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Abstract

We consider a health authority seeking to allocate annual budgets optimally over time to
minimize the discounted social cost of infection(s) evolving in a finite set of R ≥ 2 groups.
This optimization problem is challenging, since as is well known, the standard epidemi-
ological model describing the spread of disease (SIS) contains a nonconvexity. Standard
continuous-time optimal control is of little help, since a phase diagram is needed to address
the nonconvexity and this diagram is 2R dimensional (a costate and state variable for each
of the R groups). Standard discrete-time dynamic programming cannot be used either,
since the minimized cost function is neither concave nor convex globally. We modify the
standard dynamic programming algorithm and show how familiar, elementary arguments
can be used to reach conclusions about the optimal policy with any finite number of groups.
We show that under certain conditions it is optimal to focus the entire annual budget on
one of the R groups at a time rather than divide it among several groups, as is often done
in practice; faced with two identical groups whose only difference is their starting level of
infection, it is optimal to focus on the group with fewer sick people. We also show that
under certain conditions it remains optimal to focus on one group when faced with a wealth
constraint instead of an annual budget.
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1 Introduction

Infectious disease remains an important cause of poor health in less developed countries,
despite improvements in hygiene, sanitation, vaccination, and access to treatment (Lopez
et al. 2006). Even in highly developed countries, diseases such as influenza and HIV/AIDS
remain public health challenges. Although vaccines are available for some diseases, treating
individuals who are already sick and trying to cure them is the only available intervention for
many important diseases such as cholera, malaria, gonorrhea, and tuberculosis. Treatment,
though not as effective as vaccination, is therefore an important tool in preventing the spread
of infectious disease.

Unfortunately, limited budgets often constrain cost-effective treatment efforts. Unprece-
dented resources have been devoted to combating HIV, for example, yet the four million
people in treatment represent less than 40 percent of those living with the disease. In Zam-
bia, a country with one of the best-funded malaria control programs in sub-Saharan Africa,
only 13 percent of children with malaria receive effective treatment. Such problems are per-
vasive. The World Health Organization (WHO), the Global Fund to Fight AIDS, TB and
Malaria (GFATM), and individual ministries of health all operate under limited budgets. As
a result, different countries or regions are often competing for the same funds. In the case of
GFATM, for example, individual countries apply for money to fund disease control projects;
some countries receive donated funds, while others do not.

When faced with such constraints and multiple infected populations, these agencies typi-
cally allocate funding in proportion to the number of people infected. The GFATM explicitly
gives priority to low-income countries with high disease burden. This strategy seems equi-
table, but does it minimize the overall burden of disease? That is, to make the most of
their limited budgets, should health authorities devote most treatment to groups with many
infected people? Or should they focus on groups with many susceptible people? Or, as
standard economic intuition might suggest, should they divide their budgets by equating
the marginal impact of the last dollar of treatment spent on each group? Since the stated
objective of these agencies is to reduce the burden of disease, the question of whether to
diversify or focus is central to their missions.

In this paper we consider a health authority allocating treatment between two or more
distinct groups to minimize the discounted social cost of infections over a finite time horizon.
The infection in each group spreads according to the conventional SIS epidemiological model.
The health authority can treat people at a constant marginal cost, but treatment each year
is limited by a fixed annual budget. We show under tight budgets and other plausible
assumptions that it is never optimal to divide the annual budget between the groups. Instead,
the health authority should devote its entire budget in every period to just one group.
Further, when there are two identical groups whose only difference is their starting level of
infection, it is optimal to treat the sick in the group with the larger number of uninfected
people. Since this group starts out healthier and gets all the treatment in the first period, it
remains healthier in the subsequent period. Thus, as long as the budget remains insufficient
to treat every infected individual, it is optimal to focus on the healthier group, period after
period, to the complete neglect of sick people in the other group.

These results run counter to both conventional practice and standard economic intuition.
They derive from the way an infection spreads, as described in the SIS model of disease. New
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infections arise from healthy people interacting with the sick. Thus, treating one sick person
not only cures that single individual some percentage of the time but then also prevents
healthy people from becoming infected at a later date. If there are many such healthy
people, then spending the money required to treat one sick person prevents much disease. If
many people are already sick, however, then treating one sick person prevents disease in fewer
healthy people, and the treated individual herself is more likely to become sick again. The
health authority in effect faces dynamic increasing returns to treatment in each group: the
greater the number of healthy people, the more effective treating sick people in the group
becomes. Thus, when presented with multiple infected groups and a limited budget, the
health authority should take advantage of increasing returns by devoting its entire budget
to a single group. Put differently, given the SIS dynamics, the health authority’s cost-
minimization problem is concave, leading to a corner solution in every period.

Determining how best to minimize the burden of infectious disease calls for a combination
of epidemiological and economic insights, an approach taken in both the economics and the
epidemiology literatures. Based on the pioneering work of Revelle (1967), Sanders (1971),
and Sethi (1974), a more recent literature has emerged to clarify a number of important
issues associated with this dynamic optimization problem (Goldman and Lightwood 2002;
Rowthorn and Brown 2003; Gersovitz and Hammer 2004; Smith et al. 2005; Gersovitz and
Hammer 2005; Herrmann and Gaudet 2009). None of these articles, however, describe the
optimal treatment of multiple populations when the health authority has a limited budget.

Most of the literature minimizes the discounted sum of treatment costs plus the social
costs of the infection. As always, the solution to such a “planning problem” is a valuable
benchmark, since it identifies what is socially best. Often, however, health authorities in
the real world are unable to achieve this first-best outcome. An authority may be charged,
for example, with minimizing forgone production (or school attendance) due to illness but
may lack the authority to tax or borrow. It then has no choice but to live within its annual
budget. Indeed, governmental ministries of health may be prohibited by law from borrowing,
as are entities such as the GFATM. In our base case, we assume that no one will lend to
this health authority despite its promise to repay the loan out of its future annual budgets—
perhaps because the health authority cannot precommit to repaying the loan in the future.
To show that our results do not depend on this assumption, however, we also examine the
less plausible case where the health authority can borrow against future budgets.1

The dynamic increasing returns to treatment inherent in the standard epidemiological
model (SIS) make deriving the optimal treatment policy difficult, even for a single population.
This nonconvexity in the planner’s cost-minimization problem has haunted the literature
from the outset. In an early paper, Sanders (1971) concludes that treatment should always
be set to zero or the maximum possible level, but Sethi (1974), analyzing the same problem,
concludes to the contrary that optimal treatment is always interior except in transitional
phases at the beginning and end of the program. More recently, Gersovitz and Hammer
(2004) recognize that they cannot prove analytically that the solutions to their necessary
conditions are optimal, since, as they note, the standard sufficiency conditions fail in the

1This latter case involves the minimization of forgone production due to illness subject to any wealth
constraint of the health authority. It therefore includes the solution of the planning problem as a special
case; it also includes the case where the constraint is so tight that, at the constrained optimum, spending a
dollar more in wealth would reduce the social cost of infection by more than a dollar.
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presence of the nonconvexity (pp. 10 and 26). They instead rely on numerical simulations
to argue that their solutions are likely optimal.

Goldman and Lightwood (2002) show how the nonconvexity inherent in the SIS dynamics
can sometimes be handled. In the absence of diminishing returns to treatment, the Hamilto-
nian in their optimal control problem is linear in the control and, as they note, “comparisons
must be made along all paths satisfying the necessary (or first order) conditions.” They
skillfully demonstrate this strategy in solving a planning problem involving a single popula-
tion.

Although the same nonconvexity arises with multiple groups, Rowthorn et al. (2009)
were unable to use the Goldman-Lightwood approach in their analysis of a health authority
dividing its annual budget to treat the sick in two populations. Instead of the manageable
two-dimensional phase diagram of Goldman and Lightwood (2002), their phase diagram
would have been four dimensional. More generally, a phase diagram in 2R dimensions is
needed: for each of the R groups, both the number who are sick and the associated co-state
variable are changing over time. Like Gersovitz and Hammer (2004), Rowthorn et al. (2009)
are, therefore, unable to prove analytically that the treatment policy they hypothesize to be
optimal actually minimizes costs and are forced to rely on numerical simulations.2

The technical contribution of our paper is to show how to solve such problems. For
expositional clarity, we first address the two-group problem formulated by Rowthorn et
al. (2009). We then show how the same arguments easily extend to any finite number of
groups. We use dynamic programming, but we modify the standard algorithm to circumvent
a technical difficulty that would obscure understanding of the optimal policy rule: the “cost
functions” generated in the backward recursion are not differentiable and are neither concave
nor convex. Kinks and curvature problems arise whenever the health authority can treat
every sick person in one group with budget left over.

