequality is 

decomposed into its determinants (Wagstaff, van Doorslaer, & Watanabe, 2003) for the 

whole sample and specific sub-samples.  

The paper is organized as follows: The estimation procedures—the methods to 

calculate quality of health, income related health inequality and their determinants—are 

described; the data used in the empirical analysis is documented; results are then 

presented; and finally we summarize our conclusions. 
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METHODS 

In modeling SAH we follow the same procedures as Cutler and Richardson (1997, 

1998) and Groot (2000). In the empirical modeling of the quality of health, three related 

concepts are distinguished: a true quality of health denoted as h*, a vector of objective 

measures of health denoted as ho, and a subjective measure of health denoted as hs. The 

true quality of health is a latent variable, which is unobservable. What we observe is a 

vector of objective indicators and a subjective measure of health. The true unobserved 

quality of health h* is assumed to be a function of the vector of observed and objective 

measures of health, and a vector of individual characteristics denoted by x. The 

subjective measure of health is measured on an ordinal scale with m self-assessed 

response categories. For the purpose of measuring health and health inequality we 

transform these ordinal responses into a cardinal measure. In this paper we used an 

ordered response model to transform the order scale variable into a cardinal variable. To 

control for possible heterogeneity in self-assessed health, we estimate an Ordered Probit 

model with heteroskedasticity in errors. The model is formulated as follows: 

 o ( , )*
i i i i ih s ε= + +h γ x β z η   

*

1 for 0, 1,..., 1s

i j j jh j h j mµ µ += ⇔ ≤ ≤ = −       

+∞=−∞= mµµ and0  

ni ...,,2,1=  

where γ, β, η are vectors of coefficients, µ = (µ1,…,µm-1) is an unknown vector of 

thresholds to be estimated together with the vectors of coefficients, εi is the error term 

and is assumed to be normally distributed, ( , ) (1 exp( ))i is σ= +z η zη  is a scale function 

(1)
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to control for heteroskedasticity, and n is the number of observations. zi is a vector of 

observed variables that affect the variance of the error term.4 

The model is estimated using the maximum likelihood approach. The predicted 

quality of health,
o*ˆ ˆˆ

i i ih = +h γ x β , is used as a measure of individual health. The predicted 

health from the estimated Ordered Probit model will purge at least some part of the 

variation in SAH that is due to subjective idiosyncrasies of the respondents, not supported 

by objective health measures. Following van Doorslaer and Jones (2003), we rescale this 

prediction to be in the [0, 1] interval as )ˆˆ/()ˆˆ( minmaxmin
****

ii hhhhh −−= , where *hmax
ˆ and 

*hmin
ˆ  are the maximum and the minimum of the predicted quality of health, respectively.  

Using the estimated quality of health hi, we measure income related health 

inequality using concentration curves and health concentration index (Wagstaff, Paci, & 

van Doorslaer, 1991).5 A concentration curve plots the cumulative proportion of health 

L(s) against the cumulative proportion of population s (starting with the lowest 

socioeconomic status and ending with the highest socioeconomic status), as shown in 

Figure 1. If the concentration curve L(s) coincides with the diagonal, health is equally 

distributed over socioeconomic status. This means that there is no inequality in health 

across socioeconomic hierarchies in the population. The farther the concentration curve 

from the diagonal the larger is the degree of inequality. The area between concentration 

curve and the diagonal provides a measure of inequality. The concentration index is 

defined as twice the area between the concentration curve and the diagonal. The 

coefficient ranges from 0 (when across income everybody enjoys exactly the same 

                                                 
4
van Doorslaer and Jones (2003) have shown that this heteroskedastic model accommodates possible 

individual-specific heterogeneity in the subjective thresholds µ.  
5 See also Lecluyse and Cleemput (2005) and Clarke and Ryan (2006). 
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health) to 1 (when all population’s health is concentrated in the hands of the richest 

individual).  

<<Fig. 1 approx here>> 

The concentration index can be calculated using equation (see Kakwani et al., 

1997):  

∑
=

−=
n

i

ii Rh
n

C
1

1
2ˆ
µ

 

where Ri is the ith individual fraction rank in socioeconomic status and µ is the mean of 

quality of health. The variance is estimated using the Huber–White procedure. The 

disadvantage of the concentration index is its lack of straightforward interpretation in a 

natural unit, while its advantage is that it takes into account both coefficient variation of 

health and correlation between health and income rank (Milanovic, 1997). Koolman and 

van Doorslaer (2004) present a lucid interpretation of the concentration index.  

 Furthermore, to be more meaningful for policy purposes, income related health 

inequality is decomposed into its determinants as demonstrated by Wagstaff et al. (2003). 

Define a vector of explanatory variables as o( )=w h x . Given the relationship between 

health and explanatory variables as in equation (1), the concentration index can be written 

as  

( )∑
=

=
K

k

kkk ChwβC
1

/ˆˆ  

where h is the mean of h, kw is the mean of variable wk from the vector of explanatory 

variables w, and Ck is the concentration index of variable wk.  

DATA, DESCRIPTIVE STATISTICS, AND IMPUTATION 

(2)

(3)
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Data and Descriptive Statistics 

The data used in this study are obtained from the New York State sample of the 

Behavioral Risk Factor Surveillance System (BRFSS) over 1999–2004, with a total of 

22,083 sample observations.6 Every year health departments of all states, with technical 

and methodological assistance from CDC, conduct monthly telephone interviews on 

randomly selected noninstitutional adults aged 18 years or older. The surveys are 

developed and conducted to monitor major behavioral risks among adults associated with 

premature morbidity and mortality. The number of observations is not the same for all 

variables. The differences can be attributed to (i) the absence of some questions in some 

years—for example, coronary heart disease was asked only in the interviews for the years 

of 1999, 2001, and 2003; and (ii) missing values due to “do not know,” “not sure” 

responses, and refusals to answer. In addition, population socioeconomic characteristics 

are obtained from 2000 census information (U.S. Census Bureau, 2000). 

Based on Census 2000 (U.S. Census Bureau, 2000), New York State population is 

18,976,457 persons, which is 6.7% of the U.S. population. Sixty two percent of the 

population is non-Hispanic White, 15.9% is Black, 15.1% is Hispanic, 5.5% is Asian, and 

0.4% is American Indian and Alaskan Native. As a comparison, the U.S. population 

consists of 69.1% non-Hispanic White, 12.3% Black, 12.5% Hispanic, 3.6% Asian, and 

0.9% American Indian and Alaskan Native. So the percentage of minority population of 

New York State is higher than that of the United States.  

