
Munich Personal RePEc Archive

Coarse Thinking and Pricing a Financial

Option

Siddiqi, Hammad

30 December 2009

Online at https://mpra.ub.uni-muenchen.de/21749/

MPRA Paper No. 21749, posted 31 Mar 2010 06:01 UTC



Coarse Thinking and Pricing a Financial Option

Hammad Siddiqi

Department of Economics

Lahore University of Management Sciences

hammad@lums.edu.pk

Abstract

Mullainathan et al [Quarterly Journal of Economics, May 2008] present a 

formalization of the concept of coarse thinking in the context of a model of 

persuasion. The essential idea behind coarse thinking is that people put 

situations into categories and the values assigned to attributes in a given 

situation are affected by the values of corresponding attributes in other co-

categorized situations.   We derive a new option pricing formula based on the 

assumption that the market consists of coarse thinkers as well as rational 

investors. The new formula, called the behavioral Black-Scholes formula is a 

generalization of the Black-Scholes formula. The new formula provides an 

explanation for the implied volatility skew puzzle in index options. In contrast 

with the Black-Scholes model, the implied volatility backed-out from the 

behavioral Black-Scholes formula is a constant. This finding suggests that the 

volatility skew (smile) may be a reflection of coarse thinking. That is, the skew is 

seen if rational investors are assumed to exist when actual investors are 

heterogeneous; coarse thinkers and rational investors.

Keywords: Coarse Thinking, Financial Options, Rational Pricing. Implied Volatility, 

Implied Volatility Skew, Implied Volatility Smile, Black-Scholes Model
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Coarse Thinking and Pricing a Financial Option

In an interesting paper, Mullainathan, Schwartzstein & Shleifer (2008) formalize 

the notion of coarse thinking in the context of a model of persuasion. Their 

model is based on the notion that agents use analogies for assigning values to 

attributes (the attribute valued in their model is “quality” ). The defining idea

behind coarse thinking is that agents co-categorize situations that they consider

to be analogous and assessment of attributes in a given situation is affected by 

other situations in the same category. This is in contrast with rational (Bayesian) 

thinking in which each situation is evaluated according to its own merits. Even 

though coarse thinking appears to be a natural way of modeling how humans

process information (Kahneman & Tversky (1982), Lakoff (1987), Edelmen (1992), 

Zaltman (1997), and Carpenter, Glazer, & Nakamoto (1994)), empirical evidence 

on the issue is difficult to gather because it is very difficult to isolate this effect 

from confounding factors. However, anecdotal evidence clearly points to it.

In fact, Mullainathan et al (2008) use the advertising theme of Alberto 

Culver Natural Silk Shampoo as a motivating example to explain coarse 

thinking. The shampoo was advertised with a slogan “We put silk in the bottle.”  

The company actually put some silk in the shampoo. However, as conceded by 

the company spokesman, silk does not do anything for hair (Carpenter et al 

(1994)). Then, why did the company put silk in the shampoo? Mullainathan et al 

(2008) write that the company was relying on the fact that consumers co-

categorize shampoo with hair. This co-categorization leads consumers to value 

“ silk”  in shampoo because they value “ silky” in hair (clearly not a rational 

response). That is, a positive trait from hair is transferred to shampoo by adding 

silk to it. Such transfer of the informational content of an attribute across co-

categorized situations is termed transference.
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In this paper, we derive a new options pricing formula under the 

assumption that the market consists of coarse thinkers as well as rational 

investors. We call it, the behavioral Black-Scholes formula1, in contrast with the 

famous Black-Scholes formula derived under the assumption of rational 

investors.  One puzzling feature of the Black-Scholes formula is the appearance 

of a skew when volatilities (equity index) implied by the Black-Scholes formula 

are plotted against the striking price.  Theoretically, the implied volatility when 

plotted against the striking price should be a constant. The behavioral Black-

Scholes formula provides an explanation. The implied volatility backed-out from

the behavioral Black-Scholes model is a constant suggesting that the volatility 

skew is a reflection of coarse thinking. That is, the skew is seen if rational 

investors are assumed to exist when actual investors are heterogeneous; coarse 

thinkers as well as rational investors. Interestingly, the original Black-Scholes 

formula can be considered a special case of the behavioral Black-Scholes formula.  

The new formula reduces to the original formula if transference parameter takes a 

value equal to one (magnitude of transference goes to zero) or equivalently, if all 

investors become rational.

Despite early recognition of a key problem with the Black-Scholes formula 

(implied volatility skew), the formula remains perhaps one of the most widely 

used in the world; reasons being its ease of use and lack of an alternative. The 

behavioral Black-Scholes formula is a promising alternative since it is also easy to 

implement and can be considered a generalization of the original Black-Scholes 

formula.

