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Abstract

The de�nition of universal portfolio was introduced in the �nancial literature

in order to describe the class of portfolios which are constructed directly from the
available observations of the stocks behavior without any assumptions about their

statistical properties. Cover [6] has shown that one can construct such portfolio
using only observations of the past stock prices which generates the same asymptotic

wealth growth as the best constant rebalanced portfolio which is constructed with
the full knowledge of the future stock market behavior.

In this paper we construct universal portfolios using totally di�erent set of ideas
drawn from nonstationary stochastic optimization. Also our portfolios yield the

same asymptotic growth of wealth as the best constant rebalanced portfolio con-
structed with the perfect knowledge of the future, but they are less demanding
computationally. Besides theoretical study, we present computational evidence us-

ing data from New York Stock Exchange which shows, among other things, superior
performance of portfolios which explicitly take into account possible nonstationary

market behavior.

KEYWORDS: constant rebalanced portfolios, optimal growth, stochastic program-
ming, nonstationary optimization

1 Introduction

In this paper we deal with the problem of portfolio selection on the stock market. This
problem is the subject of study starting from the paper by Markovitz [20], see also [22, 23,
24]. Usually the problem of portfolio selection is solved in two stages. On the �rst stage
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the statistical model of stock price evolution is built on the basis of the past stock behavior.
This model is used on the second stage in order to select portfolio in some optimal fashion.
Such division proved to be useful, but in some cases it encounters di�culties, because the
future evolution of stock prices may be notoriously di�cult to predict and selection of
disribution class inevitably brings a measure of arbitrariness. These problems become
even more evident when there are reasons to believe that the stock price behavior changes
with time.

These di�culties motivated another approach which dispense with the necessity of
making any statistical assumptions about evolution of the stock prices. The portfolio
selection is based completely on sequence of past prices which is taken "as is" with few
if any statistical processing. No assumptions are made not only about the family of
probability distributions which describe the stock prices, but even about existence of
such distributions. To stress this independence of statistical assumptions such portfolios
were called universal portfolios [6]. It was shown that such portfolios possess important
theoretical properties concerning their asymptotical behavior and exhibit reasonable �nite
time behavior.

The results presented in this paper belong to the line of research on universal port-
folios [6, 7, 15, 17]. While portfolios presented previously were based on the notions of
information theory [5], our portfolios are constructed using ideas of nonstationary and
stochastic optimization [3, 10, 11, 12, 13], for di�erent applications of stochastic opti-
mization to portfolio management see [2, 4, 8, 9, 16, 18, 19, 21, 24]. This enabled us
to develop portfolios which exhibit similar asymptotic behavior to [6, 17] and are more
easily computable. At the same time we preserve the most important feature of universal
portfolios: complete independence from any statistical assumptions.

In order to place our results in the context of research on optimal portfolio selection
we need to introduce at this point some formal notations.

We assume that the stock market evolves in discrete time t = 1; :::; n; ::, each period
of discrete time will be referred to as trading period. The stock market is composed of m
stocks which prices vary from one trading period to another. For our purposes we need
not so much the absolute stock prices as the price relatives which are the ratios of stock
prices between two subsequent periods. Thus, our (simpli�ed) model of the stock market
is described by the sequence of vectors zt = (zt1; :::; z

t
m) where zti is the ratio between the

price of stock i at the beginning of trading period t + 1 and the price of the same stock
at the beginning of trading period t.

A portfolio is de�ned as a vector x = (x1; :::; xm), where xi � 0; 8 i = 1; :::;m;
Pm

i=1 xi =
1. In particular a portfolio represents an allocation of the wealth across the stocks in the
sense that xi represents the fraction of the wealth invested in the ith stock. Generally,
portfolios change from one trading period to another: x = xt.

Let xk and zk represent respectively the investment portfolio and the vector of price
relatives for some trading period t = k, then the wealth relative S(xk) is de�ned as the
ratio of the wealth at the beginning of two consequitive trading periods t = k and t = k+1
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and is given by:

S(xk) = zk
T
xk =

mX
i=1

zki x
k
i

Suppose now that x(n) = fx1; :::; xng is a sequence of portfolios and z(n) = fz1; :::; zng
is a sequence of stock price relatives. Then the relative wealth accumulated after n trading
periods is given by the following expression:

S(x(n)) =
nY

k=1

S(xk) =
nY

k=1

zk
T
xk

The problem of portfolio selection consists of selecting a sequence of portfolios x(n),
which would maximize S(x(n)) in some sense.

The �nancial theory have developed various notions of optimality for a portfolio. One
possibility is to maximize the expected value of S(x(n)) subject to a constraint on the
variance. This approach is the basis of the Sharpe-Markovitz theory of investment in the
stock market [20, 23]. This theory describes a long term behavior for �xed portfolios.

We adopt here another approach described in [5, 17] which places emphasis on possibil-
ities of frequent wealth reinvestments and is based on the notion of the so-called constant
rebalanced portfolio (CRP). Such portfolio keeps constant the fraction of wealth allocated
to di�erent stocks during all time periods. This policy involves frequent portfolio rebal-
ancing due to di�erent behavior of price relatives for di�erent stocks. We are going to
construct the sequence of portfolios which approximates in some sense the best constant
rebalanced portfolio with perfect knowledge of the future.