In this paper, we divide New York State into 17 geographic areas, which consist 

of 9 counties of Downstate and 8 economic development regions of Upstate. Upstate 

                                                 
6Sehili, Elbasha, Moriarty, and Zack (2005) have used these data source to study health inequality in the 
United States in terms of physically healthy days. 
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New York was divided into economic development regions due to small samples in 

individual counties. Racial/ethnic groups included in the comparison are non-Hispanic 

White (White), non-Hispanic Black (Black), Hispanic, Asian/Pacific Islander (Asian), 

and American Indian and Alaskan Native (AIAN).  

<<Fig. 2 approx. here>> 

<<Fig. 3 approx here>> 

The population characteristics vary across New York State geographic areas, 

especially between Downstate and Upstate of New York. Sixty three percent of the New 

York State residents live in Downstate. Percentage of individuals who live in poverty in 

Downstate varies from 5% (Nassau County) to 25% (Bronx County), while in Upstate it 

varies from 4% (Putnam County) to 15% (Allegany County) as presented in Figure 2.7 

Income inequality, measured by Gini coefficient8, varies across the areas from 0.33 

(Nassau County) to 0.45 (Bronx County) for Downstate; and for Upstate, it varies from 

0.36 (Hudson Valley) to 0.42 (North Country) (see Figure 3). In addition, the 

racial/ethnic composition of the population also varies considerably across the areas, 

where Downstate population is more diverse compared to Upstate population. For 

example 21% of Downstate population is Black compared to 7% of Upstate population. 

Figure 4 presents the percent Black population across the areas.  

 <<Fig. 4 approx here>> 

                                                 
7All maps in this paper were created using ArcView GIS (Environmental Systems Research Institute 
[ESRI], 2002). The breakpoints between classes are determined using a statistical formula (Jenk's 
optimization) that minimizes the variance within each class. 
8Lorenz curve plots the cumulative proportion of income against the cumulative proportion of individuals 
ranked by income. The Gini coefficient is defined as twice the area between the Lorenz curve and the 
diagonal, and ranges from 0 to 1.  
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We follow the BRFSS guideline that the minimum number of observations to be 

meaningful for interpretation is 50. Specifically, the description of variables used in this 

study is as follows.  

Socio-demographic variables. The average age of respondents in the sample is 45 

years. Comparing racial/ethnic groups, White has the highest average age (48 years) and 

Asian has the lowest (39 years). Since age is an important determinant of health, we need 

to adjust for differing age distributions when comparing the prevalence of the diseases 

among racial/ethnic groups or areas. Across the geographic areas of New York State, the 

average age varies from 43 years (Queens County) to 49 years (Mohawk). Sixty percent 

of White respondents are married, compared to 37% of Black respondents. The 

percentage of married respondents in New York County is the lowest (35%) compared to 

other areas.  

Education level varies considerably among racial/ethnic groups as well as across the 

areas. Only 13% of AIAN respondents have 4 years or more of college, compared to 61% 

of Asian respondents; across the areas, the percentage varies from 19% in Bronx County 

to 52% in New York County. The percentage of respondents who were unable to work 

varies from 1.6% (Asian) to 14% (AIAN), while the percentage across the areas varies 

from 1.3% (Westchester County) to 11.3% (North Country). Annual household income 

also varies considerably among racial/ethnic groups as well as across the areas. AIAN 

average annual household income is $34,390, compared to $62,470 of Asian. Across the 

geographic areas, the average varies considerably from $44,579 (Kings County) to 

$75,831 (Rockland County).  
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Eighty-six percent of the respondents have health insurance plans, but only 68% 

among Hispanics have health plans compared to 91% among Whites. Across the areas, 

the percentage varies from 77% (Queens County) to 92% (Western New York). The 

percentage of respondents who could not afford to see a doctor in the past 12 months also 

varies considerably among racial/ethnic groups, ranging from 8% (White) to 21% 

(Hispanic). Twenty percent of Rockland County respondents could not afford to see a 

doctor at least once, while in the Capital Region only 7% of the respondents had that 

experience. 

Bad health habits. The U.S. Surgeon General’s Report (US-DHHS, 2004) has 

concluded that smoking is a source of many kinds of diseases and harms every organ of 

the body. Thus, smoking status could be a good explanatory variable to be included in 

equation (1). The percentage of smokers among racial/ethnic groups varies noticeably, 

ranging from 13% (Asian) to 34% (AIAN); the percentage of smokers across the state 

varies from 15% (Westchester County) to 28% (North Country) (see Figure 5). In 

addition to smoking, not exercising is categorized as a bad health habit that can result in 

several kinds of diseases. The percentage of respondents who participated in any sort of 

exercise in the past 30 days is 74%. Sixty-two percent of Hispanic respondents 

participated in any exercise in the past 30 days, compared to 79% for White respondents; 

across the areas, Bronx County has the lowest percentage (66%) and North Country has 

the highest (80%).  

<<Fig. 5 approx here>> 

Self-assessed health status. Figure 6 presents the distribution of SAH by racial/ethnic 

groups. Twenty-two percent of the respondents considered their health as “excellent”, 
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while only 4% considered their health as “poor”. The distribution varies considerably 

among racial/ethnic groups. The percentage of “excellent” and “very good” health is 

significantly higher for Whites than for Blacks, Hispanics, or AIANs. In addition, the 

percentage of “fair” and “poor” health is lower for Whites than for Blacks, Hispanics, or 

AIANs. The percentage of “excellent” and “very good” health varies from 43% (Bronx 

County) to 62% (Capital District), and the percentage of “fair” and “poor” health varies 

noticeably from 10% (Finger Lakes) to 24% (Bronx County). Based on both criteria, 

Bronx County has the lowest quality of health compared to the other areas. It is 

noteworthy that different cut points (criteria) can give different classifications. For 

example, if we use the percentage of “excellent” health as the criterion of quality of 

health then Westchester does the best.  

<<Fig. 6 here>> 

Figure 7 presents the distribution of SAH by income groups. The figure indicates that 

as income increases the percentage of “excellent” health increases and the percentage of 

“poor” health decreases. This pattern indicates a strong association between income and 

quality of health—the so-called negative income health gradient. 

<<Fig. 7 here>> 

Number of days physical and mental health not good in the past 30 days. The 

pattern of number of days where physical health was not good is the same as the number 

of days where mental health was not good. Comparing racial/ethnic groups, Asian has the 

lowest average on both measures and AIAN has the highest. Across the areas the patterns 

of these two measures are different (see Figures 8 and 9). The lowest average number of 

days where physical health was not good is 2.6 days (Rockland County) and the highest 
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average is 4.3 days (Mohawk). While the lowest average number of days where mental 

health was not good is 1.3 days (North Country), and the highest is 4.2 days (Bronx 

County).  