Coarse thinking or analogy based reasoning is likely to play an important 

role in understanding financial market behavior. Many researchers have pointed 

out that there appears to be clear departures from Bayesian thinking (Babcock & 

Loewenstein (1997), Babcock, Wang, & Loewenstein (1996), Hogarth & Einhorn 

                                                
1

The term behavioral Black-Scholes is, at times, used to refer to models that explicitly allow for 

heterogeneous investor beliefs. Here, it refers to an option pricing formula which is obtained if some or all 

investors are allowed to be coarse thinkers.
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(1992), Kahneman & Frederick (2002), Kahneman, Slovic, & Tversky (1982)). Such 

departures from rational thinking have been measured both at the individual as 

well as the market level (Siddiqi (2009), Kluger & Wyatt (2004)). However, the 

question of what type of behavior to allow for if non-Bayesian behavior is 

admitted is a difficult one to address in the absence of an alternative which is 

amenable to systematic analysis. Coarse thinking may provide such an 

alternative especially when the intuitive appeal of analogy based reasoning is 

undeniable.

Coarse thinking or analogy based reasoning appears to be extremely 

common in everyday life. It essentially makes the evaluation of new situations 

easier by making comparisons with familiar ones. Literature in psychology often 

considers associational or analogy based reasoning (Edelman (1992), Gilovich 

(1981), Kahneman and Tversky (1982), Lakoff (1987), Zaltman (1997)). In 

economics, an important recent contribution is Mullainathan et al (2008) where 

coarse thinking is formalized and a model of persuasion based on coarse 

thinking is developed. For ease of reference, we follow the formalization in 

Mullainathan et al (2008) as far as possible.

This paper is organized as follows. Section 2 explains the hypothesis of 

rational pricing as well as the hypothesis of coarse thinking in the context of a 

three-state world, and derives each hypothesis’s price prediction. The new 

option pricing formula is derived in section 3 and its implications for implied 

volatility skew and portfolio optimization are discussed. Section 4 discusses the 

limits to arbitrage that may stop rational investors from arbitraging coarse 

thinkers out of the market. Section 5 discusses future research possibilities before 

concluding.
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2. Rational Pricing vs. Coarse Thinking

The concept of rational pricing is based on the portfolio replication argument. 

The portfolio replication argument (also known as the law of one price) states 

that two portfolios with identical payoff structures must be identically priced. 

According to this principle, in order to price an asset, one only needs to find a 

portfolio that exactly replicates the payoffs of the asset. The price of the asset in 

question must then be equal to the cost of setting up the replicating portfolio. If 

this principle is violated then an arbitrage opportunity will arise. Needless to 

say, portfolio replication arguments form the heart of modern asset pricing 

theory. As one example, the Black-Scholes option pricing formula derived in 

Black, F., and Scholes, M. (1973) is an application of this principle. 

2.1 Rational Pricing

Consider a call option with payoffs 1C , 2C , and 3C corresponding to states Red 

(R), Blue (B), and Green (G) respectively. Three other assets 1B , 2B , and 3B with 

prices 1p , 2p , and 3p are available. Table 1 shows the payoffs associated with 

each asset in each state. All payoffs are non-negative.

Table 1

Price Asset Type State R State B State G

? Call 1C 2C 3C

1p 1B 1X 2X 3X

2p 2B 1Y 2Y 3Y

3p 3B Z Z Z
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In order to calculate the arbitrage-free price of the call option, consider a 

(replicating) portfolio consisting of a units of 1B , b units of 2B , and c units of 3B

such that:

111 CcZbYaX  , 222 CcZbYaX  , & 333 CcZbYaX 

Given such a (payoff replicating) portfolio, according to the portfolio replication 

argument, the arbitrage-free price of the call option is 321 cpbpap  .

Where 
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Hence, arbitrage-free price provides a sharply defined benchmark for rational 

pricing. This benchmark is the cornerstone of modern finance. It is important to 

note that the arbitrage-free price is independent of the risk preference of 

investors. Rational investors (irrespective of whether they are risk neutral, risk 

averse, or risk loving) must price the call option in the arbitrage-free manner.

However, even in simpler laboratory experiments, such as Rockenback (2004), 

where only two states of nature are allowed and significant learning 

opportunities are present, arbitrage-free hypothesis has been found to fare very 

poorly.
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2.2 Option Pricing with Coarse Thinking

Suppose all three states are equally likely to occur.2 The price of any asset with 

coarse thinking depends on how it is categorized. Suppose the call option we 

have been considering has 1B as the underlying asset and has k as the striking 

price (a call option is an instrument that gives the buyer the right but not the 

obligation to purchase the underlying asset ( 1B in this case) at a specified price 

called the striking price k ). For simplicity, assume one period marked by two 

points in time. The current time is date 0 and the option yields a payoff (expires)

at date 1, at which point one of the three possible states is realized. It follows,

}0),max{( 11 kXC  , }0),max{( 22 kXC  , & }0),max{( 33 kXC 

As can be seen, the payoffs in the three states depend on the payoffs

from 1B in the corresponding states. Furthermore, by appropriately changing the 

striking price k , the call option can be made more or less similar to the 

underlying instrument 1B , with the similarity becoming exact ask approaches 

zero (all payoffs are constrained to be non-negative).