The motivation for choosing the constant rebalanced portfolio as a measure of portfolio
quality stems from optimality properties of such portfolio. Suppose, for example, that
the price relatives zk are realizations of random vector with distribution H(z). Then
there exists constant rebalanced portfolio ~x called log-optimal portfolio such that the
exponential rate of growth of wealth S(~x(n)) generated by constant sequence of portfolios
~x(n) = fx1; :::; xn; xt = ~x; t = 1 : ng is not inferior to exponential growth of wealth
S(x(n)) generated by an arbitrary sequence of portfolios which elements do not depend
on the future, i.e.

lim sup
n!1

 
1

n
log

S(x(n))

S(~x(n))

!
� 0

with probability 1 (see Theorem 15.3.1 from [5]). The log-optimal portfolio is the solution
of the following optimization problem.

max
x2X

Z
log (zTx) dH(z) = max

x2X
Ez

n
log (zTx)

o
(1)

X =

(
x j xi � 0; 8 i = 1; :::;m;

mX
i=1

xi = 1

)

Notice that the problem (1) is a typical stochastic programming problem and stochastic
programming algorithms can be used for its solution [3, 11, 13].
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However, the problem (1) assumes that the successive observations zk of the price
relatives are i.i.d. and drawn from a given probability distribution H(z). We do not
make this assumption here, but we are going to use the best constant rebalanced portfolio
(BCRP) as a measure of quality of our portfolios. Let us de�ne the notion of BCRP more
precisely.

Suppose that the sequence of the future price relatives z(n) = fz1; :::; zng over n trading
periods is known at the beginning of the �rst trading period t = 1. We do not assume
the existence of any limiting distribution for this sequence.

Suppose that x is an arbitrary portfolio, x 2 X. Let us denote by x(n)c the sequence
of portfolios of length n each portfolio from this sequence being equal to x:

x(n)c = fx1; :::; xn; xk = x; k = 1 : ng
and by Xn

c the set of all constant portfolio sequences of length n:

Xn
c =

n
x(n) j 9x 2 X : x(n) = x(n)c

o

De�nition 1 Best Constant Rebalanced Portfolio (BCRP)

The best constant rebalanced portfolio
�
xn=

�
x (z(n)) for sequence of price relatives z(n)

maximizes the relative wealth S(x(n)) after n trading periods on the set of constant portfolio
sequences Xn

c , i.e. it is de�ned as solution of the following optimization problem:

�

Sn= max
x(n)2Xn

c

S(x(n)) = max
x2X

nY
k=1

zk
T
x (2)

The portfolio
�
x (z(n)) cannot be used, however, for actual stock selection during the

trading period t = 1; :::; n because it explicitly depends on the sequence z(n) = fz1; :::; zng
which becomes known only after the expiring of this time interval. A reasonable objective

might be, therefore, to approximate the best constant rebalanced portfolio
�
x (z(n)) by a

sequence of portfolios x(n) = fx1; :::; xng which elements xk depend on the sequence of
observable price relatives z(k�1) = fz1; :::; zk�1g up to time k � 1 and use portfolio xk for
stock selection at time k. It would be desirable if such strategy would yield wealth S(x(n))

in some sense "close" to the wealth
�

Sn obtained by
�
x (z(n)).

One such strategy was proposed in [6] and consists of selecting x(k) as follows:

x(n) = �x(n) = (�x1; :::; �xn); �x1 =
�
1

m
; :::;

1

m

�

�xk =

R
X xS(x(n)c )dxR
X S(x(n)c )dx

=

R
X x

Qk�1
i=1 zi

T
xdxR

X

Qk�1
i=1 ziTxdx

(3)

It was shown in [6] that portfolio sequence �x(n) yields "almost" the same asymptotic rate

of growth of wealth as the best constant rebalanced portfolio
�
xn in the following sense:

1

n
ln S(�x(n)) � 1

n
ln

�

Sn ! 0

4



Note that these results do not depend on any statistical assumptions about the nature of
price relatives z(n). They were generalized for continuous time in [17].

In this paper we introduce Successive Constant Rebalanced Portfolios (SCRP) which
are derived using di�erent set of ideas originated in nonstationary and stochastic opti-
mization [10, 12, 13]. Similar to universal portfolio (3), our portfolios do not depend on
statistical assumptions about distribution of price relatives. Approach (3) can be called
analytical since it provides an elegant formula for universal portfolio. Instead, in this
paper we pursue an algorithmic approach: we derive an algorithm for computing of our
portfolio. This approach yields portfolios which are computable for fairly large number
of stocks. This is an advantage of our approach compared to analytical one because (3)
relies on multidimensional integration which is notoriously di�cult to perform, except for
few stocks.

The rest of the paper is organized as follows. Successive constant rebalanced portfolios
are introduced in section 2 where their asymptotic properties are studied. Section 3 is
dedicated to numerical experiments with historic data from New York Stock exchange.
Some generalizations for nonstationary markets together with numerical experiments are
presented in section 4.

It should be noted that computational issues of universal portfolios were addressed in
several other papers, in particular in [15] where it was proposed to derive the universal
portfolio sequence x(k) from approximate minimization on step k of the objective function

F k(x) = � log (xTzk�1)� d (x; xk�1) (4)

with respect to x 2 X, where d (�; �) is some distance measure in <m and � represents a
weighting parameter. This portfolio is easier to compute compared to (3) and, according
to the experiments reported in [15], it possesses �nite time properties superior to (3).
However, asymptotic results proved in [15] are considerably weaker then those reported
in [6].