In many circumstances, the prevalence of infection is so vast relative to available budgets
that this troublesome situation would never arise. Even so, however, no qualitative conclu-
sions about the optimal policy rule can be drawn using the standard dynamic programming
algorithm. The standard algorithm would first establish properties of the cost function and
policy rule that hold over the entire state space; only afterward would it use the initial
condition and transition rule to determine the optimal trajectory through the subset of that
space.

We therefore modify the standard algorithm to deduce results for the case of “tight bud-
gets.” In that case, starting from the initial conditions and following the SIS dynamics,
it is never possible to treat all of the sick people in any group, even when devoting the
entire budget to the same group in every period. In such cases, the infection pair always

2If the marginal cost of treatment increases sufficiently fast, then as (Gersovitz and Hammer 2004, p.
26) observe, it seems “intuitive” that the optimal treatment policy is interior. The requisite convexity
of treatment costs in any given formulation, however, is not obvious. Assuming that the marginal cost
of treatment is constant, therefore, seems to us an important base case. Moreover, it is commonplace in
the literature. For example, Goldman and Lightwood (2002) showcase a linear cost function as a special
case. Rowthorn et al. (2009) consider only linear costs. Sanders (1971) and Sethi (1974) are not directly
comparable to these papers or ours, since they assume that costs are linear in the fraction of sick people
receiving treatment. Finally, in our formulation where tight budgets might bind before any diminishing
returns to treatment set in, the assumption of linear costs seems particularly appropriate.
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lies within a given rectangular region. We establish that each cost function is strictly con-
cave over this rectangular region; the irregularities in the cost function that undermine the
standard algorithm arise elsewhere in the state space. Since no feasible treatment program
can result in infection combinations outside this rectangular region, the curvature of the
cost function outside the region is irrelevant. A similar argument may be useful in other
dynamic programming problems for which qualitative conclusions about the optimal policy
seem elusive.

The remainder of the paper is organized as follows. In section 2, we consider the problem
of a health authority allocating funds over time to minimize the discounted sum of social costs
of infection in two groups. Throughout this section, we assume that the health authority
receives an annual budget and can neither borrow against it nor save funds for the future.
In section 3, we show how our arguments generalize when the health authority allocates
its budget across R > 2 groups. We then relax the constraint on borrowing and saving in
section 4. Section 5 concludes the paper. Throughout, we assume that those infected in one
group cannot transmit their disease to members of another group. Therefore, our analysis
applies both to cases where every group faces the same disease, as well as to cases where the
diseases in some (or all) of the groups are different.

2 The Health Authority’s problem

2.1 Assumptions

Infectious diseases are spreading within two distinct groups. The spread of each infection is
governed by the following difference equations:

I i
t+1 = (1 − µi)I i

t + θi I i
t

N i
(N i − I i

t) − αiF i
t (1)

where parameters µi, θi, N i, αi > 0 for groups i = A, B. The population size of group i
is fixed at N i. The number of infected individuals (infecteds) in period t is I i

t and the
number of healthy individuals (susceptibles) is N i − I i

t . The number of individuals in group
i treated in period t is F i

t . We interpret µi as the fraction of infected individuals in group
i who spontaneously recover (whether or not they were treated), θiI i

t/N
i as the fraction of

susceptibles that become infected (which is proportional to the fraction infected), and αi as
the fraction of those treated individuals whom the treatment cures (excluding those treated
who would have recovered spontaneously so as to avoid double counting). Mathematically,
each group’s infection level is independent of the other’s, which implies that the infections
do not spread between the groups. In this case, different diseases can be afflicting the two
groups.

We assume that the cost of treating each infected individual in group i is constant pi and
that the health authority has an annual budget in period t of Mt. The health authority can
neither borrow against its budget nor save funds for the future. The budget constraint in
period t is therefore

pAFA
t + pBFB

t ≤ Mt, (2)
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for all t = 1, ..., T ; we relax this assumption in Section 4. And we assume that the treatment
is never used as a prophylactic, so only infected individuals receive it:

0 ≤ F i
t ≤ I i

t (3)

for i = A, B and all t = 1, ..., T .
To streamline the notation, let

Γi(I i
t) ≡ (1 − µi)I i

t + θi I i
t

N i
(N i − I i

t) (4)

denote the number of infections in group i in period t+1 if there were I i
t infecteds in period t

and none received treatment. Then the spread of the infection in group i can be re-expressed
as

I i
t+1 = Γi(I i

t) − αiF i
t (5)

for i = A, B. For most of the paper we suppress further mention of the specific functional
form in (1) above. Thus, all of our results will hold for the generic functional form in (5),
subject to a handful of regularity assumptions that we detail immediately below.

We impose several restrictions on the infection dynamics. First, we assume that Γi(I i
t)−

αiI i
t is strictly increasing in I i

t for all I i
t ∈ [0, N i] for i = A, B. That is, if every infected

individual received treatment, the more infected people there are in the current period, the
more there would be in the next period. As we show below, this assumption guarantees
that the cost function is increasing, which implies that it is always optimal to exhaust the
budget.3 It follows from this assumption that Γi(I i

t) is also increasing for all I i
t ∈ [0, N i] for

i = A, B.
Second, we assume that Γi(I i

t) is strictly concave for all I i
t ∈ [0, N i] for i = A, B. That

Γ(·) is concave when we impose our specific functional form is clear from the second derivative

−2θi

N i < 0 and requires no further assumptions in that special case.
Third, we assume that Γi(0) = 0 and that Γi(N i) ≤ N i for i = A, B, which, given our

other assumptions, implies that infection levels in each group are always nonnegative and
never exceed either group’s population:

0 ≤ I i
t ≤ N i (6)

for i = A, B and all t = 1, ..., T .4

Finally, we make the following simplifying assumption: even if the health authority
devoted its entire budget in every period to the same group (either A or B), it would never
have enough funds to treat all the infected individuals in that group. Hence, no matter how
the health authority behaves,

3Given the specific functional form we present above, this assumption reduces to a restriction on the first
derivative evaluated at Ii

t = N i:
1 − µi − θi − αi > 0,

for i = A, B.
4It is clear that Γi(0) = 0 for our specific functional form. The assumption that Γi(N i) ≤ N i holds as long

as µi ∈ [0, 1] for i = A, B: given an infection level of Ii
t ∈ [0, N i] in period t, the minimum number of infecteds

in period t + 1 would be Γi(0) − αi · 0 = 0, while the maximum would be Γi(N i) = (1 − µi)N i ∈ [0, N i].
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Mt

pB

NB

IBt

NAMt

pA IAt

Figure 1: Period t’s rectangle

Note: Assumption 1 is that it is never possible to treat all the sick people in either

group. Thus, infection pairs in period t must lie within the rectangular region identified

in the figure. Given assumption 1, we are able to establish concavity of the cost function

over this rectangular region.

Assumption 1. N i ≥ I i
t ≥

Mt

pi for i = A, B for all t = 1, 2, ..., T .

It follows that, in period t, the infection pair must lie in a rectangular region of height
NB − Mt

pB and length NA − Mt

pA . We refer to this as “period t’s rectangle.” See Figure 1.
Assumption 1 is not necessary in some cases for our result but seems realistic and simplifies
the analysis.

2.2 Cost-minimization problem

The health authority chooses how many individuals to treat in each group in every period
t = 1, ..., T , subject to constraints (2) and (3) above, to minimize the discounted sum of the
social costs of infection in the two groups:

T
∑

t=1

δt−1[sAIA
t + sBIB

t ],

where T indexes the final period, si denotes the social cost per infected person in group i,
and δ ∈ (0, 1) denotes the discount factor. We assume that infection levels initially are ĪA

1
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and ĪB
1 and thereafter follow the relevant difference equation in (1) (or equation (5), the case

of a generic functional form).
It is convenient to express the health authority’s problem recursively. Denote the mini-

mized cost of entering period t + 1 with infection pair (IA
t+1, I

B
t+1) and proceeding optimally

thereafter as Ct+1(I
A
t+1, I

B
t+1).