Next, we apply the coarse thinking model presented in Mullainathan et al 

(2008) to option pricing. For clarity, we follow the notation in Mullainathan et al 

(2008) as far as possible. Suppose an investor is interested in calculating the 

return on a given asset. We denote this return by Qq , whereQ is some subset of 

 (the set of real numbers). In calculating, the return of an asset, an investor 

faces, two similar, but not identical, observable situations, }1,0{s . In 0s , 

“ return demanded on the call option”  is the attribute of interest and in 1s , 

“actual return available on the underlying stock”  is the attribute of interest. The 

                                                
2

Knowledge of the likelihood of states is needed to derive the coarse thinking price. This information is not 

required to derive the arbitrage-free price.
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investor has access to all the information in table 1. That is, table 1 is public 

information. We denote this public information by r .

Following the notation in Mullainathan et al (2008), the expected return 

demanded on the call option conditional on public information should be,

)(3

)}({)}({)}({
]0,|[

321

321332123211

cpbpap

cpbpapCcpbpapCcpbpapC
srqE






(1)

The expected return demanded by a rational investor for investing in the call 

option is given by (1). In other words, the correct price of the call option as 

inferred by her is 321 cpbpap  (as explained in section 2.1). This is the price that 

a rational investor is willing to pay for this call option.

The actual expected return offered on the underlying stock is given by,

1

131211

3

}{}{}{
]1,|[

p

pXpXpX
srqE




 (2)

Suppose a coarse thinker co-categorizes the call option with the 

underlying stock. That is, she forms a category or a group in which the call 

option is jointly considered with the underlying stock. Denoting this grouping 

by G , and following the notation in Mullainathan et al (2008) (equation (7) in 

their paper) closely, the expected return on the underlying stock demanded by 

the coarse thinker is,

]|1(]1,|[]|0(]0,|[]0,|[ GspsrqEGspsrqEsrqE
G  (3)

In (3), )|1()|0( GspandGsp  are the probabilities assigned to each 

situation in the category G with 1)|1()|0(  GspGsp . Clearly, the inferred 

“ correct”  price of the call option is different for a coarse thinker when compared
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with a rational thinker since the expected return is now different. In general, the 

coarse thinker infers the “ correct”  price as the solution to the following equation 

for cp with cp denoting the price of the call option :

]|1(]1,|[]|0(]0,|[
3

}{}{}{ 321
GspsrqEGspsrqE

p

pCpCpC

c

ccc





(4a)

This is an example of transference. Here, the value of an attribute (expected 

return) in a co-categorized situation (underlying stock) is influencing the value of 

the expected return demanded in the situation (call option) under consideration.

If we assume that 1)|1(  Gsp , it follows,
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So, the coarse thinker infers the “ correct”  price of the call option from:

1
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It follows,

1
321

321
p

XXX

CCC
p c 




 (5)

Given co-categorization of the call option with the underlying stock ( 1B ), coarse 

thinkers choose a price for the option that equates the expected return on the 

option with the expected return on the underlying stock (transference). That is, the 
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attribute being transferred from the underlying stock to the call option is the 

expected return. A coarse thinker is solving for the price of the call option by 

analogy with the underlying stock. The underlying stock has a certain link 

between the payoffs and price, which is captured by the concept of expected 

return. While pricing with analogy, it makes sense to transfer the same link to the 

asset being priced.

The coarse thinking hypothesis provides a precisely defined alternative to 

the benchmark of rational pricing. For comparison, table 2 shows prices under 

both hypotheses.

Next, we depart from the simple three-state world, and explore how the Black-

Scholes formula would change if instead of assuming rational investors, both 

rational investors and coarse thinkers are assumed to co-exist. We will see that 

the new formula, which can be considered a generalization of the original Black-

Scholes formula, provides a potential solution to the volatility skew puzzle in 

equity index options.

3. The Generalization of the Black-Scholes Formula

Black. F, and Scholes, M.  (1973), and Merton R. (1973), in remarkable papers, 

independently put forward an option pricing model that paved the way for 

numerous advances in finance. Specifically, they came up with a way to price a 

Table 2

Call Option Price

Coarse Thinking Price Rational or Arbitrage-Free Price

1
321

321
p

XXX

CCC
pc 




 321 cpbpappc 
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financial option based on no-arbitrage arguments (that is, without appealing to 

risk preferences of the investors). The model revolutionized the world of finance 

and is now famously known as the Black-Scholes option pricing model.