2 Successive constant rebalanced portfolios (SCRP)

In this section we propose algorithms for portfolio selection derived from the general
methodology developed for the solution of nonstationary optimization problems [12, 13].
Similarly to [6, 15, 17] we do not make any statistical assumptions on the nature of the
available data. The only information available at time k are the observations of the price
relatives z(k�1) = (z1; :::; zk�1) at the end of the previous trading periods. On the basis
of this information we want to select a portfolio xk for the kth trading period before the
knowledge of the price relative zk becomes available. Similarly to [6, 17, 15] we are going
to measure the performance of our portfolio against the performance of the best constant

rebalanced portfolio (BCRP)
�
xn computed after n trading periods with full knowledge

of the price relatives. This portfolio maximizes the wealth S(x(n)) accumulated after n
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trading periods on the set of constant portfolio sequences:

S(x(n)) =
nY

k=1

xTzk

with respect to x 2 X. This optimization problem can be reformulated as follows:

max
x2X

F n(x) = max
x2X

1

n

nX
k=1

fk(x) (5)

where

fk(x) = log (xTzk); X =

(
x : xi � 0;

mX
i=1

xi = 1

)

Moreover, we do not consider the market to be stationary in any sense of the word.
In particular, we do not assume that functions F n(x) tend to any limit while n ! 1.
We only need the boudedness of the sequence of the price relatives z(n). One may argue
that the BCRP is not the best concept to apply in nonstationary situation. Indeed, in
a nonstationary market the price relatives observed at the initial trading periods may
bear little or no relevant information for later trading periods. Still, these initial price
relatives inuence the BCRP just as much as the later ones which is evident from (5).
For this purpose we shall introduce in the next section the concept of Variable Rebalanced
Portfolio (VRP) which explicitly takes into account nonstationarity. In this section we
continue to measure the performance of our portfolios comparing it to the BCRP.

In the simplest case the main idea behind our approach is the following. After each
trading period we compute the current BCRP using only the price relatives known at
this moment. This portfolio is applied during the next trading period. After getting the
new price relative the new BCRP is computed and the process continues. We shall refer
to this procedure as the Successive Constant Rebalanced Portfolio (SCRP). In the case
when such a portfolio is di�cult to compute numerically, we approximate it using iterative
methods developed for nonstationary optimization [14]. The nonstationary optimization
is relevant here because the objective function used to compute our portfolio is updated
after every trading period. Let us de�ne our basic portfolio more precisely.

De�nition 2 Successive Constant Rebalanced Portfolio (SCRP)
The successive constant rebalanced portfolio is de�ned through the following procedure:

1. At the beginning of the �rst trading period take

x1 =
�
1

m
; :::;

1

m

�

2. At the beginning of trading period k = 2; ::: the price relatives z(k�1) = (z1; :::; zk�1)
are available. Compute xk as the solution of the following optimization problem

max
x2X

F k�1(x) (6)

where F k(x) is de�ned in (5).
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We are going to study the properties of this portfolio and consider its di�erent modi-
�cations.

Let us start by some considerations concerning computability of our portfolios. We
do not have explicit analytical formula for their computing, it is necessary instead to
solve the problem (6) during each trading period. This is fairly simple mathematical
programming problem due to concavity of function F k(x) and the fact that there is
only one linear constraint. Moreover, the solution of previous problem can be taken as
initial approximation to the solution of successive problem because functions F k�1(x) and
F k(x) are close to each other for large k. Current commercially available software can
be applied for solving such problem with hundreds of stocks. On the contrary, portfolios
from (3) require multidimensional integration for their computing which is feasible only
for problems of small dimension.

In order to give a feeling about possible numerical approaches for solving (6) let us
describe one algorithm which exploits concavity of function F k(x) and speci�c structure
of constraint set X. It reduces the problem (6) to the sequence of one dimensional
optimization problems which can be solved trivially.

Algorithm 1 ( Solution of problem (6) )

1. Take y = xk�1 and � > � > 0. The value of � determines the accuracy of the
solution of the problem (6) and should be small. Proceed to step 2.

2. Find a pair of integers p; q such that

@

@xp
F k�1(y) � @

@xq
F k�1(y) + �

and yp < 1; yq > 0. If such integers do not exist go to step 4, otherwise go to step 3.

3. Find solution �� of the following one dimensional optimization problem:

max
� :

0 � � � minf1� yp; yqg

F k�1(y + �(ep � eq))

where ep and eq are respective unit vectors of <m. Take

y := y + ��(ep � eq)

Go to step 2.

4. Take � := �=2. If � < � then go to step 5, otherwise go to step 2.

5. Take xk = y and stop.
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One possible strategy for choosing indices p and q from step 2 of Algorithm 1 is the
following:

@

@xp
F k�1(y) = max

1�i�m

@

@xi
F k�1(y);

@

@xq
F k�1(y) = min

1�i�m

@

@xi
F k�1(y)

Now let us study the properties of successive constant rebalanced portfolio. First we
have to introduce some auxilliary results.

By ha; bi we denote the scalar product of vectors a and b.
We need the following de�nition of Strictly Concave Function.

De�nition 3 ( Strictly Concave Function )
Let X be a convex set. Then function F (x) de�ned on X is a strictly concave function

if there exists � > 0 such that

F (x)� F (y) � hFx(y); x� yi � �

2
jjx� yjj2 ; 8x; y 2 X (7)

Here by Fx(y) we denoted an arbitrary supergradient of concave function F (y) at point
y, i.e. an arbitrary vector g which satis�es condition

F (x)� F (y) � hg; x� yi ; 8x; y 2 X

Lemma 1 Suppose that the following conditions are satis�ed:

1. X is a compact convex set.

2. Function F (x) is concave on some open set ~X such that X � ~X and strictly concave
on X with constant �.

3. Function  (x) is concave on some open set ~X such that X � ~X and

sup
x2X

jj x(x)jj � K <1 (8)

Then for all su�ciently small � > 0 the function F (�; x) = F (x)+� (x) is also strictly
concave on X with constant �. Furthermore both F (x) and F (�; x) have unique maxima
x� and x�� on set X and

jjx� � x�� jj �
2K

�
� (9)

Proof.