5 The cost function for period t therefore is given by

Ct(I
A
t , IB

t ) = min
F A

t
,F B

t

sAIA
t + sBIB

t + δCt+1(Γ
A(IA

t ) − αAFA
t , ΓB(IB

t ) − αBFB
t )

subject to pAFA
t + pBFB

t ≤ Mt and FA
t , FB

t ≥ 0.

2.3 Three-period problem

To build intuition, we begin by determining what the health authority should do in the last
three periods (T − 2, T − 1, and T ). Since spending at T has no effect on social costs until
after the end of the horizon, it is optimal to spend nothing then (F i

T = 0) and CT (IA
T , IB

T ) =
sAIA

T + sBIB
T . As for the optimal decision at T − 1, the social cost of infection is a linear,

strictly decreasing function of the number of individuals (FA
T−1, F

B
T−1) treated in each group.

Hence, it will be optimal to spend the entire budget on only one group.
More formally, the health authority wants to allocate its budget at T − 1 to minimize

the discounted social cost of infection from that period onward:

CT−1(I
A
T−1, I

B
T−1) = min

F A

T−1
,F B

T−1

sAIA
T−1 + sBIB

T−1

+δ[sAΓA(IA
T−1) − sAαAFA

T−1 + sBΓB(IB
T−1) − sBαBFB

T−1] (7)

subject to FA
T−1, F

B
T−1 ≥ 0 and pAFA

T−1 + pBFB
T−1 ≤ MT−1.

The constraint set is a familiar budget triangle, with boundary slope − pA

pB . The slope
indicates the number of additional infected individuals in group B who can be treated using
the money saved by not treating one individual in group A.6 The preference direction is
also conventional (northeast), since treating more individuals in either group reduces the
discounted sum of social costs of infection in the two groups. The indifference curves are
downward-sloping lines with MRS = −αAsA

αBsB < 0. So the health authority should spend its

5We have suppressed the dependence of minimized costs on future budget levels and various fixed param-
eters to simplify the notation.

6Assumption 1 ensures that all treatment pairs in the budget triangle are feasible. If Assumption 1 were
violated, there could be money left over after treating every infected individual in one group. In that case,
treatment pairs in one (or both) corners of the triangle would be deemed inadmissible, since the health
authority does not treat susceptibles prophylactically. That is, the constraint set is the intersection of three

constraints: the budget set and F i
t ≤ Ii

t for i = A, B. Assumption 1 guarantees that these additional
constraints never bind and can be disregarded. If Assumption 1 is violated, the optimum might occur where
F i

t = Ii
t < Mt

pi . In that case, funds remaining would be spent on the other group. This not only increases
the number of cases that must be considered but also results in a minimized cost function that is not
concave everywhere. That the health authority never serves both groups (unless it has treated every infected
individual in one group) can still be established in the only case we have examined (the symmetric case).
But concavity arguments no longer work, and the proof instead relies on a property of the cost function
that seems of limited applicability to other problems. The proof for the symmetric case in the absence of
Assumption 1 is available upon request.
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entire budget on group A if αAsA

pA > αBsB

pB and on group B if αAsA

pA < αBsB

pB . If neither inequal-
ity holds, then the health authority is indifferent between spending on infected individuals
in either group and any combination of treatment that exhausts the budget is optimal. In-

tuitively, by treating one less individual in group A, the health authority can treat pA

pB more
individuals in group B. If one less individual is treated in group A, discounted social costs

there would increase by αAsA; if pA

pB more individuals are treated in group B, social costs

there would decrease by αBsB pA

pB . This reallocation is beneficial if the result is a net reduc-

tion in discounted social costs from that period onward (αBsB pA

pB − αAsA > 0); if, instead,
it raises social costs, then the arbitrage should be reversed. Reallocating toward group A is
optimal if (1) the price of treatment (pA) in group A is sufficiently low, (2) the effectiveness
of the treatment (αA) in group A is sufficiently high, or (3) the social cost of infection (sA)
in group A is sufficiently high.

The decision in period T − 1 of how many individuals in each group to treat is straight-
forward because the only cost consequences occur in period T. When the decision is made in
some prior period, however, the health authority should take into account the discounted
cost consequences from the next period onward of reallocating the current budget. To de-
duce these consequences, the authority needs to compute the sequence of minimized cost
functions.

We can compute the minimized cost function in period T −1 by substituting the optimal
decision rule (FA

T−1, F
B
T−1) into the objective function in equation (13):

CT−1(I
A
T−1, I

B
T−1) = sAIA

T−1 + sBIB
T−1

+δ

[

sAΓA(IA
T−1) + sBΓB(IB

T−1) − MT−1 max

(

αAsA

pA
,
αBsB

pB

)]

. (8)

The cost function CT−1(I
A
T−1, I

B
T−1) is the sum of continuous functions and is therefore contin-

uous. Since Γi(·) is strictly increasing in its single argument (for i = A, B), CT−1(I
A
T−1, I

B
T−1)

is strictly increasing in its two arguments. Moreover, since Γi(·) is strictly concave in its
single argument and the right-hand side of (8) is additively separable, CT−1(I

A
T−1, I

B
t−1) is

strictly jointly concave (henceforth, simply “strictly concave”) in (IA
T−1, I

B
T−1). As we will

show, prior minimized cost functions inherit these two properties; each is strictly increasing
and strictly concave.

The health authority allocates its budget at T − 2 to minimize the discounted social cost
of infection from that period onward:

CT−2(I
A
T−2, I

B
T−2) = min

F A

T−2
,F B

T−2

sAIA
T−2 + sBIB

T−2

+δCT−1(Γ
A(IA

T−2) − αAFA
T−2, Γ

B(IB
T−2) − αBFB

T−2) (9)

subject to FA
T−2, F

B
T−2 ≥ 0 and pAFA

T−2 + pBFB
T−2 ≤ MT−2. Since the constraint set is

compact and the minimand is continuous, an optimal allocation rule for the budget at
T − 2 exists (Weierstrass Theorem) and the minimum value function CT−2(·, ·) is itself
continuous (Berge’s Theorem).7 Admissible allocations of the period T − 2 budget between

7Proceeding inductively, it is straightforward to establish that an optimal budget allocation rule exists at
each stage.

8



FBT−2

FAT−2

MB

T−2
pB

MA

T−2
pA

decreasing social
discounted cost

period T − 2
budget triangle

cost-minimizing
indifference curve

Figure 2: Allocation of the health budget in period T − 2
and its consequences for social cost

the two groups lie in a right-triangle with hypotenuse of slope - pA

pB . See Figure 2. The locus
of expenditures across the two groups that results in a given discounted social cost from
the current period onward is an “indifference curve.” The indifference curve is downward
sloping, since spending more on either group would lower the discounted social cost. Budget
allocations to the “southwest” of the indifference curve (including the origin, where nothing is
spent on the sick of either group) result in strictly higher social cost while budget allocations
to the “northeast” result in strictly lower social cost. Since CT−1(I

A
T−1, I

B
T−1) is strictly

concave in the infection pair, it is strictly concave in the pair of health expenditures and must
be strictly quasi-concave in them as well. Hence, budget allocations resulting in a strictly
higher discounted social cost must form a strictly convex set, and the optimal allocation of
the health budget requires spending the entire health budget at T − 2 on a single group.8

8The marginal rate of substitution between FA
T−2 and FB

T−2 is:

dFB
T−2

dFA
T−2

= −
(δαA + δ2αAΓA′

(ΓA(IA
T−2) − αAFA

T−2))s
A

(δαB + δ2αBΓB ′
(ΓB(IB

T−2
) − αBFB

T−2
))sB

, (10)

which is strictly negative since Γi(·) is strictly increasing for i = A, B. Since Γi(·) is also strictly concave,
the magnitude of the MRS strictly increases as one moves downward along any indifference curve (as FA

T−2

increases and FB
T−2 decreases). That is, the indifference curves are strictly concave.
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2.4 Problem of any finite length

With any finite number of periods, the health authority chooses FA
t , FB

t ≥ 0 to minimize

sAIA
t + sBIB

t + δCt+1

(

ΓA(IA
t ) − αAFA

t , ΓB(IB
t ) − αBFB

t

)

(11)

subject to the budget constraint pAFA
t +pBFB

t ≤ Mt. We will show that the cost function in
every period (t = 1, . . . T − 1) is both strictly increasing and strictly concave in its inherited
infection levels. This in turn implies that in every period the health authority will devote
its entire budget to either one group or the other.