Here, we first briefly sketch the standard derivation of the Black-Scholes 

formula so that the nature of the implied volatility puzzle becomes clear to the 

reader.3

In deriving the Black-Scholes formula, it is assumed that the price of the 

underlying follows a geometric Brownian motion:

SdZSdtdS   (6a)

where S is the stock price,  is a constant denoting the expected return on the 

underlying stock,  is a constant denoting the standard deviation of return, and 

dZ is a random variable which is an accumulation of a large number of 

independent random effects over an interval dt . dZ has a mean of zero. It can be 

shown that variance of dZ scales with the length of the time interval under 

consideration. The price of a call option (C) is then considered as a function of 

the underlying stock price (S) and time (t), that is, ),( tSfC  . Ito’s lemma leads 

to

dZS
S

C
dtS
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By using a portfolio replication argument, the Black-Scholes PDE is then derived:

02/1
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3

A reader interested in the formal derivation can consult any standard graduate text on derivative pricing.
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Equation (6c), with some variable transformations can be converted to a 

homogeneous heat equation, which can be solved with an appropriate boundary 

condition to yield the famous Black-Scholes formula:

)()( 2

)(

1 dKNedSNC tTr  (6d)

where K is the striking price, r is the risk-free interest rate, N(.) is cumulative 

standard normal distribution, 
tT

tTr
K

S

d







 ))(
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()ln(
2

1 , and 

tT

tTr
K

S

d







 ))(
2

()ln(
2

2 .

The only unobservable in equation (6d) is  , the standard deviation of 

stock returns. By plugging in the observables, the value of  as implied by the 

observables can be backed out. One expects that if a number of call options are 

considered, each written on the same underlying, and having identical 

parameters such as expiry, and differing only in their striking prices, then their 

implied standard deviations should be identical.  After all, standard deviation of 

stock returns is a property of the underlying stock and similar call options 

written on the same underlying (differing only in striking prices) must reflect 

this fact. The implied volatility when plotted against the striking price must be a 

constant according to the Black-Scholes model as  is a constant in the model.

When  as implied by the market price of options written on the same 

equity index is plotted against the striking price, an interesting pattern is 

observed. In-the-money call options are found to have a higher implied volatility 

compared to at-the-money and out-of-the-money options. Figure (1) shows a 

typical pattern for S&P-500 equity index options. Similar patterns are observed 

for other equity index options (such as Nikkei and Dow Jones). The shape is that 



12

Implied Volatility Skew (S&P-500 Index : 1/31/91)
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Figure 1

of a smile skewed to the left, hence, the name volatility skew. Why do we 

observe this pattern? Clearly, this pattern is indicating a problem with the Black-

Scholes model as  is a constant in the model.

Next, we show how a modified Black-Scholes model that allows for coarse 

thinking provides a potential explanation for the implied volatility skew.

3.1 Modified Black-Scholes Model with Coarse Thinking

The intuition behind the coarse thinking approach as applied to the pricing of 

financial options is as follows: If investors want to find the value of something 

(which probably is relatively less liquid), they try to find something similar and 

more liquid and see how it is priced. Since a call option is the right to buy the 

underlying, therefore while valuing call options, coarse thinkers consider how 

the underlying instrument is priced. That is, coarse thinkers co-categorize a call 

option with its underlying instrument and price it with transference from the 

underlying. Next, we formalize this intuition.

We follow the notation in section 2.2 as far as possible. As in section 2.2, 

let q denote the return on a given asset. In calculating, the return of an asset, 
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investors face, two similar, but not identical, observable situations, }1,0{s . 

In 0s , “ return on the call option”  is the attribute of interest and in 1s , “ return 

on the underlying stock”  is the attribute of interest. Let I denote the information 

set. 

For a rational investor, the expected return on the underlying stock

follows from equation (6a):

SdtIdSEsIqE  ]|[]1,|[ (6e)

For a rational investor, the expected return on the call option follows from 

equation (6b):

dtS
S

C
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S

C

t

C
IdCEsIqE }2/1{]|[]0,|[ 22

2

2













 (6f)

For a coarse thinker, who co-categorizes a call option with its underlying 

stock, and prices it in transference with the underlying, the expected return on the 

call option is:

SdtIdSEsIqEsIqE
C  ]|[]1,|[]0,|[ (6g)