<<Fig. 8 approx here>> 

<<Fig. 9 approx here>> 

Limited activities due to health problems. The overall prevalence of limited activities 

due to health problem is 16%. The prevalence varies substantially among racial/ethnic 

groups ranging from 6% (Asian) to 31% (AIAN). Across the areas, the prevalence varies 

from 12% (Queens County) to 22% (Rockland County). 

Body mass index (BMI). Obesity—defined as BMI greater than 30 kg/m2—is the 

second leading cause of preventable death after smoking in the United States and is as a 

major cause of morbidity and disability (Must et al., 1999; Mokdad, Karks, Stroup, & 

Gerberding, 2004). Hence this variable is a good predictor of quality of health to be 

included in equation (1). Comparing racial/ethnic groups, the average BMI varies from 

24 (Asian) to 28 (Black); across the areas it varies from 25 (New York County) to 28 

(North Country). Figure 10 presents the prevalence of obesity across the geographic 

areas.  

<<Fig. 10 approx here>> 

Asthma. The prevalence of asthma among respondents is 11.8%. Comparing 

racial/ethnic groups, the prevalence varies substantially from 5.9% (Asian) to 17.7% 

(AIAN). Across the areas, the prevalence varies from 8.5% (Westchester County) to 

17.4% (North Country). Figure 11 presents the prevalence of asthma across the areas.  

<<Fig. 11 approx here>> 
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Hypertension (high blood pressure). The prevalence of high blood pressure among 

respondents is 24.3%. It is only 12.2% for Asians compared to 31.2% for AIANs. Across 

the areas, the prevalence varies from 20.9% (New York County) to 33.5% (Mohawk). 

Figure 12 presents the prevalence of hypertension across the areas.  

<<Fig. 12 approx here>> 

Coronary heart disease. Coronary heart disease prevalence is 4.2% in the pooled 

sample. The prevalence varies from 2% (Asian) to 7% (AIAN). Blacks, Hispanics, and 

Asians have lower prevalence than Whites. Across the regions, the prevalence varies 

from 3.3% (Richmond County) to 5.2% (Bronx County and Nassau County). North 

Country and Rockland County are excluded from the comparison for lack of sufficient 

observations. 

Myocardial infarction. The prevalence of myocardial infarction is 3.5%. Asians have 

the lowest prevalence (less than 0.1%) and AIANs have the highest (7.6%). Across the 

areas, the prevalence varies from 2.2% (Westchester County) to 5.3% (Central New 

York). North Country is excluded from the comparison for inadequate number of 

observations.  

Stroke. The prevalence of stroke is 1.9%. Among racial/ethnic groups the prevalence 

varies considerably, ranging from 0.4% (Asian) to 6% (AIAN). The prevalence varies 

considerably across the areas, ranging from 1.5% (Hudson Valley) to 4.4% (Southern 

Tier). North Country and Rockland County are excluded from the comparison. 

Diabetes. The overall prevalence of diabetes is 6.4%. It varies from 4.7% for Asians 

to 11.6% for AIANs. Across the areas, the prevalence varies from 5.0% (Suffolk County) 

to 14.1% (North Country). Figure 13 presents the prevalence across the areas. 
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<<Fig. 13 approx here>> 

Arthritis. The prevalence of arthritis is 25.1% among the respondents. The prevalence 

varies substantially among racial/ethnic groups, ranging from 8.1% (Asian) to 35.1% 

(AIAN). Across the State, the prevalence varies from 18.2% (Bronx County) to 34.7% 

(North Country).  

Pain, aching, stiffness, and swelling in or around a joint. The prevalence of this 

medical condition is 38.3%. The prevalence varies considerably, ranging from 23.7% for 

Asians to 52.5% for AIANs. Across the areas, the prevalence varies from 29.0% (Kings 

County) to 46.7% (Western New York).  

High blood cholesterol. The prevalence of high blood cholesterol is 31%. The 

prevalence varies from 24.5% for Hispanics to 48.3% for AIANs. Across the areas the 

prevalence varies from 25.5% (Southern Tier) to 41.6% (Rockland County).  

Multiple Imputation 

Information on some diseases and risk factors was not collected in some survey 

years. Table 1 presents the pattern of missing values attributed to the absence of 

questions in the survey questionnaires. For example, during 1999–2004, information on 

high blood pressure was collected only in 1999, 2001, and 2003 and not in 2000, 2002, 

and 2004. 

<<Table 1 approx here>> 

In order to include all important diseases and risk factors as covariates in equation 

(1), we needed to fill in the missing values in our pooled sample. Otherwise, an omitted 

variable bias would result in the coefficient estimates of included variables. A currently 

accepted procedure to impute missing values is the multiple-imputation method of Rubin 
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(1987) and Schafer (1997). The basic idea of multiple imputations is to create two or 

more completed datasets using the correlation structure of the available covariates, and 

then do analysis on each completed dataset. Subsequently, we make inferences based on 

both within and between variability of the estimates obtained from the completed 

datasets.  

In this method, the missing values are filled in by drawing random samples from 

the conditional distribution of missing values given the observed values. Assuming the 

joint distribution of the variables is multivariate normal, and using the Markov Chain 

Monte Carlo (MCMC) method to obtain simulation-based estimates of the posterior 

parameters of the distribution, values from the conditional distribution for the missing 

values are drawn randomly given the observed values. It is noteworthy that most of our 

missing values are binary, rather than multivariate normal. However, Horton, Lipsitz, and 

Parzen (2003) show that the parameter estimates from the imputed dataset are unbiased 

as long as the imputed values are not rounded to binary (0, 1) values.  

The performance of the multiple-imputation method can be seen in our case by 

comparing the descriptive statistics of the imputed variables before and after imputation, 

as presented in Table 2. The table shows that the mean and standard deviation of each 

variable before and after imputation are almost the same. Since the “missingness” does 

not depend on any variables in the dataset, the missing values are considered to be 

missing completely at random (MCAR). The MCAR characteristic of the missing values 

implies that the statistics obtained from incomplete data are unbiased. Since the statistics 

obtained from the imputed datasets are almost the same as those obtained from the 
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incomplete (original) dataset, the statistics obtained from the imputed datasets are also 

unbiased.9 

<<Table 2 approx here>> 

RESULTS 

Coefficient Estimates 

 Table 3 presents the coefficient estimates of equation (1). Since this study is based 

on pooled cross-sectional observational data without controlling for endogeneity, the 

coefficient estimates do not necessarily suggest any causality relationship—they merely 

reflect a measure of association between quality of health and the explanatory variables. 