Due to the strict concavity of F (x) we obtain for arbitrary x; y 2 X:

F (�; x)� F (�; y) = F (x)� F (y) + �( (x)�  (y)) �

8



hFx(y); x� yi+ � h x(y); x� yi � �

2
jjx� yjj2 =

hFx(�; y); x� yi � �

2
jjx� yjj2 (10)

which proves the strict concavity of F (�; y) for nonnegative � with constant �.
Due to conditions 2,3 functions F (x) and F (�; x) are continuous on X and therefore

attain maxima on compact set X at some points x� and x�� respectively which are unique
due to strict concavity of these functions. Substituting x = x�� and y = x� in (10) we
obtain

F (�; x��)� F (�; x�) � hFx(�; x
�); x�� � x�i � �

2
jjx�� � x�jj2 (11)

Now due to de�nition of points x� and x�� the following inequality is satis�ed

F (�; x��)� F (�; x�) � 0 (12)

Recalling that F (�; x) = F (x) + �  (x) and substituting (12) in (11) we obtain

hFx(x
�); x�� � x�i+ � h x(x

�); x�� � x�i � �

2
jjx�� � x�jj2 � 0 (13)

The necessary and su�cient condition that concave function F (x) attains its maximum
on convex set X at point x� is the following:

h Fx(x
�); y � x�i � 0 (14)

for all y 2 X and, in particular, for y = x�� . Substituting this in (13) we obtain:

jjx�� � x�jj � 2

�
�jj x(x

�)jj � 2K

�
� (15)

which completes the proof. �
Now we are ready to formulate the main asymptotic result about behavior of successive

constant rebalanced portfolio.

Theorem 1 Suppose that the following conditions are satis�ed:
1. Function F n(x) from (5) is strictly concave on X uniformly over n, i.e.

F n(x)� F n(y) � hF n
x (y); x� yi � �

2
jjx� yjj2 (16)

2. Gradient of function fn(x) is uniformly bounded over x 2 X and n, i.e.

sup
n; x2X

jjfnx (x)jj = K <1 (17)

Then
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1. The asymptotic rate of growth of wealth S(x(n)) obtained by successive constant

rebalanced portfolio x(n) coincides with asymptotic growth of wealth
�

Sn (x) obtained by the
best constant rebalanced portfolio up to the �rst order of the exponent, i.e.

1

n
log

�

Sn (x)� 1

n
log S(x(n))! 0

2.The following inequality is satis�ed:

S(x(n)) � C(n� 1)�
2K2

�

�

Sn (x); (18)

Proof.

Note that SCRP portfolio can be represented as follows:

x(n) =
�
x1;

�
x1; :::;

�
xn�1

�

where
�
x0 equals x1 from de�nition of SCRP. Therefore denoting

�n =
1

n
log

�

Sn (x)� 1

n
logS(x(n)) (19)

we obtain:

�n =
1

n

nX
k=1

fk(
�
xn)� 1

n

nX
k=1

fk(
�
xk�1)

Let us express �n+1 through �n:

�n+1 =
1

n+ 1

n+1X
k=1

fk(
�
xn+1)� 1

n+ 1

n+1X
k=1

fk(
�
xk�1) =

n

n+ 1

 
1

n

nX
k=1

fk(
�
xn+1)� 1

n

nX
k=1

fk(
�
xk�1)

!
+

1

n+ 1

�
fn+1(

�
xn+1)� fn+1(

�
xn)

�
(20)

Due to de�nition of the best constant rebalanced portfolio we have:

nX
k=1

fk(
�
xn+1) �

nX
k=1

fk(
�
xn)

which yields

1

n

nX
k=1

fk(
�
xn+1)� 1

n

nX
k=1

fk(
�
xk�1) � �n (21)

Furthermore,

fn+1(
�
xn+1)� fn+1(

�
xn) � Kjj �xn+1 � �

xn jj (22)
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where K is taken from (17).

Let us now apply Lemma 1 in order to estimate jj �xn+1 � �
xn jj. Taking in notations

of this lemma

F (x) =
1

n

nX
k=1

fk(x);  (x) = fn+1(x); � =
1

n

we obtain that function F (x) attains its maximum at point
�
xn and function F (x)+ � (x)

attains its maximum at point
�
xn+1. Due to condition 2 of present theorem function F (x)

is strictly concave and f(x) is concave by de�nition. Thus, all conditions of Lemma 1 are
satis�ed which yields

jj �xn+1 � �
xn jj � 2K

�

1

n
(23)

Substitution of (21), (22) and (23) into (20) yields:

�n+1 � n

n+ 1
�n +

1

n(n + 1)

2K2

�
(24)

This leads to the following inequality:

�n � �1
n�1Y
k=1

k

k + 1
+

2K2

�

n�1X
k=1

1

k(k + 1)

n�1Y
j=k+1

j

j + 1
=

�1 1

n
+

1

n

2K2

�

n�1X
k=1

1

k
(25)

where we utilized the fact that

n�1Y
j=k+1

j

j + 1
=
k + 1

n

Let us estimate the sum from (25):

n�1X
k=1

1

k
= 1 +

n�1X
k=2

Z k

k�1

1

k
dy � 1 +

n�1X
k=2

Z k

k�1

1

y
dy = 1 +

Z n�1

1

1

y
dy = 1 + log(n � 1)

which after substitution in (25) gives

�n � �1 1

n
+

1 + log(n � 1)

n

2K2

�
(26)

Thus, �n ! 0 which together with (19) yields the �rst part of the theorem.
Recording de�nition of �n from (19) we obtain from (26):

�

Sn (x) = S(x(n))en�
n � S(x(n))e�

1+(1+log(n�1)) 2K
2

� =

11



S(x(n))e�
1+ 2K2

� (n� 1)
2K2

�

which completes the proof. �

This theorem is valid for quite general functions F n(x) which satisfy conditions 1 and
2. In fact, we have not used at all the speci�c expression for function F n(x) from (5).
This was done in order to make this theorem applicable for other portfolio management
problems, e.g. those with transaction costs. Now let us look into speci�c expression for
F n(x) and derive conditions which are necessary to impose on price relatives in order to
satisfy conditions of Theorem 1.