We begin by showing that the cost function is strictly increasing in every period.

Theorem 1. The cost function Ct(I
A
t , IB

t ) is strictly increasing for any I i
t ∈ [Mt

pi , N i] where
i = A, B, and t = 1, 2, ..., T .

Proof. First recall that the cost function at T −1, CT−1(I
A
T−1, I

B
T−1), is strictly increasing for

any infection levels (IA
T−1, I

B
T−1) in the period T − 1 rectangle. Now assume inductively that

in any period t < T − 1 the cost function starting in the subsequent period Ct+1(I
A
t+1, I

B
t+1)

is strictly increasing for any infection levels (IA
t+1, I

B
t+1) in the period t+1 rectangle. We will

show that the cost function starting in period t given by Ct(I
A
t , IB

t ) is strictly increasing for
any infection levels (IA

t , IB
t ) in the period t rectangle.

Let

Ω(IA
t , IB

t , FA
t , FB

t ) ≡ sAIA
t + sBIB

t + δCt+1

(

ΓA(IA
t ) − αAFA

t , ΓB(IB
t ) − αBFB

t

)

(12)

denote the objective function that the health authority minimizes. Note that by hypothesis
Ct+1(I

A
t+1, I

B
t+1) is strictly increasing for (IA

t+1, I
B
t+1) in the period t + 1 rectangle and that

Γi(I i
t) is strictly increasing in I i

t for i = A, B. Thus, Ω(IA
t , IB

t , FA
t , FB

t ) is strictly increasing
for any infection pair (IA

t , IB
t ) in the period t rectangle. Let (F̂A

t , F̂B
t ) be the cost-minimizing

treatment levels given initial infection levels (ÎA
t , ÎB

t ) in the period t rectangle. Consider any
smaller infection pair (IA

t , IB
t ) in the period t rectangle such that ÎA

t > IA
t and ÎB

t = IB
t ,

so that the infection pair is strictly smaller in the direction of IA
t . Then the minimized

discounted social cost from period t onward of entering period t with a strictly smaller
infection pair is strictly smaller. That is,

Ct(Î
A
t , ÎB

t ) = Ω(ÎA
t , ÎB

t , F̂A
t , F̂B

t )

> Ω(IA
t , IB

t , F̂A
t , F̂B

t )

≥ Ct(I
A
t , IB

t ),

where equality in the first line follows from the definition of the cost function, the inequality
in the second line follows from the fact that the minimand is an increasing function of initial
infection levels, and the inequality in the third line follows from cost minimization. So the
cost function is strictly increasing for any IA

t ∈ [Mt

pA , NA]. A symmetric argument establishes

that it is also strictly increasing for any IB
t ∈ [Mt

pB , NB].9

9We could show that the cost function is strictly increasing over a wider range of infection levels, but
the proof of our key result below relies on concavity, which we are only able to establish over the period t
rectangle.
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Next we show that the cost function in every period is strictly concave over the rectangular
region identified in assumption 1.

Theorem 2. The cost function Ct(I
A
t , IB

t ) is strictly concave for any I i
t ∈ [Mt

pi , N i] where
i = A, B, and t = 1, 2, ..., T − 1.

Proof. Recall that CT−1(I
A
T−1, I

B
T−1), defined in equation (8), is strictly concave for any

(IA
T−1, I

B
T−1) in the period T − 1 rectangle. Now assume inductively that in any period

t < T − 1 the cost function starting in the subsequent period Ct+1(I
A
t+1, I

B
t+1) is strictly con-

cave for any (IA
t+1, I

B
t+1) in the period t + 1 rectangle. We will show that the cost function

starting in period t given by Ct(I
A
t , IB

t ) is strictly concave for any (IA
t , IB

t ) in the period t
rectangle.

As before, let

Ω(IA
t , IB

t , FA
t , FB

t ) ≡ sAIA
t + sBIB

t + δCt+1

(

ΓA(IA
t ) − αAFA

t , ΓB(IB
t ) − αBFB

t

)

be the function that the health authority minimizes. Note that if Ct+1(I
A
t+1, I

B
t+1) is strictly

concave in (IA
t+1, I

B
t+1) for any infection pair in the period t+1 rectangle, then Ω(IA

t , IB
t , FA

t , FB
t )

is strictly concave for any (IA
t , IB

t ) in the period t rectangle, since Γi(I i
t) is strictly concave

in I i
t for i = A, B.10

By the definition of strict concavity,

Ω(λIA
t +(1−λ)ÎA

t , λIB
t +(1−λ)ÎB

t , FA
t , FB

t ) > λΩ(IA
t , IB

t , FA
t , FB

t )+(1−λ)Ω(ÎA
t , ÎB

t , FA
t , FB

t )

for any two distinct feasible pairs of starting infection levels (IA
t , IB

t ) and (Ît
A
, Ît

B
) in the

period t rectangle, any constant λ ∈ (0, 1), and any affordable treatment level (FA
t , FB

t ).
Now let

(FAλ
t , FBλ

t ) = arg min
(F A

t
,F B

t
)

Ω(λIA
t + (1 − λ)ÎA

t , λIB
t + (1 − λ)ÎB

t , FA
t , FB

t )

be the cost-minimizing treatment starting from initial infection levels (λIA
t +(1−λ)ÎA

t , λIB
t +

(1 − λ)ÎB
t ). Then

Ct(λIA
t + (1 − λ)ÎA

t , λIB
t + (1 − λ)ÎB

t ) = Ω(λIA
t + (1 − λ)ÎA

t , λIB
t + (1 − λ)ÎB

t , FAλ
t , FBλ

t )

> λΩ(IA
t , IB

t , FAλ
t , FBλ

t ) + (1 − λ)Ω(ÎA
t , ÎB

t , FAλ
t , FBλ

t )

≥ λCt(I
A
t , IB

t ) + (1 − λ)Ct(Î
A
t , ÎB

t ),

10Observe that

Ct+1(Γ
A(λIA

t + (1 − λ)ÎA
t ) − αAFA

t ,ΓB(λIB
t + (1 − λ)ÎB

t ) − αBFB
t ) >

Ct+1(λ(ΓA(IA
t ) − αAFA

t ) + (1 − λ)(ΓA(ÎA
t ) − αAFA

t ), λ(ΓB(IB
t ) − αBFB

t ) + (1 − λ)(ΓB(ÎB
t ) − αBFB

t ) >

λCt+1(Γ
A(IA

t ) − αAFA
t ,ΓB(IB

t ) − αBFB
t ) + (1 − λ)Ct+1(Γ

A(ÎA
t ) − αAFA

t ,ΓB(ÎB
t ) − αBFB

t )

for any two sets of distinct infection pairs (IA
t , IB

t ) and (ÎA
t , ÎB

t ) in the period t rectangle and any λ ∈ (0, 1).
The first inequality follows from Γi(·) strictly concave for i = A, B and Ct+1(I

A
t+1, I

B
t+1) strictly increasing

(note the substitution F i
t = λF i

t +(1−λ)F i
t ), while the second inequality follows from Ct+1(I

A
t+1, I

B
t+1) strictly

concave in its arguments. Thus, the first and last lines together imply that Ct+1(Γ
A(IA

t )−αAFA
t ,ΓB(IB

t )−
αBFB

t ) is strictly concave in (IA
t , IB

t ). Thus, Ω(IA
t , IB

t , FA
t , FB

t ) is also strictly concave in (IA
t , IB

t ), since it
simply adds a linear combination of IA

t and IB
t to Ct+1(Γ

A(IA
t ) − αAFA

t ,ΓB(IB
t ) − αBFB

t ).
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where the equality in the first line follows from the definition of the cost function, the
inequality in the second line follows from strict concavity, and the inequality in the third line
follows from cost minimization. Therefore, Ct(I

A
t , IB

t ) is strictly concave in (IA
t , IB

t ).11

We now pull together the several results above to prove the key qualitative result of our
analysis that in every period the health authority will focus its entire budget on one group
or the other.