So it is possible that the association reflects reverse causality. For example, good health 

may have a positive effect on income. However, the higher the coefficient’s absolute 

value the stronger is the association between quality of health and the corresponding 

explanatory variable.  

<<Table 3 approx here>> 

As the SAH ranges from “poor” (= 1) to “excellent” (= 5), a positive coefficient 

of an explanatory variable indicates that a higher value of the variable is associated with a 

higher quality of health, while a negative coefficient indicates that a higher value of the 

variable is associated with a lower quality of health. From Table 3, we can see that health 

status declines steadily as age increases. The negative coefficient estimate for gender 

indicates that females are healthier than males on average. All racial/ethnic dummies 

have negative coefficient estimates, implying that after controlling for objective health 

measures, the self-reported health of minority populations are lower than that of the 

                                                 
9
In this study, we use SAS® to perform the multiple-imputation procedure and also all other calculations. 
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White population. It may mean that there are omitted covariates in the regression (e.g. 

severity of diseases and risk factors, neighborhood effects, discrimination, etc.) that 

systematically affect the health of the minorities. Kobetz, Daniel, and Earp (2003) found 

that neighborhood poverty is associated with a greater likelihood of poor SAH.10  

The negative coefficient of body mass index indicates that higher body mass 

index is associated with lower quality of health. With the dummy for elementary school 

or lower as the base, the coefficient estimates of all education levels are positive. These 

estimates tell us that higher education is associated with a better quality of health. The 

negative coefficient estimate of the dummy for living in New York City indicates that the 

conditional mean of quality of health of New York City population is lower than that of 

the rest of New York State population. It is noteworthy that the dummies for other cities 

such as Utica, Syracuse, Buffalo, Rochester, and Albany were not statistically significant 

and therefore were excluded from the equation. Respondents having a health insurance 

plan have better quality of health than respondents without a health plan, as expected. 

The coefficient estimate of annual household income is positive indicating that higher 

income is associated with better quality of health.  

The coefficient estimate of smoking is negative which indicates smokers have 

lower quality of health than nonsmokers. Participating in physical activities or exercise 

has a positive association with the quality of health. Consuming more fruits and 

vegetables is associated with a better quality of health. This finding is consistent with the 

belief that dietary differences in fruits and vegetables contribute to differences in 

                                                 
10It may also be due to relatively different thresholds used by White while reporting SAH; see Banks, 
Marmot, Oldfield, and Smith (2006). However, this explanation is less likely in our case because we allow 
for heteroskedastic errors where the race/ethnicity variables are statistically significant. See footnote 4.  
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morbidity for chronic diseases (James & Nelson, 1997). A number of researchers have 

found that poor neighborhoods tend to have poor diets; certain aspects of disadvantaged 

neighborhoods act to hinder the procurement of healthy food; see Ecob and MacIntyre 

(2000) and Diez-Roux et al. (1999). Thus, the fruit & vegetable variable in our regression 

may be capturing certain omitted other neighborhood characteristics that affect health 

adversely.  

All coefficient estimates of health variables (diseases and risk factors) are 

negative as expected, and almost all of them are statistically significant at the 5% level of 

significance. The relative magnitudes of the coefficient estimates are quite sensible. The 

diseases or risk factors generally considered serious such as diabetes, coronary heart 

disease, myocardial infarction, and stroke have relatively high coefficient estimates in 

absolute value. While the diseases or risk factors considered less serious have relatively 

low coefficient estimates in absolute value. These findings based on the New York State 

population are broadly consistent to the results obtained by Cutler and Richardson (1997, 

1998) and Groot (2000) based on the U.S. population.  

In many studies, it has been debated whether higher income inequality in a society is 

associated with poor average health. Van Ourti, van Doorslear, and Koolman (2006) 

show that when the relationship between income and health is concave, proportional 

income growth increases average health, and rising income inequality reduces average 

health. Wilkinson and Pickett (2006) compile results from 155 published peer review 

papers about the relationship between income inequality and population health. About 

seventy percent of the results suggest that health status is lower in societies where income 

is more unequal. The proponents of the association between income inequality and health 
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are, for example, Wilkinson (1992), Kennedy, Kawachi, Glass, and Prothrow-Smith 

(1998), Soobader and LeClere (1999), and Subramanian and Kawachi (2003, 2004, 

2006).  

Studies on the relationship between income inequality and health have been 

conducted using various levels of data, from census track level to national level, and 

based on cross section and time series data. The measure of health outcome also varies 

including self-assessed health status, mortality rate, or life expectancy. For example, 

Subramanian and Kawachi (2003) test the association between income inequality and 

individual poor self-assessed health states in the United States.  

Deaton and Lubotsky (2003) have, however, found that after controlling for the racial 

composition of population in a city, the effect of income inequality on health disappears. 

They argue that the higher is the percentage of minorities (e.g., Blacks) the higher the 

income inequality in the city.  

In addition to the estimation results reported in Table 3, we also estimated equation 

(1) with three additional variables: county Gini coefficient (as a measure of income 

inequality), percent Black, and percent Hispanic. We found that the coefficients of all 

these variables were insignificant when the dummy for New York City area was 

included. Without the New York City dummy, however, the Gini coefficient was 

significant in this multilevel regression even when we controlled for percent Black and 

percent Hispanic, which is inconsistent to those found by Deaton and Lubotsky (2003). In 

our case, it can be explained by the fact that the patterns of income inequality and percent 

blacks across regions are quite different and, hence, are not collinear (see Figures 3 and 

4). Since the New York City dummy is picking up the effect of the three variables and the 
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effect of income inequality is weak, we decided to use the specification in Table 3 in 

subsequent analysis.  

Table 4 presents the coefficient estimates of the scale function. These coefficient 

estimates indicate that the error in equation (1) is heteroskedastic and is a function of 

gender, age, race/ethnicity, annual household income, having health plan, and education. 

However, d’Uva, van Doorslaer, Lindeboom, O’Donnell, and Chatterji (2006) found that 

reporting heterogeneity of health status does not have a large quantitative impact on the 

measures of health inequality.  

<<Table 4 approx here>> 

Estimates of Health Index 

 
Quality of health by racial/ethnic groups. Table 5 presents the average estimated quality 

of health and health adjusted life expectancy (HALE). Comparing racial/ethnic groups, 

Asian followed by White has the highest average estimated quality of health, while AIAN 

followed by Hispanic and Black have the lowest. The average age varies considerably 

among racial/ethnic groups from 38.6 years through 47.6 years. In addition, the average 

estimated quality of health of a group depends on age distribution in the group. A group 

with a higher proportion of young individuals, ceteris paribus, will have a better quality 

of health relative to groups with a lower proportion of young individuals. Comparing the 

average quality of health between groups in a population with different age distributions 

could be misleading.  