Theorem 2 Suppose that the price relatives z(n) = (z1; :::; zn) satisfy the following con-
ditions:

1. Asymptotic independence.

liminf
n
�min

0
@ 1

n

nX
i=1

zizi
T

jjzijj2
1
A � � > 0 (27)

where by �min(A) we denoted the smallest eigenvalue of matrix A.
2. Uniform boundedness:

0 < z� � zni � z+; 8n; i (28)

Then conditions of Theorem 1 are satis�ed with function F n(x) from (5).

Proof
1. Let us prove that Condition 1 of Theorem 1 follows from (27). Indeed, the following

inequality is satis�ed for any twice di�erentiable function  (u) of one variable:

 (v) =  (w) +  0(w)(v � w) +
Z v

w

Z t

w
 00(u)dudt �

 (w) +  0(w)(v � w) +
1

2
(v � w)2 sup

w�u�v
 00(u)

Fixing x; y 2 X and taking

 (u) = F n(y + u(x� y)); w = 0; v = 1

we obtain from this inequality:

F n(x)� F n(y) � hF n
x (y); x� yi+ 1

2
sup

n; u2X
(x� y)TF n

xx(u)(x� y) (29)

where we denoted by F n
xx(u) the hessian of F n(x) at point x = u. For F n(x) from (5) we

have:

F n
xx(u) = �1

n

nX
i=1

zizi
T

�
ziTu

�2
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which yields:

sup
n; u2X

(x� y)TF n
xx(u)(x� y) � �jjx� yjj2 inf

n; jjejj=1; u2X
eT

0
B@1

n

nX
i=1

zizi
T

�
ziTu

�2
1
CA e �

�jjx� yjj2 inf
z�0; u2X

1

uT z
jjzjj

inf
n; jjejj=1

eT

0
@1

n

nX
i=1

zizi
T

jjzijj2
1
A e (30)

Furthermore,

inf
z�0; u2X

1

uT z
jjzjj

� inf
u2X

1Pm
i=1 ui supi; z�0

zi
jjzjj

� 1 (31)

Combining (29), (30) and (31) we obtain the following inequality:

F n(x)� F n(y) � hF n
x (y); x� yi � 1

2
jjx� yjj2 inf

n
�min

0
@ 1

n

nX
i=1

zizi
T

jjzijj2
1
A

which together with Condition 1 of the present theorem yields Condition 1 of Theorem 1.
2. Let us prove now that Condition 2 of Theorem 1 follows from (28). Indeed, for

fn(x) from (5) we have:

sup
n; x2X

jjfnx (x)jj = sup
n; x2X

jjznjj
xTzn

� sup
n; x2X

jjznjj
mini zni

Pm
j=1 xj

� z+
p
m

z�

which together with (28) yields Condition 2 of Theorem 1.
The proof is completed. �
Successive constant rebalanced portfolio posseses reasonable asymptotic and �nite

time properties (see numerical experiments in the next section). Let us now introduce
another portfolio which will be referred as the Weighted Successive Constant Rebalanced
Portfolio (WSCRP). The motivation behind this portfolio is the following. When data
is scarse then each new data point may bring about substantial change in SCRP. In this
case some smoothing is necessary which may be achieved by making linear combination
between previous portfolio and the new one.

De�nition 4 ( Weighted Successive Constant Rebalanced Portfolio )
The weighted successive constant rebalanced portfolio is de�ned through the following

procedure:

1. At the beginning of the �rst trading period take

x1 =
�
1

m
; :::;

1

m

�

13



2. At the beginning of trading period k = 2; ::: the price relatives z(k�1) = (z1; :::; zk�1)
are available. Compute yk as the solution of the following optimization problem

max
y2X

F k�1(y); (32)

where F k(y) is de�ned in (5).

3. Take the current portfolio at stage k as a linear combination between previous
portfolio xk�1 and yk:

xk =  xk�1 + (1� ) yk (33)

where  2 (0; 1) is the weighting parameter.

The following theorem describes the asymphtotic properties of the above portfolio.

Theorem 3 Suppose that the following conditions are satis�ed:
1. Function F n(x) from (5) is strictly concave on X uniformly over n, i.e. (16) is

satis�ed
2. Gradient of function fn(x) is uniformly bounded over x 2 X and n as in (17)
Then
1. The asymptotic rate of growth of wealth S(x(n)) obtained by weighted successive con-

stant rebalanced portfolio x(n) coincides with asymptotic growth of wealth
�

Sn (x) obtained
by the best constant rebalanced portfolio up to the �rst order of the exponent, i.e.

1

n
log

�

Sn (x)� 1

n
log S(x(n))! 0

2.The following inequality is satis�ed:

S(x(n)) � C(n� 1)�
5K2

�(1�)
�

Sn (x); (34)

Proof.