If the market consists of both types of investors, and the frequency of rational 

investors is a (so the frequency of coarse thinkers is a1 ), then the resulting 

expected return on the call option is given by,

dtaSadtS
S

C
S

S

C

t

C
IdCEsIqE

CC )1(}2/1{]|[]0,|[ 22

2

2













  (6h)

where we have chosen superscript “ c”  to denote a market in which coarse 

thinkers are also present along with the rational investors.
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Another formulation is as follows. The market only consists of coarse thinkers 

(that is, there are no rational investors) and the coarse thinkers, co-categorize the 

call option with its underlying stock, with the situation weights given 

by asp  )0( and asp  1)1( , 10  a , the expected return on the call 

option is then:

)1(]1,|[)0(]0,|[]0,|[  spsIqEspsIqEsIqE C (7a)

From equations (6e) and (6f) and (7a), it follows,

dtaSadtS
S

C
S

S

C

t

C
IdCEsIqE

CC )1(}2/1{]|[]0,|[ 22

2

2













  (7b)

(7b) is identical to (6h), however, we prefer the earlier formulation over the latter 

one, as the simultaneous presence of rational as well as coarse thinkers allows us

to consider if rational investors can arbitrage coarse thinkers out of the market.  

This question is considered in section 4, where we discuss the limits to arbitrage 

that prevent the rational investors from making arbitrage profits. 

We conjecture that greater is the similarity between a call option and its 

underlying stock, lower is the value of parameter a . The notion of similarity can 

be precisely defined by the ratio
S

K , where K is the striking price and S is the 

price of the underlying. 

Conjecture 1 As the money-ness of a call option increases (
S

K falls), the effect of 

coarse thinking strengthens, that is, a falls, and as the money-ness of a call option 

decreases (
S

K rises), the effect of coarse thinking weakens, that is, a rises.
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As can be seen from equation (6h), coarse thinkers modify the deterministic 

component of the stochastic process followed by a call option by co-categorizing 

it with its underlying stock. The postulated stochastic process followed by the 

call option when coarse thinkers and rational investors co-exist is (see Appendix 

C for formal treatment):

dZS
S

C
dtSaaS

S

C
Sa

S

C
a

t

C
dC }{})1(2/1{ 22

2

2

















 (7c)

Comparison of equation (7c) and equation (6b) is in order here. The random or 

stochastic component in the two equations is exactly identical. Coarse thinkers 

alter the deterministic component of the return (the co-efficient in front of dt ) by 

co-categorizing the call option with its underlying stock as equation (6h) shows. 

That is, if we apply the expectations operator across the stochastic equation for a 

call option, equation (6h) should be recovered if the market consists of coarse 

thinkers as well as rational investors. And, if the market consists of rational 

investors only, equation (6f) should be recovered.

Proposition 1 gives us the associated Partial Differential Equation (PDE) when 

both coarse thinkers and rational investors are present.

Proposition 1  If the stochastic process followed by the price of a call option is 

given by equation ( 7c), then the associated PDE for option’s price is 

0
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C  (8)

where 10  a

Proof: See Appendix A.
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Note, if 1a , there are no coarse thinkers, and as expected, equation (8) reduces 

to equation (6c). Lower the value of a , greater is the difference between the 

coarse thinking PDE and the Black-Scholes PDE.

It is well known that the Black-Scholes PDE is reducible to a homogenous 

heat equation. The behavioral Black-Scholes PDE (equation (8)), on the other 

hand, is reducible to an inhomogeneous heat equation, as proposition 2 shows.

Proposition 2 The behavioral Black-Scholes PDE (equation (8)) is reducible to an 

inhomogeneous heat equation with appropriate variable transformations.

Proof.  Start by making the following substitutions in (8): 

),(;lnln;)(
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With these substitutions in equation (8) and replacing S with x
Ke , it follows,
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Now, make the substitution, WeV
x   in equation (10) where 

2
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

q , 
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Equation (11) is similar to an inhomogeneous heat equation.

▄

Note that in equation (11) if 1a , it becomes a homogeneous heat equation. 

Of course, this is exactly what we expect since when 1a , there no coarse 

thinkers to cause price distortions and the original Black-Scholes equation is 

recovered. 

Proposition 3 describes the behavioral Black-Scholes formula.

Proposition 3 The solution to the behavioral PDE (equation (8)) is 
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(.)N is cumulative standard normal distribution.

Proof.  Solving equation (11) by using Duhamel’s principle and substituting to 

recover original variables leads to the behavioral Black-Scholes formula 

(equation (12)). Steps are shown in Appendix B.

Corollary 3.1 If a=1, the behavioral Black-Scholes formula (equation (12)) 

reduces to the original Black-Scholes formula (equation (6d)).

Proof. By comparison.

The behavioral Black-Scholes formula derived in this paper can be considered a 

generalization of the original Black-Scholes formula. The original formula 

(equation (6d)) is a limiting or a special case of the behavioral Black-Scholes 

formula (equation (12)), which is recovered if 1a .