<<Table 5 approx here>> 

Several methods can be used to control for the effects of age distribution. The 

simplest method is to compare the average estimated quality of health between groups of 
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population by age groups. Another method is to incorporate the quality of health into the 

life table of the group. In other words, we combine morbidity and mortality data to obtain 

the estimates of Health Adjusted Life Expectancy (HALE) (see Molla, Madans, Wagener, 

& Crimmins, 2003). The HALE measures the expected life (years) in perfect health 

condition. This measure is also called Healthy Life Expectancy (HLE). Since dependable 

life tables for different racial/ethnic groups are not available, in this study HALE is 

calculated based on the general U.S. population life table of 2002 (Arias, 2004). Thus, 

HALE estimated in this paper is used to compare the quality of health among groups of 

populations by eliminating the effect of age distribution without differentiating the 

mortality rates among the groups. HALE for each racial/ethnic group by age groups is 

presented in Table 5.  

The table shows that Whites in the youngest age group (20–24) have the highest 

HALE followed by Asian, and Hispanic has the lowest followed by AIAN. A 20-year old 

White individual is expected to live for 44.2 years in perfect health condition, while a 

Hispanic with the same age is expected to live for 36.8 years in perfect health condition. 

Thus, at age 20, a White individual is expected to live almost 7.5 years in perfect health 

longer than a Hispanic individual. It is clear from these results that by eliminating the 

effect of age distribution, Whites do better than Asian, while Hispanics do worse than 

AIAN. This is a remarkable result. Also note that if HALE for each racial/ethnic group is 

calculated based on its own life table, the disparity across racial/ethnic groups could be 

higher as quality of health is correlated with life expectancy (Mullahy, 2001).  

Regional disparity in health. In this part, we do not compute HALE for each area 

for two reasons. First, the distributions of age across the areas are very similar so the 
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effect of age distribution is negligible. Second, not all areas have enough observations 

required to compute HALE. The average quality of health by areas is presented in Figure 

14. Nassau, Suffolk, Rockland, and Westchester Counties are the brightest areas 

reflecting the highest quality of health. In contrast, Bronx County is in the darkest area 

followed by Richmond County, North Country, Kings County, Queens County, and 

Southern Tier. None of the Upstate areas is in the brightest group, while Downstate areas 

vary from the brightest to the darkest, indicating that health disparity across Downstate 

areas is higher than that across Upstate areas. This finding is consistent with the 

socioeconomic variations across geographic areas presented in Figures 2, 3, and 4.  

<<Fig. 14 approx here>> 

It is very common that quality of health is measured using dichotomized SAH; cf. 

CDC. For example, quality of health of a group may be defined as a percentage of 

individuals in “very good” and “excellent” health condition (e.g., Keppel, Pearcy, & 

Klein, 2004); or it may be defined as the complement of the percentage of individuals in 

“poor” and “fair” health condition. Unfortunately, this means that the health rank of a 

group depends on the chosen cut-off point in dichotomizing the SAH. The procedure 

used in this paper circumvents this problem of arbitrariness by utilizing all five categories 

of SAH.  

Inequality 

 Similar to the case of the quality of health, we also compare income-related health 

inequality among racial/ethnic groups as well as across geographic areas of New York 

State. In addition, this section also presents the decomposition results for each 

racial/ethnic group and for different geographic areas. 
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Income-related health inequality by race/ethnicity. Figure 15 presents the 

concentration index by racial/ethnic groups with corresponding 95%-confidence 

intervals. The standard errors of the concentration index are calculated using the Huber–

White robust estimator. All indices are significantly greater than zero, indicating that 

health disparities between the rich and the poor exist in all groups. There is, however, 

substantial variation in the coefficients among groups. The highest inequality index is 

found within the AIAN group followed by Hispanics. The lowest inequality is found 

within the Asian group followed by Whites.  

<<Fig. 15 approx here>> 

Another way to compare income-related health inequality between groups of 

populations is by comparing their concentration curves. Figure 16 presents the 

concentration curves expressed as the deviation of the concentration curve from the 

diagonal in order to amplify the differences between racial/ethnic groups. The figure 

provides more obvious evidence of the differences of income-related health inequalities 

between racial/ethnic groups. The Asian curve strictly dominates others, while the AIAN 

curve is dominated by others. These indicate that AIAN is the most unequal at all 

percentiles, while Asian is the least. Therefore, differences between racial/ethnic groups 

are not only in terms of the average quality of health but also in terms of health 

distribution itself over income among individuals within each group.  

<<Fig. 16 approx here>> 

Regional variation in income related health inequality. Concentration indices 

across the geographic areas are presented in Figure 17. North Country and Mohawk are 

in the darkest areas indicating the highest income related health inequality, while the 
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brightest areas are represented by—from the lowest to the highest—Nassau, Westchester, 

Queens, and Suffolk County. Figures 14 and 17 show that areas with lower quality of 

health tend to have higher income related health inequality. These values have been 

plotted in Figure 18 for the 8 Upstate regions and 9 Downstate counties. The simple 

correlation coefficient between them is –0.67 and is statistically significant. The worst 

two regions in terms of both health inequality and health are North Country (4) and 

Bronx County (9). It is interesting that both regions 4 and 9 report very high levels of 

medical risk factors like diabetes, obesity, and asthma, but the racial compositions of the 

two areas are diametrically opposite. On the other hand, two best counties are Nassau 

(11) and Westchester (17) where a very high average level of health is achieved with very 

low health inequality. Interestingly, these two counties have a rather high percentage of 

African Americans in the population.  

<<Fig. 17 approx here>> 

<<Fig. 18 approx here>> 

For more detailed information about the magnitude and significance of the 

concentration index across the areas, the corresponding 95%-confidence intervals by 

areas are presented in Figure 19. All coefficients are significantly different from zero, 

indicating that income-related health inequalities exist in all areas. The statistical 

significance of the difference in the concentration indices between geographic areas can 

be seen by comparing the confidence intervals. For instance, New York County has a 

significantly higher concentration index than those of Nassau, Westchester, Queens, and 

Suffolk Counties. But the concentration index of New York County is not significantly 

different from those of Kings and Bronx Counties.  
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<<Fig. 19 approx here>> 

An important public policy question is: what are the main factors that are contributing 

to the inequality? This can be answered by decomposing the inequality into its 

determinants, as presented in the next section.  