Theorem 3. Under assumption 1, it is optimal either for FA
t = Mt

pA and FB
t = 0 or FA

t = 0

and FB
t = Mt

pB in every period t = 1, 2, ..., T − 1.

Proof. Because Ct+1(I
A
t+1, I

B
t+1) is strictly increasing for any (IA

t+1, I
B
t+1) in the period t + 1

rectangle, the health authority’s minimand in equation (14) is strictly decreasing in both FA
t

and FB
t (by theorem 1) and the health authority should spend its entire budget in period

t. We already showed that spending the entire budget on one group is optimal in period
T − 1. Moving to earlier periods, since the cost function starting in period t + 1 is strictly
concave for any (IA

t+1, I
B
t+1) in the period t + 1 rectangle (by theorem 2), it is also strictly

concave in FA
t and FB

t for every budget allocation that is affordable in period t. This follows
because Γi(I i

t) − αiF i
t is linear in F i

t for i = A, B. Consequently the indifference curves are
strictly concave everywhere in the budget set. Consequently, spending the entire budget on
one group is always optimal.

Thus far, we have established that it is optimal for the health authority to allocate each
period’s budget entirely to one group or the other. This result follows from the concavity of
the cost function over the relevant domain. To determine which group will receive treatment,
however, we must impose further assumptions. If we assume that the groups share identical
infection dynamics, treatment price, and social cost, such that the only difference is the
starting level of infection, it turns out that it is optimal to devote the entire budget to the
group with the lower level of infection, and this same group will receive treatment in every
period. The following theorem and proof establish this result.

Theorem 4. Under assumption 1, if group A and group B have identical parameters (i.e.,
if ΓA(·) = ΓB(·) = Γ(·), αA = αB = α, pA = pB = p, and sA = sB = s), then it is optimal to
treat the group in which the current rate of infection is lowest in every period t = 1, ..., T −1,
and the same group will receive treatment in every period t = 1, ..., T − 1.12

11Note that assumption 1 is critical here as it implies that the constraint set is the same for all pairs of
inherited infection levels and their convex combinations: pAFA

t + pBFB
t ≤ Mt. Without this assumption,

there would be no guarantee that (FAλ
t , FBλ

t ) is feasible from both (IA
t , IB

t ) and (ÎA
t , ÎB

t ), in which case the
second and third lines above would make no sense. For example, suppose it were the case that IA

t , IB
t > 0

and ÎA
t , ÎB

t = 0. In this scenario, (FAλ, FBλ) is not even feasible from (ÎA
t , ÎB

t ), given the constraints that
0 ≤ F i

t ≤ Ii
t for i = A, B, and the proof breaks down. In addition, without assumption 1, the cost function

in period T − 1 is not globally concave over all relevant starting infection pairs, as we showed above, so the
proof by induction never gets off the ground. For a further discussion of assumption 1, see the Appendix.

12It turns out that this result holds in the absence of assumption 1, with the modification that treatment
is allocated only to the group with higher levels of infection after every sick person in the other group has
already been treated. As we note above, the proof relies on a nonstandard property of the cost function,
which is specific to the case where group A and group B have identical parameters and therefore of limited
applicability to other problems. This proof is available upon request.
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IBt+1
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discounted cost
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B
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D
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αMt

p

αMt

p

iso-cost curve
(symmetric around 45◦ line)

45◦ line

Figure 3: When other parameters are identical, treating the group with
fewer sick people is optimal

Note: See text for details.

Proof. Suppose, without loss of generality, that there are strictly fewer sick people in group
A; that is, IA

t < IB
t . Then, because Γi(·) is increasing and identical for i = A, B, we know

that, if no one receives treatment, infection will remain lower in group A in the next period;
that is, ΓA(IA

t ) < ΓB(IB
t ). Therefore, if no one receives treatment, next period’s infections

will be located at infection pair (ΓA(IA
t ), ΓB(IB

t )), to the left of the 45-degree line. See figure
3.

We have shown that it is optimal to spend the entire budget on group A or on group
B. If the budget is spent on group A, then next period’s infection pair will lie at (Γ(IA

t ) −
αMt

p
, Γ(IB

t )). This pair is labeled point A in the figure. If the budget is spent on group B, then

next period’s infection pair will lie at (Γ(IA
t ), Γ(IB

t ) − αMt

p
), which is labeled point B in the

figure. Since spending in period t affects infections only in period t+1, our problem reduces
to determining which of the following is lower: the period t + 1 cost function evaluated
at point A (given by Ct+1(point A)) or the cost function evaluated at point B (given by
Ct+1(point B)).

Reflect point A across the 45-degree line and label this new point D. Now draw a line
through points A and D. This line has slope -1 and crosses the 45-degree line at point C.
Point B must lie on segment AD. Why? Because points A and B are equidistant to point
(ΓA(IA

t ), ΓB(IB
t )), which means a line drawn through points A and B also has slope -1.

Finally, observe that the cost function evaluated at point A must equal the function
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evaluated at point D; that is, Ct+1(point A) = Ct+1(point D), since the cost function is sym-
metric around the 45-degree line (by identical group parameters), and since point D is simply
point A’s reflection across the line. Thus, it must be that Ct+1(point B) > Ct+1(point A),
since point B lies on segment AD, since costs at point A equal costs at point D, and since the
cost function is strictly concave. We have drawn point B below the 45-degree line, although
the same logic obviously holds if point B is on segment AD but above the 45-degree line.

Thus, it is optimal to spend the entire budget treating sick people in group A. By sym-
metry, it would be optimal to spend the budget on group B if its rate of infection were
strictly lower. So it is optimal to treat the group with fewer sick people in every period. And
obviously, if both groups had the same rate of infection initially, then the health authority
would be indifferent between treating the sick in group A or the sick in group B in that
initial period.

It remains to show that the same group will receive treatment in every period. Suppose
that IA

t ≤ IB
t , such that in period t it is optimal to treat group A. Then there will be

strictly fewer infections in group A in period t + 1 because Γ(IA
t )− αMt/p < Γ(IB

t ), by Γ(·)
increasing and assuming Mt > 0. Since group A will have fewer infections in period t + 1,
we have shown that it will again receive treatment in that period, and it will therefore have
fewer infections in period t + 2, and so on. By symmetry, group B would receive treatment
in every period if it received treatment first.

3 Generalization to R > 2 groups

Suppose there are R > 2 groups. We will again assume that the budget is too small to treat
all the infected people in any group in any period, so the R > 2 equivalent of assumption 1
still holds: N i ≥ I i

t ≥ Mt

pi for i = 1, . . . , R for all t = 1, 2, ..., T . Now the period t rectangle

is an R-dimensional “hyper rectangle” with dimensions N i − Mt

pi for i = 1, . . . , R.
Now reconsider the optimal decision at T −1. Since the social cost of infection is a linear,

strictly decreasing function of the number of infected individuals (F i
T−1, . . . , F

R
T−1) treated

in each group, it will be optimal to spend the entire budget at T − 1 on only one group.
More formally,

CT−1(I
1
T−1, . . . , I

R
T−1) = min

F 1

T−1
,...,F R

T−1

R
∑

i=1

siI i
T−1 + δ

R
∑

i=1

si[Γi(I i
T−1) − αiF i

T−1] (13)

subject to F i
T−1 ≥ 0 and

∑R
i=1 piF i

T−1 ≤ MT−1. Since unspent budget has no value and
spending on the sick people in any group strictly reduces infection and hence social cost
(αi > 0), the entire budget will be spent. Since spending on group i lowers the social cost of

infection at the constant rate of siαi

pi per dollar spent, the entire budget should be spent on
the group for which this cost reduction per dollar spent is largest. As a result

CT−1(I
1
T−1, . . . , I

R
T−1) =

R
∑

i=1

[siI i
T−1 + δsiΓi(I i

T−1)] − δ max(
s1α1

p1
, . . . ,

sRαR

pR
).