3.2  Implications of the Behavioral Black-Scholes formula for Implied Volatility

The behavioral Black-Scholes formula (equation (12)) provides a potential 

solution to the volatility skew puzzle in equity index options. Understanding the 

behavior of parametera is the key. It controls the relative price impact of rational 

investors vs. coarse thinkers in the market. )1( a captures the strength of 

transference from the underlying instrument to the call option due to the 

presence of coarse thinkers. It specifies how the expected return on the 
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Implied Volatility Skew (S&P-500 index : 1/31/91)

0.1

0.15

0.2

0.25

0.3

0.35

0.6 0.7 0.8 0.9 1 1.1 1.2

Strike/Index

Im
p

li
e
d

 V
o

la
ti

li
ty

s.dev (Black-Scholes)

s.dev (Behavioral-Black-Scholes)

Figure 2

underlying instrument spills over to the expected return on the call option. 

Lower the value of a , higher is the strength of transference. Transference 

disappears when 1a . It is natural to expect that greater the similarity between 

a call option and its underlying, greater will be the strength of transference from 

the underlying to the call option. As a call option becomes more and more in-the-

money, its similarity with the underlying increases. Consequently, in accordance 

with conjecture 1, a should decrease in value as a call option becomes more and

more in-the-money. 

In the original Black-Scholes model, a typical relationship between 

implied volatility and the striking price for call options on S&P-500 index is 

shown in figure (1). The behavioral Black-Scholes formula has two additional 

unobservables apart from  .  These are transference )(a and expected return on 

the underlying  . The unobservables  and  are constant whereas 

transference )(a varies as the similarity between the call and its underlying is 

varied.  We conjectured that as the similarity between the call and its underlying 

(money-ness of the call option) increases, transference becomes stronger. That is, 

a falls as 
S

K falls. 
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Figure 2 shows the implied volatility plot of the behavioral Black-Scholes 

vs. original Black-Scholes. Table 3 shows values of a that are used in generating 

the implied volatility plot of the behavioral Black-Scholes model. As can be seen 

from the table, as the call option becomes more and more in-the-money, the 

value of a declines. 

Table 3

Transference getting stronger (‘a’ declining) as call becomes more “in-the-money”

Strike/Index Value of Parameter ‘a’

0.90 0.748

0.92 0.757

0.94 0.774

0.96 0.803

0.98 0.823

1.00 0.858

1.02 0.915

1.04 0.933

1.06 0.949

1.08 0.974

As can be seen from figure 2, with values of parameter a chosen in

accordance with the conjecture, the implied volatility in the behavioral Black-

Scholes model is a constant. Instead, what varies in the behavioral Black-Scholes 

model is the strength of transference. 

Black-Scholes model is based on the assumption that markets consist of 

perfectly rational investors. We essentially argue that market also has its share of 

coarse thinkers and by assuming only perfectly rational investors; an error is 

introduced in the model. Implied volatility skew is a reflection of this error, 

which is corrected once coarse thinking is incorporated into the model.
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The expected return demanded by a rational investor on a call option is 

always higher than the expected return on the underlying. For a coarse thinker 

the same is true. However, the expected return demanded by her on a call option 

is always lower than what a rational investor would demand. As expected return 

and price are inversely related, a coarse thinker is willing to pay a higher price 

than a rational investor. Consequently, if the market also has coarse thinkers, the 

original Black-Scholes model over-estimates implied volatility. However, as the 

“money-ness”  of the call option declines, the value of a rises or approaches 1. As 

a approaches 1, the impact of coarse thinkers on call’s price vanishes, and the 

Black-Scholes implied volatility approaches the behavioral Black-Scholes implied 

volatility. The slope of the implied volatility plot for a behavioral Black-Scholes 

model is always zero. So, the “ correct value”  of implied volatility can be inferred 

from the implied volatility plot of the original Black-Scholes as the point where 

the slope is closest to zero. This leads to the following remark.

Remark 1: The correct value of implied volatility as seen in the Black-

Scholes model for call options written on equity indices is at the striking price 

where the slope of the implied volatility plot is closest to zero.

A practical issue is which value of implied volatility to use while pricing exotic 

options (options on options). Remark 1 provides a potential solution to this 

problem by providing a mechanism for selecting the correct value.

3.3 Creating Optimal Portfolios

Various partial derivatives of option prices, known as the Greeks, are frequently 

used in setting up optimal portfolios. The Greeks enter as constraints in a typical 

optimization problem involving a portfolio of options. For example, the first 

partial of an option’s price with respect to the underlying is called delta. A delta 
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neutral portfolio is one in which the constraint is to have portfolio delta equal to 

zero. Similarly, the second partial of an option’s price with respect to the 

underlying is called gamma. A portfolio which is both delta and gamma neutral 

has two constraints which are satisfied simultaneously (portfolio delta and 

portfolio gamma are equal to zero).  Essentially, the Greeks are used to control 

for risk because the constraints are usually expressed in terms of Greeks in 

portfolio optimization.