Decomposition of income related health inequality. Decomposition analysis 

demonstrates the relative contribution of the different components of inequalities for 

different racial/ethnic groups as well as for different geographic areas. The analysis offers 

policy makers a starting point for geographical targeting to eliminate health disparity 

between the rich and the poor. The analysis does not provide unequivocal causal 

pathways between the determinants of health and income related health inequality. 

However, this method describes health inequality across income levels and provides 

explanations for the observed patterns for different groups of population.  

In this paper, we are interested in analyzing income-related health inequality 

attributable to socio-demographic factors including age, sex, race/ethnicity, marital 

status, education, employment status, health insurance, smoking status, and access to a 

doctor. Therefore, in the decomposition analysis, the explanatory variables included in 

equation (1) are only socio-demographic variables. The percent contribution of each 

component is calculated by racial/ethnic groups and also by geographic areas. Among all 

these factors, the contributions of the main variables by racial/ethnic groups are presented 

in Table 6.  

<<Table 6 approx here>> 

For the overall New York State population, among the socio-demographic 

variables, three major factors contributing to income-related health inequality are 
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household income, employment status, and education. Each of these three factors 

contributes at least 18% to the inequality. Our estimate of the contribution of income is 

similar to that in van Doorslaer and Jones (2003) who found that in Canada income 

contributes between 41% to 47% of income-related health inequality. However, we find 

that income is relatively less important for the disadvantaged minority groups (viz., 

Black, Hispanic, and AIAN). For Asian the corresponding percentage is very high (63%). 

If health status were distributed equally across income levels, employment status, and 

education levels, then the disparity between the rich and the poor in New York State 

population would be 79% lower. 

 After controlling for other factors, race/ethnicity contributes only 6% to the 

inequality. Race/ethnicity is highly intertwined with household income, employment 

status, and education—Blacks, Hispanics, and AIANs have lower household income, 

lower education levels, and lower employment rates compared to those of Whites. That is 

another reason why separate analysis for each group is necessary.  

The pattern of the contributions of the socio-demographic variables varies 

considerably between racial/ethnic groups. Income has the largest contribution to the 

inequalities for all groups (except AIAN), indicating that income redistribution policy is 

the most effective policy to eliminate health disparity between the poor and the rich 

within these ethnic/racial groups. For AIANs, the most effective public policy is to 

ensure employment opportunities to all individuals. For Whites, the second largest 

contributor to income-related health inequality is employment status (18%) followed by 

education (16%); for Blacks the second largest is employment status (28%) followed by 

education (20%); for Hispanics the second largest is employment status (29%) followed 
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by education (24%); for Asians the second largest is education (17%) followed by 

inability to see a doctor (12%). The differences in the patterns of the contributions 

indicate that different groups of population need different policies to eliminate health 

disparity between the rich and the poor.  

Comparing across the geographic areas, the contribution of each factor to the 

inequality varies noticeably, too (see Table 7). Income is the largest contributor to the 

inequality for all areas, ranging from 30% (Bronx County) to 48% (Rockland County). In 

addition to income, employment status and education also contribute substantially to the 

inequality in all areas. The contribution of employment status varies considerably ranging 

from 13% (Westchester County) to 29% (Bronx County), while the contribution of 

education ranges from 12% (Richmond County) to 23% (Bronx County). Thus, in 

addition to income redistribution policy, ensuring employment opportunities and good 

educational access are also effective ways to eliminate health disparity between the rich 

and the poor in these areas. For Queens and New York Counties, race/ethnicity 

contributes to the inequality relatively high—10% and 10% respectively—compared to 

other areas. This indicates that providing good access to health care for minorities in 

these two counties is also an effective way to eliminate the disparity.  

<<Table 7 approx here>> 

CONCLUSIONS 

Following recent developments in measuring quality of health and health 

inequality, we use self-assessed health status conditioned by several objective 

determinants as a comprehensive measure of individual health. Among racial/ethnic 

groups, AIANs followed by Hispanics have the lowest average quality of health, while 
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after adjusting for age distribution, Hispanics have the lowest average quality of health. 

Asians have the highest average followed by Whites, while after adjusting for age 

distribution, Whites have the best quality of health. These results highlight that when 

comparing quality of health between groups of populations, one needs to consider the age 

distribution within each group.  

In Upstate New York, North Country and Southern Tier have the lowest average 

quality of health, whereas in Downstate Bronx, Richmond, Kings, and Queens Counties 

have the lowest. Comparing all regions of New York State, Nassau, Suffolk, Rockland, 

and Westchester Counties have very high levels of average health. However, quality of 

health is more unequal across Downstate areas than Upstate, as one would possibly 

expect.  

We find statistically significant income-related health inequality within each 

racial/ethnic group and each geographic area of New York State. The highest inequality 

is found within the AIAN group followed by Hispanics, while the lowest inequality is 

found within the Asian group, followed by Whites. Across the 17 geographic areas, the 

highest income-related health inequality is found in North Country followed by Mohawk, 

while the lowest inequality is found in Nassau County followed by Westchester County. 

Areas with lower average quality of health have larger health disparity between the rich 

and the poor; the correlation is –0.67 and is statistically significant.  

Decomposition analysis of income related health inequality presented in this 

paper offers New York health policy makers certain guidelines to eliminate health 

disparity in the population. Three major factors generating the disparity are household 

income, employment status, and education. Contribution of each of these factors varies 
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considerably between racial/ethnic groups as well as across the geographic areas 

suggesting different pathways from income to health. Income has the largest contribution 

to the disparity for all groups but AIANs and for all areas. This indicates that income 

redistribution policy is the most effective policy to eliminate the health disparity within 

each group (except AIAN), as well as within each area. The relative health status of 

AIAN in almost all recorded dimensions is disturbingly bad, and the most effective 

policy for this group was found to be the generation of employment opportunities. For 

Blacks and Hispanics, public policy that ensures employment opportunities is also an 

effective way to eliminate disparity.  

Our results underscore the need for different public policy initiatives for different 

racial/ethnic groups and different geographic areas to eliminate health disparity between 

the rich and the poor. In the long run, policies that can ensure equality in income (e.g., 

income redistribution), employment opportunities, and educational access will have a 

substantial impact on improving the average quality of health and in eliminating health 

disparity.  
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Table 1. Missing Data Pattern in New York State BRFSS Sample 

Variable Year 

  1999 2000 2001 2002 2003 2004 

Could not afford to see a doctor √ √ . . √ √ 

Participate in any physical activities or exercises . √ √ √ √ √ 

Fruit and vegetable servings per day . √ . √ √ . 