Since the term in square brackets is a strictly increasing, strictly concave function of one
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variable (I i
T−1), CT−1(I

1
T−1, . . . , I

R
T−1) is a strictly increasing, strictly concave function of R

variables.
The proof that each of the minimized cost functions {Ct}

T−2
t=1 inherit these two properties

proceeds exactly as before:

Theorem 5. The cost function Ct(I
1
t , . . . , IR

t ) is strictly increasing for any I i
t ∈ [Mt

pi , N i]
where i = 1, . . . , R and t = 1, 2, ..., T − 1.

Proof. We have already demonstrated the result for t = T−1. Now assume inductively that in
any period t < T − 1 the cost function starting in the subsequent period Ct+1(I

1
t+1, . . . , I

R
t+1)

is strictly increasing for any infection levels (I1
t+1, . . . , I

R
t+1) in the period t + 1 rectangle.

We will show that the cost function starting in period t given by Ct(I
1
t , . . . , IR

t ) is strictly
increasing for any infection levels (I1

t , . . . , IR
t ) in the period t rectangle.

Let

Ω(I1
t , . . . IR

t ; F 1
t , . . . , FR

t ) ≡
R

∑

i=1

siI i
t + δCt+1

(

Γ1(I1
t ) − α1F 1

t , . . . , ΓR(IR
t ) − αRFR

t

)

(14)

denote the objective function that the health authority minimizes. Note that by hypothesis
Ct+1(I

1
t+1, . . . , I

R
t+1) is strictly increasing for (I1

t+1, . . . , I
R
t+1) in the period t + 1 rectangle and

that Γi(I i
t) is strictly increasing in I i

t for i = 1, . . . , R. Thus, Ω(I1
t , . . . , IR

t ; F 1
t , . . . , FR

t )
is strictly increasing for any infection levels (I1

t , . . . , IR
t ) in the period t rectangle. Let

(F̂ 1
t , . . . , F̂R

t ) be the cost-minimizing treatment levels given initial infection levels (Î1
t , . . . , ÎR

t )
in the period t rectangle. Consider any smaller infection levels (I1

t , . . . , IR
t ) in the period t

rectangle such that Î i
t > I i

t for some i and Îj
t = Ij

t for j 6= i, so that the infection level is
strictly smaller in one component. Then the minimized discounted social cost from period
t onward of entering period t with these strictly smaller infection levels is strictly smaller.
That is,

Ct(Î
1
t , . . . , ÎR

t ) = Ω(Î1
t , . . . , ÎR

t ; F̂ 1
t , . . . , F̂R

t )

> Ω(I1
t , . . . , IR

t , F̂ 1
t , . . . , F̂R

t )

≥ Ct(I
1
t , . . . , IR

t ),

where equality in the first line follows from the definition of the cost function, the inequality
in the second line follows from the fact that the minimand is an increasing function of initial
infection levels, and the inequality in the third line follows from cost minimization. So the
cost function is strictly increasing for any I i

t ∈ [Mt

pi , N i] where i is any one of the R groups.

Next we show that the cost function in every period is strictly concave over the rectangular
region identified in Assumption 1.

Theorem 6. The cost function Ct(I
1
t , . . . , IR

t ) is strictly concave for any I i
t ∈ [Mt

pi , N i] where
i = 1, . . . , R, and t = 1, . . . , T − 1.

Proof. We have already established the result for t = T − 1. Now assume inductively that in
any period t < T − 1 the cost function starting in the subsequent period Ct+1(I

1
t+1, . . . , I

R
t+1)

is strictly concave for any (I1
t+1, . . . , I

R
t+1) in the period t + 1 rectangle. We will show that
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the cost function starting in period t given by Ct(I
1
t , . . . , IR

t ) is strictly concave for any
(I1

t , . . . , IR
t ) in the period t rectangle.

As before, let

Ω(I1
t , . . . , IR

t ; F 1
t , . . . , FR

t ) ≡
R

∑

i=1

siI i
t + δCt+1

(

Γ1(I1
t ) − α1F 1

t , . . . , ΓR(IR
t ) − αRFR

t

)

be the function that the health authority minimizes. Note that if Ct+1(I
1
t+1, . . . , I

R
t+1) is

strictly concave in (I1
t+1, . . . , I

R
t+1) for any infection levels in the period t + 1 rectangle, then

Ω(I1
t , . . . , IR

t ; F 1
t , . . . , FR

t ) is strictly concave for any (I1
t , . . . , IR

t ) in the period t rectangle,
since Γi(I i

t) is strictly concave in I i
t for i = 1, . . . , R. By the definition of strict concavity,

Ω(λI1
t + (1 − λ)Î1

t , . . . , λIR
t + (1 − λ)ÎR

t ; F 1
t , . . . , FR

t )

> λΩ(I1
t , . . . , IR

t ; F 1
t , . . . , FR

t ) + (1 − λ)Ω(Î1
t , . . . , ÎR

t ; F 1
t , . . . , FR

t )

for any two distinct feasible starting infection levels (I1
t , . . . , IR

t ) and (Ît
1
, . . . , Ît

R
) in the

period t rectangle, any constant λ ∈ (0, 1), and any affordable treatment levels (F 1
t , . . . , FR

t ).
Now let

(F 1λ
t , . . . , FRλ

t ) = arg min
F i

t
≥0 and ∑

R

i=1
piF i

t
≤Mt

Ω(λI1
t + (1 − λ)Î1

t , . . . , λIR
t + (1 − λ)ÎR

t ; F 1
t , . . . , FR

t )

be the cost-minimizing treatment starting from initial infection levels (λI1
t +(1−λ)Î1

t , . . . , λIR
t +

(1 − λ)ÎR
t ). Then

Ct(λI1
t + (1 − λ)Î1

t , . . . , λIR
t + (1 − λ)ÎR

t )

= Ω(λI1
t + (1 − λ)Î1

t , . . . , λIR
t + (1 − λ)ÎR

t ; F 1λ
t , . . . , FRλ

t )

> λΩ(I1
t , . . . , IR

t ; F 1λ
t , . . . , FRλ

t ) + (1 − λ)Ω(Î1
t , . . . , ÎR

t ; F 1λ
t , . . . , FRλ

t )

≥ λCt(I
1
t , . . . , IR

t ) + (1 − λ)Ct(Î
1
t , . . . , ÎR

t ),

where the equality in the first line follows from the definition of the cost function, the
inequality in the second line follows from strict concavity, and the inequality in the third line
follows from cost minimization. Therefore, Ct(I

1
t , . . . , IR

t ) is strictly concave in (I1
t , . . . , IR

t ).

We now pull together the several results above to prove the key qualitative result of our
analysis that in every period the health authority will focus its entire budget on one group
or the other.

Theorem 7. It is optimal in each period t (t = 1, . . . , T − 1) to spend the entire budget on
one group.

Proof. Suppose the contrary—that in some period t it is optimal to divide the entire budget
among two or more groups. Label any two of these favored groups as group A and group
B. Consider two alternatives to this allegedly optimal treatment policy: (1) spending a

16



little more on A (financing it entirely by reduced spending on B) or (2) spending a little
less on A (and spending the money saved on group B). Since each of these two alternative
treatment policies exhausts the budget, the hypothesized optimal policy can be regarded as a
weighted average of the two alternatives for some weight λ ∈ (0, 1). Since Ct+1(I

1
t+1, . . . , I

R
t+1)

is strictly concave in the infection vector, Ct+1(Γ(I1
t ) − α1F 1

t , . . . , Γ(IR
t ) − αRFR

t ) is strictly
concave in the treatment policy, (F 1

t , . . . , FR
t ). It follows that Ct+1 is strictly quasiconcave

in the treatment policy. But this implies that the weighted average of these two alternative
treatment policies results in a strictly higher cost than whichever of them achieves the smaller
discounted social cost. But since that alternative treatment policy can be implemented using
the period t budget, the weighted average is a fortiori suboptimal. Since this argument can
be used to show that any treatment policy dividing the budget in period t (t = 1, . . . , T − 1)
among two or more groups is suboptimal, it is optimal to focus the budget in period t on a
single group.