The Greeks associated with the behavioral Black-Scholes formula are 

different than the Greeks of the original Black-Scholes formula. If the market 

also has coarse thinkers, then the correct values for Greeks are those that are 

inferred from equation (12). It follows that, if the market also has coarse 

thinkers, then the portfolio optimization programs need to be adjusted 

accordingly. Table 4 shows two of the most commonly used Greeks under the 

two models. Of course, if 1a , the difference disappears.

Table 4

The Greeks

Greek Behavioral Black-Scholes Original Black-Scholes
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4. The Limits to Arbitrage

If coarse thinkers and rational investors co-exist, a pertinent question is, can 

rational investors make arbitrage profits at the expense of coarse thinkers? If yes, 

then coarse thinkers would be driven out of the market, and coarse thinking 

would not matter for option pricing. 

There are two cases to consider; investment horizon shorter than the 

expiry of the option, and investment horizon equal to the expiry of the option. If 

rational investors have a horizon shorter than the expiry of the option, then they 

can make arbitrage profits if the price distortion caused by the coarse thinkers 

disappears predictably before the option expires. If their horizon is till the expiry 

of the option, then they can make arbitrage profits if they can create a replicating 

portfolio with payoffs equal to that of the call option at expiry, and at a lower 

cost.

To include the two above mentioned cases, consider a simple model with 

three points in time; 1, 2, and 3. At time 1, the price of the call option according to 

rational investors is rP and the price that the coarse thinkers are willing to pay 

is cP . For concreteness, we assume rc PP  .  The actual market price deviates 

from rP due to the presence of coarse thinkers to   cr PaPaV  11 , where 

 a1 captures the intensity of coarse thinking.  At time 2, the intensity of coarse 

thinking may either increase or diminish. If it increases, then the price will 

further deviate from the rational price. If it diminishes, the price will approach 

the rational price. Consequently, at time 1, a rational investor with a horizon 

limited to time 2, cannot be sure about his best strategy. If he thinks, that the 

intensity of coarse thinking will diminish, it may be optimal for him to sell call 

options.  Otherwise, he may want to hold on till time 2 for further capital gains.  

At time 3, both coarse thinkers and rational investors value the call option 

at   0,max3 KSV  . So, a rational investor with a horizon till time 3, needs to do 
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the following to make arbitrage profits: write a call option at time 1 and buy a 

replicating portfolio simultaneously.  Let rPR 1 denote the value of the 

replicating portfolio at time 1. By definition of a replicating portfolio, its value at 

time 3 is 33 VR  . Let c denote the transaction cost of setting up the replicating 

portfolio, so time 1 payoff is cRV  11 , and time 3 payoff is 03333  VVRV .

Arbitrage profits exist if,

cRV  11 .

However, at time 3, there are infinitely many payoff states, each corresponding 

to one particular value of S.  Even if we admit a finite number of states, the 

replicating portfolio must have a large number of assets (number of assets must 

be equal to the number of states).  So, the transaction costs involved in setting up 

a replicating portfolio are likely be significantly larger than the price deviation 

rational investor are trying to benefit from.  Hence, limits to arbitrage, may 

prevent rational investors from making arbitrage profits at the expense of coarse 

thinkers.

5. Future Research Possibilities and Conclusions

Implied volatility of an index option is a plot skewed to the left. However, the 

implied volatilities of individual stocks typically resemble a symmetric smile. 

That is, an in-the-money call as well as an out-of-the-money call has a higher 

implied volatility when compared with an at-the-money call. An immediate 

research possibility is in explaining the symmetric smile. We conjecture that a 

call option on an individual company stock is not only co-categorized with its 

underlying but also with an appropriate (sector wise) equity index. One may 

argue that for an in-the-money call, transference with the underlying is stronger 

because an in-the-money call is more similar to the underlying stock, whereas, 

for an out-of-the-money call transference with the equity index is stronger 

because an out-of-the-money call is less similar to the underlying (in falling 



25

markets, people pay more attention to macro-factors, which are better reflected 

in a broader equity index). Since both types of transferences decrease expected 

return on the call option (stocks and indices have lower expected returns than 

corresponding call option), prices of in-the-money and out-of-the-money calls are 

higher than what they would have been in the absence of transference. 

Consequently, the Black-Scholes model that ignores transference generates a 

smile that is symmetric. 