This theorem is proved similarly to Theorem 1. Let us consider again

�n =
1

n
log

�

Sn (x)� 1

n
logS(x(n)) =

1

n

nX
k=1

fk(
�
xn)� 1

n

nX
k=1

fk(xk) (35)

and express �n+1 through �n:

�n+1 =
1

n+ 1

n+1X
k=1

fk(
�
xn+1)� 1

n+ 1

n+1X
k=1

fk(xk) =

n

n+ 1

 
1

n

nX
k=1

fk(
�
xn+1)� 1

n

nX
k=1

fk(xk)

!
+

1

n+ 1

�
fn+1(

�
xn+1)� fn+1(xn+1)

�
(36)
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Similarly to (21) we obtain:

1

n

nX
k=1

fk(
�
xn+1)� 1

n

nX
k=1

fk(xk) � �n (37)

Furthermore,

fn+1(
�
xn+1)� fn+1(xn+1) � Kjj �xn+1 �xn+1jj (38)

where K is taken from (17).

Let us estimate jj �xn+1 �xn+1jj.

jj �xn+1 �xn+1jj = jj �xn+1 �xn � (1 � )
�
xn jj � jj �xn �xnjj+ jj �xn+1 � �

xn jj
which together with (23) yields:

jj �xn+1 �xn+1jj � jj �xn �xnjj+ 2K

�

1

n

Continuing recursion in this inequality to n1 = n=2 in case of even n and until n1 =
(n+ 1)=2 in case of odd n we obtain the following:

jj �xn+1 �xn+1jj � 2K

�

nX
k=n1

n�k

k
+ n�n1+1jj �xn1 �xn1jj �

4K

n�

nX
k=n1

n�k + 2n=2 (39)

where we used inequality

jj �xn1 �xn1jj � 2

Since  < 1 we have for su�ciently large n:

2n=2 � K

n�(1� )

which together with (39) yields:

jj �xn+1 �xn+1jj � 5K

n�(1� )
(40)

Substitution of (37), (38) and (40) into (36) yields:

�n+1 � n

n+ 1
�n +

1

n(n + 1)

5K2

�(1� )
(41)

This inequality gives the following in the same way as (24) leads to (26):

�n � �1 1

n
+

1 + log(n � 1)

n

5K2

�(1� )
(42)

Thus, �n ! 0 which together with (35) yields the �rst part of the theorem.
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Recording de�nition of �n from (35) we obtain from (42):

�

Sn (x) = S(x(n))en�
n � S(x(n))e�

1+(1+log(n�1)) 5K2

�(1�) =

S(x(n))e�
1+ 5K2

�(1�) (n� 1)
5K2

�(1�)

which completes the proof. �

Thus, asymptotic properties of portfolios considered here are similar to asymptotic
properties of portfolio reported in [6], but our portfolios are more computationally ori-
ented.

3 Numerical experiments with successive constant

rebalanced portfolios

In this section we describe numerical experiments with portfolios de�ned in the previous
section which were performed with historical data taken from New York Stock Exchange.
In particular we compare performance of our portfolios, namely the successive constant
rebalanced portfolio (SCRP) and the weighted successive constant rebalanced portfolio
(WSCRP), with that of universal portfolio (UP) [6] and with the exponential gradient
portfolio (EGP) described in [15]. Numerical experiments were conducted using daily
historical stock market data from the New York Stock Exchange (NYSE) accumulated
over a 22-year period. This was the same data set which was used in [6] and [15]. For
each experiment we selected a subset of stocks and compared the wealth obtained by
our portfolios with the wealth obtained by previously suggested portfolios and with the
best constant rebalanced portfolio (BCRP) which was obtained using widely available
MATLAB [1] environment. The same environment was also used to implement both
SCRP and WSCRP portfolios.

The �rst three examples we consider are described in [15] and in [6] and use the
following subsets of stocks: Commercial Metals and Kin Arc, IBM and Coka Cola, Gulf-
HP-Morris-Schlum. We selected these examples in order to make our results comparable
with the results reported in literature. Relative wealth obtained by WSCRP portfolio by
the end of the 22 year period for di�erent values of weighting coe�cient  is reported in
each table.

Stocks BCRP WSCRP 

114.85 0.99995

Comm. Met. and Kin Arc 144.01 111.35 0.99990

98.32 0.99950

Table 1: Comparison between BCRP and WSCRP on Commercial Metals and Kin Arc
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Stocks BCRP WSCRP 

15.94 0.99995

IBM and Coka Cola 16.19 15.56 0.99990

15.06 0.99950

Table 2: Comparison between BCRP and WSCRP on IBM and Coka Cola

Stocks BCRP WSCRP 

65.04 0.99995

Gulf - HP - Morris - Schlum 74.27 59.78 0.99990

53.61 0.99950

Table 3: Comparison between BCRP and WSCRP on Gulf - HP - Morris - Schlum

The intuitive explanation for comparatively high values of weighting coe�cient  is
that the total length of the period is very long and smoothing e�ects of weighting should
be felt through reasonable portion of the whole period in this case. These tables show
that WSCRP portfolio approximates quite well the performance of the best constant
rebalanced portfolio, taking into account that the BCRP portfolio knows everything about
future stock behavior and WSCRP knows only the past.

In Table 4 a comparison between the wealth achieved by UP [6] and EGP [15] portfolios
with the wealth achieved by means of our portfolio is reported. Notice that in the last
column the ratio between the wealth achieved by means of the WSCRP and the wealth
achieved by means of the BCRP is reported as W=B.

Stocks BCRP UP EG WSCRP W/B

Comm. Met. and Kin Arc 144.01 80.54 117.15 114.85 0.80

IBM and Coka Cola 16.19 14.24 14.90 15.94 0.99

Gulf-HP-Morris-Schlum 74.27 - 65.64 65.04 0.88

Table 4: Portfolios Comparison

As can be seen the WSCRP portfolio exhibits competitive performance compared with
previous approaches.