4 Extension to problem of finite-length with a wealth

constraint rather than annual budgets

The above analysis shows that when resources cannot be transferred from one period to
another, the health authority should spend its annual budget on one group. Here, we wish
to establish that this result is not an artifact of our assumption of annual budgets but also
may arise if a wealth constraint replaces the annual budget constraint. Assume the health
authority is constrained by:

T
∑

t=1

δt−1
[

pAFA
t + pBFB

t

]

≤ W̄1,

where W̄1 is the given initial wealth.
To facilitate the analysis we assume that in no period is wealth sufficient to treat every

infected individual in either group. Mathematically, this assumption can be stated as follows.

Assumption 2. N i ≥ I i
t ≥

W̄1δ1−t

pi for i = A, B for all t = 1, 2, ..., T .

We will show that it is optimal for the health authority to allocate its entire budget
to a single group. Again, the proof (although not the result) depends on concavity of the
cost function. The analysis proceeds in two steps. First, we show that with just a single
group the minimized cost function in every period is weakly concave in the overall wealth
allocation. The proof depends critically on the above assumption. Given this concavity, it
is then straightforward to show that with two groups the health authority will allocate all
wealth to a single group.

Again, we work backwards from the end of the horizon. Spending anything in period T
is foolish since the consequences are not felt until after the last period (T ). Hence, FT = 0
and the minimized cost in period T is CT (IT , WT ) = sIT .13 This in turn implies that, in

13Note that we have suppressed group subscripts, since in the first step we are analyzing the optimal
allocation of wealth over time in a single group.
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period T − 1, saving has no value and any wealth remaining should be spent immediately.
Thus, FT−1 = WT−1

p
and the minimized cost at T − 1 is CT−1(IT−1, WT−1) = sIT−1 +

δ
(

Γ(IT−1) − αWT−1

p

)

. This cost function is (1) strictly increasing in the inherited number

of infections, (2) strictly decreasing in the inherited amount of wealth remaining, and (3)
weakly concave in these two variables.14 It is straightforward to verify that every prior
minimized cost function (t < T − 1) inherits these three properties. Define the minimized
cost function in period t as follows:

Ct(It, Wt) = min
Ft∈[0,Wt/p]

sIt + δCt+1(Γ(It) − αFt, δ
−1(Wt − Ft))

and consider the first property.

Theorem 8. Under assumption 2 the cost function Ct(It, Wt) is strictly increasing in It for
all t = 1, 2, ..., T − 2.

Proof. As we showed above, CT−1(IT−1, WT−1) is strictly increasing in IT−1 for all IT−1 in
the relevant domain. Now assume inductively that in any period t < T − 1 the next period’s
cost function Ct+1(It+1, Wt+1) is strictly increasing in It+1 over the relevant domain. We will
show that the cost function in period t inherits this property.

Let
Ω(It, Wt, Ft) ≡ sIt + δCt+1(Γ(It) − αFt, δ

−1(Wt − Ft)) (15)

be the function that the health authority minimizes in period t. Note that Ct+1(It+1, Wt+1) is
strictly increasing in It+1 by our inductive assumption and that Γ(It) is strictly increasing in
It. Therefore Ω(It, Wt, Ft) is strictly increasing in It by inspection. Let F̂t be the treatment
level that minimizes discounted social cost given inherited infection and wealth levels (Ît, Ŵt),
where Ît > It and Ŵt = Wt. Then we have

Ct(Ît, Ŵt) = Ω(Ît, Ŵt, F̂t)

> Ω(It, Ŵt, F̂t)

≥ Ct(It, Ŵt),

where the equality in the first line follows from the definition of the cost function, the
inequality in the second line follows because the minimand is an increasing function of the
initial infection level, and the inequality in the third line follows from cost minimization. So
the cost function in period t is strictly increasing in It.

14Assumption 2 ensures that the health authority is never able to treat every infected individual, limiting
the domain of the cost function (in inherited wealth and infection) to a region over which we can establish
concavity. Without this assumption, the cost function is not concave in wealth. Consider period T − 1. For
WT−1 ≤ pIT−1, the first derivative of the cost function with respect to wealth is −sαδ/p < 0, since the
extra wealth goes toward curing more people. For WT−1 > pIT−1, however, the first derivative is zero, since
every infected individual is already receiving treatment. There is therefore a kinked increase in the slope of
the cost function at WT−1 = pIT−1. This nonconcavity is passed to earlier periods and is inescapable. This
nonconcavity would persist even if the health authority valued surplus wealth according to its dollar value,
rather than zero. (This of course assumes that sαδ > p, which seems reasonable, else the health authority
would do better to spend its budget on something other than treating disease.) Assumption 2 limits the
relevant domain of the cost function so that this nonconcavity never presents.
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A similar argument can be used to establish the second property that Ct(It, Wt) inherits:

Theorem 9. Under assumption 2 the cost function Ct(It, Wt) is strictly decreasing in Wt

for all t = 1, 2, ..., T − 1.

Proof. As we showed above, CT−1(IT−1, WT−1) is strictly decreasing in WT−1 over the relevant
domain, and we can again assume inductively that Ct+1(It+1, Wt+1) is strictly decreasing in
Wt+1 over the relevant domain. Because Ct+1(It+1, Wt+1) is strictly decreasing in Wt+1, by
our inductive assumption, and because Wt+1 = δ−1(Wt − Ft) is strictly increasing in Wt,
we know that Ω(It, Wt, Ft) in equation (15) is strictly decreasing in Wt by inspection. Let
Ŵt < Wt and Ît = It, and let F̂t be optimal given these hatted state variables. Then the
foregoing inequalities again hold for the same reasons as in Theorem 8, and they establish
that the minimized cost function at t is strictly decreasing in Wt.

The final property that Ct(It, Wt) inherits is weak concavity.

Theorem 10. Under assumption 2 the cost function Ct(It, Wt) is weakly concave in It and
Wt for all t = 1, 2, ..., T − 1.

Proof. As we showed above, CT−1(IT−1, WT−1) is weakly concave in its two arguments.15

Now assume inductively that Ct+1(It+1, Wt+1) is weakly concave. We will show that the cost
function in period t inherits this property.

Recall the definition of Ω(It, Wt, Ft) in equation (15). Because Ct+1(It+1, Wt+1) is weakly
concave, by induction, and because It+1 = Γ(It)−αFt is concave in It while Wt+1 = δ−1(Wt−
Ft) is linear in Wt, we know the Ω function is weakly concave in (It, Wt).

16 Let F λ
t be optimal

given the inherited pair λ(It, Wt) + (1 − λ)(Ît, Ŵt).
It follows that

Ct(λ(It, Wt) + (1 − λ)(Ît, Ŵt)) = Ω(λ(It, Wt) + (1 − λ)(Ît, Ŵt), F
λ
t )

≥ λΩ(It, Wt, F
λ
t ) + (1 − λ)Ω(Ît, Ŵt, F

λ)

≥ λCt(It, Wt) + (1 − λ)Ct)(Ît, Ŵt),

where the equality in the first line follows from the definition of the cost function, the
inequality in the second line follows from weak concavity of the Ω function, and the inequality
in the third line follows from cost minimization.

15Again, assumption 2 is critical here. Without it, we do not even know that CT−1 is weakly concave, in
which case the recursive proof that follows breaks down immediately.

16Observe that

Ct+1(Γ(λIt + (1 − λ)Ît) − αFt, δ
−1(λWt + (1 − λ)Ŵt − Ft)) >

Ct+1(λ(Γ(It) − αFt) + (1 − λ)(Γ(Ît) − αFt), λδ−1(Wt − Ft) + (1 − λ)δ−1(Ŵt − Ft) ≥

λCt+1(Γ(It) − αFt, δ
−1(Wt − Ft)) + (1 − λ)Ct+1(Γ(Ît) − αFt, δ

−1(Ŵt − Ft))

for any two sets of distinct infection-wealth pairs (It, Wt) and (Ît, Ŵ ) and any λ ∈ (0, 1). The first inequality
follows from Γi(·) strictly concave and Ct+1(It+1, Wt+1) strictly increasing in It+1 (note the substitution
Ft = λFt + (1 − λ)Ft), while the second inequality follows from Ct+1(It+1, Wt+1) weakly concave in its
arguments. Thus, the first and last lines together imply that Ct+1(Γ(It)−αFt, δ

−1(Wt−Ft)) is weakly concave
in (It, Wt). Thus, Ω(It, Wt, Ft) is also weakly concave in (It, Wt), since it is simply a linear combination of
It and Ct+1(Γ(It) − αFt, δ

−1(Wt − Ft)).
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Given that every minimized cost function is weakly concave in the inherited wealth and
the inherited number of infections, the health authority’s problem in each period is weakly
concave in Ft.