Heavy drinking √ . √ √ √ √ 

Activities limited due to health problem . √ √ . √ √ 

Ever had asthma . √ √ √ √ √ 

Ever told blood pressure high √ . √ . √ . 

Ever told had coronary heart disease √ . √ . √ . 

Ever told had myocardial infarction √ . √ . √ . 

Ever told had stroke √ . √ . √ . 

Ever told had arthritis . √ √ √ √ √ 

Ever told blood cholesterol high √ . √ . √ . 

Had pain, aching, stiffness, and swelling  . √ √ . . . 

Participate in phys. activities or exercises  . √ √ √ √ √ 

Fruit and vegetable servings per day . √ . √ √ . 

Note: √ means the information was collected.  

 

Table 2. Mean and Standard Deviation based on Original and Imputed Datasets 

Variable Original dataset Imputed dataset Ratio 

  Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Number of days physical health not good  3.562 8.002 3.578 8.011 1.004 1.001

Number of days mental health not good  3.317 7.501 3.322 7.501 1.001 1.000

Ever told had diabetes 0.070 0.256 0.070 0.256 1.000 1.000

Annual household Income ($1,000) 50.243 37.202 49.361 37.298 0.982 1.003

Could not afford to see doctor 0.113 0.316 0.113 0.316 1.000 1.000

Heavy drinking 0.133 0.340 0.134 0.340 1.005 1.000

Activities limited due to health problem 0.189 0.391 0.185 0.390 0.979 0.996

Ever had asthma 0.119 0.324 0.119 0.324 0.998 1.000

Ever told blood pressure high 0.276 0.447 0.280 0.447 1.013 1.001

Ever told had coronary heart disease 0.049 0.217 0.048 0.216 0.968 0.997

Ever told had myocardial infarction 0.043 0.204 0.042 0.203 0.959 0.997

Ever told had stroke 0.026 0.158 0.024 0.158 0.931 0.999

Ever told had arthritis 0.280 0.449 0.281 0.449 1.004 1.001

Ever told blood cholesterol high 0.324 0.468 0.304 0.469 0.937 1.001

Had pain, aching, stiffness or swelling  0.420 0.494 0.443 0.498 1.056 1.008

Participate in phys. activities or exercises  0.754 0.431 0.754 0.430 1.000 1.000

Fruit and vegetable servings per day 3.855 2.192 3.862 2.191 1.002 1.000
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Table 3. Coefficient Estimate of the Ordered Probit Model 

Variable Coefficient Standard P-value

Estimate Error

Intercept 4.0997 0.1629 0.0000

Age 25–29 0.1848 0.0567 0.0011

Age 30–34 0.1662 0.0532 0.0018

Age 35–39 0.1028 0.0545 0.0593

Age 40–44 0.0531 0.0529 0.3148

Age 45–49 0.0814 0.0552 0.1404

Age 50–54 0.0088 0.0576 0.8784

Age 55–59 0.0532 0.0608 0.3811

Age 60–64 0.0130 0.0680 0.8478

Age 65–69 –0.1666 0.0739 0.0243

Age 70–74 –0.1162 0.0755 0.1236

Age 75–79 –0.3492 0.0842 0.0000

Age 80–84 –0.3112 0.0939 0.0009

Age >=85 –0.5571 0.1275 0.0000

Sex (male=1) –0.0373 0.0239 0.1182

Black –0.1423 0.0418 0.0007

Hispanic –0.4037 0.0447 0.0000

Asian –0.4191 0.0693 0.0000

AIAN –0.1585 0.1451 0.2748

Other –0.2822 0.0857 0.0010

Marital status –0.0501 0.0240 0.0370

Body mass index/27 –0.6948 0.0614 0.0000

Grades 9–11 (Some high school) 0.3806 0.0843 0.0000

Grade 12 or GED (High school graduate) 0.5138 0.0762 0.0000

College 1 year to 3 years (Some college or technical school) 0.6270 0.0778 0.0000

College 4 years or more (College graduate) 0.7991 0.0793 0.0000

Self-employed 0.2432 0.0396 0.0000

Out of work 0.0186 0.0508 0.7136

A homemaker –0.0158 0.0463 0.7335

A student 0.1424 0.0658 0.0306

Retired –0.0979 0.0463 0.0343

Unable to work –0.4573 0.0652 0.0000

Having health plan 0.1101 0.0399 0.0058

Annual Household Income ($1,000) 0.0048 0.0004 0.0000

Smoking –0.2418 0.0275 0.0000

Participating in any physical activities or exercises  0.3076 0.0289 0.0000

Fruit and vegetable servings per day 0.0424 0.0072 0.0000

Number of days physical health not good  –0.0595 0.0025 0.0000

Number of days mental health not good  –0.0157 0.0016 0.0000

Ever told had diabetes –0.7772 0.0543 0.0000

Could not afford to see doctor –0.3063 0.0469 0.0000
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Heavy drinking 0.0439 0.0338 0.1957

Activities limited due to health problem –0.6144 0.0392 0.0000

Ever had asthma –0.2065 0.0348 0.0000

Ever told blood pressure high –0.3967 0.0299 0.0000

Ever told had coronary heart disease –0.4685 0.0721 0.0000

Ever told had myocardial infarction –0.4392 0.0894 0.0001

Ever told had stroke –0.3093 0.0838 0.0004

Ever told had arthritis –0.1240 0.0319 0.0002

Ever told blood cholesterol high –0.2090 0.0271 0.0000

Had pain, aching, stiffness or swelling in or around a joint –0.2228 0.0386 0.0001

Dummy for NY City –0.1934 0.0266 0.0000

Threshold 2 1.7705 0.0618 0.0000

Threshold 3 3.6140 0.1100 0.0000

Threshold 4 5.2001 0.1531 0.0000

McKelvey-Zavoina R2 = 0.60  
Note: Reference for Age group dummies is 18–24; for Education it is grade 8 or less; and for 

Employment status it is employed for wage. 