The next set of numerical experiments was designed in order to evaluate the inuence
of initial information on the portfolio behavior. In the absense of such information it is
reasonable to distribute initial wealth uniformly between stocks, like it was done in SCRP
and WSCRP portfolios from the last section. However, uniform distribution of wealth
may not be the best choice in the case when additional information about stock behavior
is available. Such information almost always can be drawn from previous historical data.
One possible strategy to utilize this information is to take as initial portfolio the BCRP
portfolio computed using past historical data. In this case Step 1 of De�nitions 2 and 4
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is modi�ed as follows.

De�nition 5 SCRP and WSCRP portfolios with inital information
1. Suppose that the price relatives zk, k = �n1 + 1;�n1 + 2; :::; 0 are known at the

beginning of the �rst trading period. Take x1 as solution of the following problem

max
x2X

1

n

0X
k=�n1+1

log (xT zk) (43)

2. Proceed as in de�nitions of SCRP and WSCRP.

We conducted several numerical experiments in order to check this strategy. The last
4000 observations of the available stock market data related to the 22-years period were
used in these experiments. Two sets of stocks were considered, Set 1 with four stocks and
Set 2 with six stocks. Set 1 comprized JNJ, Kimbc, Morris and Schlum stocks, while Set
2 consisted of Amerb, Commercial Metals, Morris, Sears, Sherw and Texaco stocks.

The �rst experiment was performed on Set 1 where we utilized the �rst 500 observa-
tions in order to �nd the initial portfolio allocation by means of the BCRP strategy. Then
we applied the WSCRP portfolio using a weighting coe�cient  = 0:95, i.e. we utilized
WSCRP portfolio from De�nition 5 with n1 = 500 for remaining 3500 trading periods.
The second experiment was again performed on Set 1 with the same data and the same
value of n1, but with SCRP portfolio.

Set 2 was utilized for the third and fourth experiments. In both cases we used the �rst
300 observations in order to setup an initial portfolio allocation, i.e. n1 = 300. Then two
experiments were conducted with WSCRP portfolio using di�erent values of the weighting
parameter  (0.9995 and 0.9990) for the remaining 3700 observations. The performance
of our portfolios is shown in Table 5.

Stocks BCRP WSCRP SCRP

JNJ - Kimbc - Morris - Schlum 12.76 10.32 -

JNJ - Kimbc - Morris - Schlum 12.76 - 10.08

Amerb-Comme-Morris-Sears-Sherw-Texaco 16.74 12.11 -

Amerb-Comme-Morris-Sears-Sherw-Texaco 16.74 10.65 -

Table 5: Portfolio behaviour when using initial information

In Figure 1 the behaviour of WSCRP, SCRP and BCRP portfolios on Set 1 of stocks
is reported. Lines which correspond to WSCRP and SCRP portfolios are almost indistin-
guishable (except slight divergence at the end). This has intuitive meaning that the value
of smoothing is considerably lower in the case when extensive initial information is avail-
able. Notice that after 2000 trading days both the SCRP and the WSCRP outperform the
BCRP and after 2500 trading days both the SCRP and the WSCRP achieve the wealth
which is approximately 1.75 times the wealth achieved by means of the BCRP. This is
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Figure 1: BCRP-SCRP-WSCRP Wealth Comparison

due to the fact that BCRP utilizes the information about the future stock behavior which
is not available for WSCRP and SCRP.

The behaviour of WSCRP for di�erent values of weighting parameter  and BCRP
portfolios is compared in Figure 2 using Set 2 of stocks. It also shows decreased value of
smoothing in case of additional initial information. In both sets of experiments perfor-
mance of WCRP portfolio approximates reasonably well performance of BCRP.

Finally during the experimentation phase we found evidence that some sequence of
price relatives show nonstationary behaviour. For example in the case when considering
the subset of stocks consisting of JNJ - Kimbc - Morris and Schlum after 2500 trading days
the wealth accumulated by means of both the SCRP and the WSCRP was signi�cantly
greater than one obtained by means of the BCRP during prolonged time period (see Figure
1). This is di�cult to explain if the price relatives are drawn from the same stationary
distribution, because in this case portfolio with perfect knowledge of the future should
outperform portfolios which have only knowledge of the past (up to random variations).

In case of nonstationary market di�erent observations have di�erent relevance with
earlier observations becoming progressively less relevant. Therefore it is important to
introduce a mechanism which would permit to decrease weight of early observations or
even to forget them completely. One possibility is to augment the notion of of Successive
Constant Rebalanced Portfolio by introducing moving window in calculation of portfolio.
More precisely the augmented algorithm would use only the last h (moving window)
stocks observations in order to compute the portfolio to apply in the next trading period.
We dedicate the next section to more formal description of this approach, while here we
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Figure 2: BCRP-WSCRP Wealth Comparison

report one numerical experiment with such portfolio.
We considered the stocks data related to the 22-year period for subset of stocks which

included Gulf, HP, Morris and Schlum and applied SCRP portfolio with moving window
with di�erent sizes of moving window h. Results are reported in Table 6 where the ratio
of the wealth accumulated by means of the SCRP to the wealth accumulated by means
of the BCRP is reported in column S/B.