17

Therefore in (Ft, Ft+1) space, the indifference curves are weakly concave and spending
one’s entire wealth in the current period or deferring the entire amount for the future (where
it is optimal to spend it in one future period) always minimizes discounted social cost.

These conclusions hold both for group A and for group B.
We now pull together the results from this section to prove our key result that with

multiple groups the health authority will allocate all wealth to a single group.

Theorem 11. Under assumption 2, the health authority minimizing the discounted social
cost of infection in two groups should exhaust all of its wealth treating a single group in a
single period.

Proof. Observe that minimizing infections is equivalent to allocating the budget optimally
between the two groups in the first period and then allocating these group-specific budgets
optimally over time for each group separately. Let W i

1 be the budget allocated to group i
and let Ci

1(I
i
1, W

i
1) (for i = A, B) be the minimized discounted cost from the initial period

onward. Then the health authority’s problem is to choose WA
1 ≥ 0 and WB

1 ≥ 0 to minimize

CA
1 (IA

1 , WA
1 ) + CB

1 (IB
1 , WB

1 )

subject to the linear budget constraint WA
1 +WB

1 ≤ W1. We showed above that Ci
1(I

i
1, W

i
1) is

strictly decreasing in W i
1 for i = A, B. Hence, in (WA

1 , WB
1 ) space, the preference direction is

northeast, and the health authority should exhaust its overall budget. We also showed that
Ci

1(I
i
1, W

i
1) is weakly concave in W i

1. Thus, CA
1 (IA

1 , WA
1 ) + CB

1 (IB
1 , WB

1 ) is weakly concave in
(WA

1 , WB
1 ). Hence, in (WA

1 , WB
1 ) space the indifference curves are weakly concave. That is,

the set of wealth allocations (e.g., the origin) that have higher cost than the allocations on
any given indifference curve is a weakly convex set. Thus, the cost-minimizing allocation is
to focus the expenditure on one group. Having done this, the optimal allocation is to spend
the entire budget in a single period, as we showed above.18

An identical conclusion would follow for R > 2 groups.

17Observe that

Ct+1(Γ(It) − α(λFt + (1 − λ)F̂t), δ
−1(Wt − (λFt + (1 − λ)F̂t))) =

Ct+1(λ(Γ(It) − αFt) + (1 − λ)(Γ(It) − αF̂t), λδ−1(Wt − Ft) + (1 − λ)δ−1(Wt − F̂t)) ≥

λCt+1(Γ(It) − αFt, δ
−1(Wt − Ft)) + (1 − λ)Ct+1(Γ(It) − αF̂t, δ

−1(Wt − F̂t))

for any two distinct treatment levels Ft and F̂t and any λ ∈ (0, 1). The inequality follows from
Ct+1(It+1, Wt+1) weakly concave in its arguments. Thus, the first and last lines together imply that
Ct+1(Γ(It)−αFt, δ

−1(Wt −Ft)) is weakly concave in Ft. Thus, the minimization problem is weakly concave
in Ft, since treatment has no effect on infections in period t.

18It actually can be shown that the cost function for allocating wealth optimally in one group over time
is strictly concave in inherited wealth for all periods t < T − 1. This implies that, even in the case of two
groups with identical parameters, it is optimal to allocate all wealth exclusively to one group or the other
(i.e., the indifference curves are strictly concave). The proof of strict concavity requires showing that the
cost function is strictly concave in period T − 2, which takes several pages. Thus, to save space, we only
show the proof of weak concavity.
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5 Conclusion

In this paper, we have considered the problem of a health authority attempting to minimize
discounted social costs by allocating its budget among several distinct groups or regions to
prevent the spread of a disease from sick to healthy people. Admittedly, our results depend
on two strong assumptions: (1) that spending on treatment in a given region is not subject
to increasing marginal costs over the relevant range and (2) that health budgets are tight.
The first is a standard benchmark in the literature, even when ignoring health budgets.
The second assumption seems to us plausible in many circumstances and makes the first
assumption all the more plausible. Even given these assumptions, deriving conclusions using
the standard optimal control or dynamic programming approaches is not feasible. However,
our modified dynamic programming algorithm permits us to draw strong conclusions using
familiar arguments for any finite number of groups.

The problem of optimal disease control in multiple groups or regions belongs to a more
general class of problems that includes the spread of pests, crime (Philipson and Posner 1996),
gang activity, and illegal drug use. In each of these cases, treating an afflicted individual
not only reduces the costs he or she imposes on society but reduces imitation by others
who may inflict additional social costs. Since different dynamics best describe the spread of
these other social blights, a new model would be required. However, we anticipate that our
methodology would continue to provide insights when applied in these other contexts.
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Appendix: A consequence of relaxing assumption 1

For R = 2 groups, assume without loss of generality that αAsA

pA > αBsB

pB . In that case, the
budget at T −1 should be allocated to group A until every sick individual receives treatment.
Suppose the number of sick individuals in group A is large enough, however, that treating
them all is infeasible: IA

T−1 ≥ MT−1

pA . It is then optimal to treat none of the sick in group B

and, as derived in the text, the minimized cost function at T − 1 is given by equation (8).
The right partial derivative at IA

T−1 = MT−1

pA is therefore:

∂CT−1(I
A
T−1, I

B
T−1)

∂IA
T−1

= sA + δ
[

sAΓA′
(IA

T−1)
]

. (16)

We have proved that the cost function is strictly increasing and strictly concave for IA
T−1 ≥

MT−1

pA .
If the number of sick individuals in group A is smaller, however, then all of the sick in

group A can be treated with money left over. It is precisely this situation that we have ruled
out with assumption 1. In this case, the health authority would begin to treat the sick of
group B. For IA

T−1 ≤
MT−1

pA the minimized cost function is:

CT−1(I
A
T−1, I

B
T−1) = sAIA

T−1 + sBIB
T−1

+ δ

[

sAΓA(IA
T−1) − αAsAIA

T−1 + sBΓB(IB
T−1) − αBsB min

(

IB
T−1,

(

MT−1 − pAIA
T−1

pB

))]

.

The left-partial derivative at IA
T−1 = MT−1

pA would therefore be

∂CT−1(I
A
T−1, I

B
T−1)

∂IA
T−1

= sA + δ

[

sAΓA′
(IA

T−1) − αAsA + αBsB pA

pB

]

. (17)
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Figure 4: Kinks and curvature problems in the period T −1 cost function

Note: Figure shows a cross section of the period T − 1 cost function, holding IB
T−1 > 0

constant, for all possible values of IA
T−1. The cost function is not globally concave. See

text for details.

Since the last two terms in square brackets are negative, the left partial derivative in (17) is
strictly smaller than the right partial derivative in (16). Since Γ is strictly concave, the cost
function is strictly concave for IA

T−1 < MT−1

pA . Using similar arguments, it can be shown that

there is a second kink at IA
T−1 =

MT−1−pBIB

T−1

pA , where the budget is just large enough to treat
every sick person in both groups. Figure 4 illustrates these situations.

These kinks and curvature problems multiply as one proceeds backwards. For example,
given initial conditions and optimal treatment in period T−2, it is possible that the resulting
number of sick people in group A in period T − 1 exactly matches the T − 1 budget. This
would generate a kink in the period T − 2 cost function, even if the budget at T − 2 was
so tight as to make treating all the sick in group A infeasible. Of course, if the budget in
period T −2 was large enough to treat all the sick in group A, then that would also generate
a kink and convexity of the kind illustrated in Figure 4.

Such curvature problems “contaminate” each cost function generated in the backward
recursion to earlier time periods. This contamination is unavoidable, so long as treating all
the sick people in one or both groups remains a possibility in some future period. Using
the standard dynamic programming algorithm, therefore, nothing could be said about the
properties of the optimal policy rule, because the cost functions are not globally concave or
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convex. By making assumption 1 and altering the dynamic programming algorithm to take
advantage of that assumption, we established that the cost function is always concave over
the relevant range of infection levels. This permitted us to conclude that in each period the
health authority should focus on the sick of a single group.
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