One may also conjecture that greater the number of co-categorized 

situations, higher should be the slope of the smile in absolute value since the 

weight given to the situation 0s is likely to fall as the number of co-categorized 

situations increase. As the weight given to 0s falls, the price of the call option 

rises (the expected return falls due to stronger cumulative transference from a 

number of co-categorized situations). Higher the price of the call, higher is the 

implied volatility from the Black-Scholes model. So, if coarse thinking model is 

correct then the magnitude of the slope from an index option should be lower 

than the magnitude of the slope from an option written on an individual 

company stock. This prediction can be tested with careful examination of the 

data.

Exchange rate options are even more interesting since co-categorization 

possibilities here also include key macro-economic variables behind the two 

currencies.

Essentially, the coarse thinking approach requires a change in perspective. 

Typically, the Black-Scholes model is used (wherever applicable) to price all sorts 

of derivative instruments without much regard to context.  Coarse thinking 

approach, on the other hand, draws life from a particular context. It is, after all, a 

particular context that gives rise to a specific co-categorization. That means, a 

new option pricing formula is needed for each context.  As co-categorization 

changes (for example, when exchange rate options are considered), the option 
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pricing formula also changes. Deriving these context specific formulas is a 

subject of future research.

Economics is primarily a study of how people make decisions. The 

traditional paradigm that assumes that people act as if they are emotionless 

geniuses while making decisions, is now gradually giving way to alternative 

approaches that admit limits on reasoning ability. However, saying that there are 

limits on reasoning ability is far from enough. The actual challenge is to provide 

a theory of where do these limits originate from. An associated challenge is to 

show empirically that these limits actually matter in decision making.  Coarse 

thinking hypothesis is a reflection of ideas from such diverse fields as 

psychology, linguistics, marketing, advertising, and politics. It is a powerful and 

highly intuitive idea with very interesting implications. 
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Appendix A

Consider a trading strategy in which one holds a call option and shorts 
S

C




of the 

underlying. The value of such a portfolio at a particular point in time t is,
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At a later time, say, dtt  , the value of the portfolio may change. Let d denote the 

change in portfolio value over the interval  dttt , . That is,
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(A2) is risk free since there is no dZ term in (A2). Let r be the risk free rate of return. On 

the portfolio , the return over dt should be dtr in order to eliminate arbitrage. So,
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Appendix B

Equation (11) is similar to an inhomogeneous heat equation which can be solved by 

applying the Duhamel’s principle.  We need to solve,
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s.t. the initial condition
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Duhamel’s principle says that the solution to the initial value problem (B1 & B2) is given 

by
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where ),( xW h is the solution to the homogeneous problem:
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and );,( sxg  solves :
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The fundamental solution to the heat equation in one dimension (our case) is given by
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 

  
   

   
4

12

2

12

2

12

2

1

4

12

2

12

2

12
)12(2

2

1

2

12
122

2

1

2
2

2

12

2
2

22

2

2

2









 








 










 








 








 









 



q
x

q
cwherec

q
z

q
x

qq
qzz

x
q

qzz

z
zx

q



32
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Similarly, complete the square for the exponent in 2I to arrive at
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(B4) needs to be adjusted for inhomogeneity in accordance with Duhamel’s principle. 

We need to solve,
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Complete the square for the exponent:
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Substitute (B4) and (B6) in (B3):
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Substitute for original variables to obtain the behavioral Black-Scholes formula:
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Appendix C

Change in stock price is given by

SdZSdtdS   (C1)

where 0][ dZE . That is,

SdtdSE ][ (C2)

dZ is an accumulation of independent random effects over time dt . According to central 

limit theorem, its behavior is completely characterized by a normal distribution; that is by 

its mean and standard deviation. 

Variance of a random variable which is an accumulation of independent random effects 

over a time interval dt is proportional to the length of the time interval. That is,

dtdZVar

dtdZVar





][

][

It follows, 

dtndZ ~ where n is a standard normal variable with a mean equal to zero and a

standard deviation equal to one.

The price of a call option, C , is some function of tandS . That is, ),( tSfC  . So, 

change inC over time interval dt , if the market consists of rational investors, is given by 

qdZpdtdC  (C3)

where the values of qandp are deduced from Ito’s lemma:
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The coarse thinking hypothesis postulates that investors co-categorize a call option with 

its underlying stock in the following way,

][][ dSEdCE c  (C5)

Introduce a transference parameter a , with values between 0 and 1, such that the intensity 

of coarse thinking is given by  a1 . That is, lower the value of a , stronger is the 

transference from the underlying stock to the market price of the call option. 

By substituting (C2) and (C4) in (C5) and introducing transference:

dtaSpadCE c )}1({][  

So, if the market also consists of coarse thinkers, change in C over time interval dt is 

given by
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