 
Table 4. Coefficient Estimate of the Heteroskedasticity Scale Function 

 Coefficient Standard P-value

 Estimate Error 

Sex (male=1) 0.2084 0.0544 0.0002

Age 25–29 0.1109 0.1276 0.3851

Age 30–34 –0.0662 0.1386 0.6336

Age 35–39 –0.0365 0.1342 0.7861

Age 40–44 –0.0735 0.1342 0.5843

Age 45–49 0.0519 0.1251 0.6784

Age 50–54 0.1943 0.1236 0.1161

Age 55–59 0.2911 0.1230 0.0180

Age 60–64 0.4317 0.1208 0.0004

Age 65–69 0.2825 0.1471 0.0573

Age 70–74 0.2632 0.1429 0.0660

Age 75–79 0.4133 0.1461 0.0048

Age 80–84 0.2888 0.1809 0.1116

Age >=85 0.8155 0.1737 0.0000

Black 0.3716 0.0818 0.0000

Hispanic 0.4014 0.0810 0.0000

Asian 0.3521 0.1505 0.0198

AIAN 0.6897 0.2313 0.0029

Annual household income ($1,000) –0.0024 0.0009 0.0067

Having health plan –0.2058 0.0794 0.0096

Education higher than high school –0.1035 0.0574 0.0717

Sex (male=1) 0.2084 0.0544 0.0002
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Table 5. Average Estimated Quality of Health and  
Health-Adjusted Life Expectancy (HALE) 

     All White Black Hispanic Asian AIAN

         

Average quality of health 0.750 0.765 0.715 0.678 0.778 0.665

       

Age Life expectancy  HALE (in year) 

20–24 58.23  43.05 44.24 40.23 36.81 43.75 37.52

25–29 53.50  39.35 40.44 36.62 33.40 40.05 33.74

30–34 48.74  35.52 36.48 32.90 29.87 36.19 30.33

35–39 44.00  31.68 32.51 29.22 26.35 32.33 26.73

40–44 39.33  27.97 28.69 25.66 23.02 28.65 23.28

45–49 34.78  24.41 25.02 22.30 19.90 25.11 20.23

50–54 30.36  20.99 21.48 19.15 16.99 21.68 17.82

55–59 26.09  17.76 18.16 16.17 14.28 18.48 15.27

60–64 22.01  14.74 15.05 13.47 11.85 15.30 12.77

65–69 18.19  11.96 12.16 10.95 9.68 12.58 10.17

70–74 14.69  9.56 9.68 8.77 7.87 10.61 8.11 

75–79 11.54  7.39 7.48 6.75 6.07 8.38 6.13 

80–84 8.79  5.63 5.70 5.22 4.69 6.34 4.86 

 

Table 6. Decomposition of Health Inequality by Racial/Ethnic Groups 

  Percentage contribution of each factor to health inequality 

Race/Ethnicity Age Race/Ethnicity Education Employment Income Smoking Could not afford 

         to see doctor

All 7.00 5.71 18.63 18.99 41.19 2.48 7.34

White 13.07 -  16.86 18.17 45.40 2.99 6.31

Black 4.71 - 20.73 28.26 35.79 4.64 7.66

Hispanic 6.69 - 24.16 28.47 32.12 0.31 9.16

Asian –1.96 - 17.45 8.71 63.19 1.35 12.31

AIAN 8.44 - 16.24 42.96 30.67 2.83 1.50

Note: Small contributors are not presented in this table.  
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Table 7. Decomposition of Health Inequality by Geographic Areas 

  Percentage contribution of each factor to health inequality (%) 

Geographic Area Age Race/Ethnicity Education Employment Income Smoking Could not afford 

         to see doctor

H Valley 11.723 2.898 14.400 20.680 43.801 1.540 7.715

C Region 11.425 2.729 17.185 18.509 41.877 3.617 6.735

Mohawk 11.509 1.980 17.181 22.284 35.310 3.728 10.032

N Country 2.343 -0.423 15.372 26.392 41.477 4.242 12.748

C NY 12.493 1.875 13.862 21.981 41.164 3.272 7.961

S Tier 8.061 2.046 17.799 26.207 34.958 4.643 8.578

W NY 12.135 3.085 15.937 23.205 39.463 2.891 6.031

F Lakes 7.440 4.098 18.908 15.137 44.668 4.314 7.844

Bronx 4.601 6.943 22.959 28.562 30.380 1.221 7.394

Kings 5.322 8.382 21.643 21.876 35.676 1.549 7.726

Nassau 12.651 3.603 16.421 14.401 47.478 1.680 5.509

New York 4.861 9.910 19.671 17.994 40.805 1.522 7.281

Queens 2.677 10.454 19.950 13.675 44.474 0.793 10.956

Richmond 10.606 3.828 11.995 23.479 41.043 1.586 8.990

Rockland 1.940 4.599 14.693 19.430 48.030 0.057 12.672

Suffolk 13.244 4.008 14.982 15.427 45.839 2.931 5.636

Westchester 7.353 6.875 19.880 13.252 46.472 1.854 6.365

Note: Small contributors are not presented in this table. 
 



 43

Figure 1. Concentration Curve 
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Figure 2. Percent Population in Poverty 
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Figure 3. Income Inequality 
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Figure 4. Percent Black Population 

Midpoint: 3.3       5.6     9.2      15.5     28.2

Percent black population:

Downstate New York
by Counties

Upstate New York
by Regions North Country

Mohawk

Central NY
Finger Lakes

Southern TierWestern NY

Hudson Valley

Capital Region

WestchesterRockland

Bronx

NY

Queens

Nassau

Suffolk

Kings

Richmond

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

(Note: The scale for the downstate 
            panel is blown 3.5 times)

 
 



 45

Figure 5. Prevalence of Smoking 
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Figure 6. Distribution of Self-Assessed Health by Racial/Ethnic Groups 
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Figure 7. Distribution of Self-Assessed Health by Annual Household Income  
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Figure 8. Number of Days Physical Health not Good 
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Figure 9. Number of Days Mental Health not Good 
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Figure 10. Prevalence of Obesity 
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Figure 11. Prevalence of Asthma 
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Figure 12. Prevalence of Hypertension 
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Figure 13. Prevalence of Diabetes 
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Figure 14. Average Estimated Quality of Health by Geographic Areas 
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Figure 15. Concentration Indices with 95%-Confidence Intervals 
by Racial/Ethnic Groups 
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Figure 16. Concentration Curve by Racial/Ethnic Groups 
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Figure 17. Income Related Health Inequality by Geographic Areas 
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Figure 18. Average Health vs. Income Related Health Inequality 
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Note: 1 - Hudson Valley; 2 - Capital Region; 3 - Mohawk; 4 - North Country; 5 - Central New York; 6 - 

Southern Tier; 7 - Western New York; 8 - Finger Lakes; 9 - Bronx County; 10 - Kings County; 11 
- Nassau County; 12 - New York County; 13 – Queens County; 14 – Richmond County; 15 – 
Rockland County; 16 - Suffolk County; 17 - Westchester County. 
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Figure 19. Regional Concentration Indices with 95%-Confidence Intervals 
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