Stocks BCRP EG SCRP h S/B

120.71 250 1.63

103.22 275 1.39

Gulf-HP-Morris-Schlum 74.27 65.64 159.76 300 2.15

115.24 350 1.55

93.63 400 1.26

Table 6: Succesively Constant Rebalanced Portfolio with Moving Window

This example shows that the wealth achieved by SCRP portfolio with moving window
may be as much as 2 times higher than the wealth accumulated by BCRP portfolio, even
though BCRP knows everything about the future. This example substantially con�rm
our intuition about the nonstationary nature of the stocks behavior in this case. In Figure
3 the behaviour of the SCRP using the moving window with h = 300 is reported. This
example motivated the next section of this paper.
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Figure 3: BCRP - SCRP with Moving Window

4 Variable rebalanced portfolios and directions for

further research

The notion of constant rebalanced portfolio which underpins discussion of the previous
chapter implies stationarity of the market. It is true that such portfolios together with
those considered in the previous chapter can be applied also in nonstationary environ-
ment. Conditions of Theorem 1 do not include explicitly requirements of stationarity.
However, the mere fact that we measure the performance of our portfolios against a port-
folio which allocates wealth in �xed proportion which does not depend on time contains
logical contradictions in case of nonstationarity. Indeed, under nonstationarity the market
can evolve in such a way that observations of price relatives at the initial trading periods
may lose any relevance for later periods. Still, in constant rebalanced portfolio all data
are considered to be equally important, which is clear from (5).

This motivated us to come up with alternatives to constant rebalanced portfolios for
nonstationary case. The notion of variable rebalanced portfolio proposed here enables to
forget the data which are too remote with respect to period of interest. It does this by
discarding all data which fall outside the sliding window of �xed length. This makes such
portfolio more sensitive to the current state of the market. We show that such portfolio
can yield the wealth which is superior to the wealth obtained with constant rebalanced
portfolio.

Suppose again that z1; :::; zn is the sequence of price relatives for periods 1; :::; n,
zk = (zk1 ; :::; z

k
m).
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De�nition 6 Best variable rebalanced portfolio.
By best variable rebalanced portfolio xr;t of order r at time t; 1 � t � n � r + 1 we

call the portfolio which maximizes the relative wealth increase during r consequitive trade
periods starting from period t given price relatives zt; :::; zt+r�1.

Thus, the best variable rebalanced portfolio of order r at time t solves the following
optimization problem:

max
x2X

Sr;t(x); Sr;t(x) =
rY

i=1

xTzt+i�1 (44)

This again can be represented in logarithmic form as follows:

max
x2X

F r;t(x) =
1

r

rX
i=1

f t+i�1(x); f i(x) = log(xTzi) (45)

It is clear from this de�nition that the best constant rebalanced portfolio over period
1; ::; n is just the best variable rebalanced portfolio of order n at time t = 1.

Similarly to the best constant rebalanced portfolio, the best variable rebalanced port-
folio requires the knowledge of the future and therefore can not be used in practice. We
are going to utilize this portforlio to measure the performance of realizable portfolios
which depend only on the past. In order to do this we have to de�ne precisely what is the
wealth generated by sequence of such portfolios over the whole trading horizon [1; n]. In
the case of constant rebalanced portfolio this wealth results from applying such portfolio
every trading period. In case of variable rebalanced portfolio there could be di�erent
possible de�nitions of the total wealth because there is more than one variable rebalanced
portfolio of order r in case when n > r. We are going to use the following de�nition:

De�nition 7 Wealth generated by sequence of variable rebalanced portfolios.
The wealth Sr

n generated by sequence of variable rebalanced portfolios xr;t is obtained
by applying portfolio xr;t at trading period t, 1 � t � n � r + 1 and portfolio xr;n�r+1 at
trading period t, n � r + 1 � t � n.

Thus, we have the following expression for the wealth generated by the sequence of
best variable rebalanced portfolios:

Sr
n =

n�r+1Y
i=1

xr;i
T
zi

nY
i=n�r+2

xr;n�r+1
T
zi (46)

As we have said already, the purpose of introducing the best variable rebalanced
portfolios is to have a yardstick to measure the performance of realizable portfolios in
nonstationary environment. In its pure form the best variable rebalanced portfolio is not
realizable because it depends on information which will become available in the future.
Now we are going to de�ne realizable portfolio which depends only on the past. This
portfolio extends the notion of successive constant rebalanced portfolio from De�nition 2.
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De�nition 8 (Successive variable rebalanced portfolio)
1. At the beginning of the �rst trading period take

x1 =
�
1

m
; :::;

1

m

�

and choose positive integer h � 1.
2. At the beginning of trading period k = 2; ::: the price relatives z1; :::; zk�1 are avail-

able. If k � h+ 1 then compute xk as the solution of the problem

max
x2X

F k�1;1(x); (47)

where F r;t(x) is de�ned in (45). If h + 1 < k � n then compute xk as the solution of the
problem

max
x2X

F h;k�h(x); (48)

Thus, the successive variable rebalanced portfolio takes into account the last h obser-
vations of price relatives and discards the earlier data. Again, this portfolio is reduced
to successive constant rebalanced portfolio if we take h = n. Similar to Theorem 1 it is
possible to obtain an estimate which relates the wealth obtained by successive variable
rebalanced portfolio with wealth generated by the best variable rebalanced portfolio.

The work on theoretical properties of variable rebalanced portfolio is in progress now.
Speci�cally, we are aiming at answering the following issues:

- detection of the right size h of the sliding window from the market observations;
- comparison of asymptotic properties of successive variable rebalanced portfolio with

those of the best variable rebalanced portfolio;
- incorporation of trading costs.
This will be the subject of subsequent paper. Here we report some numerical results

and in particular Table 6 and Figure 3 which show that successive variable rebalanced
portfolio which knows only the past can signi�cantly outperform the best constant rebal-
anced portfolio which knows everything about the future.
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