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This paper analyses in detail the features offered by a function which is practically new 

to Urban Economics, the q -exponential, in describing city size distributions. We 

highlight two contributions. First, we propose a new and simple procedure for 

estimating their parameters. Second, and more importantly, we explain the 

characteristics associated with two traditional graphic methods (Zipf plots and 

cumulative density functions) for discriminating between functions. We apply them to 
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1. Introduction 

The study of city size distribution has a long tradition in Urban Economics. To 

cite just a few examples, see Rosen and Resnick (1980), Black and Henderson (2003), 

Sharma (2003), Ioannides and Overman (2003), Soo (2005), Anderson and Ge (2005), 

Bosker et al. (2008). These distributions have an interest beyond the purely statistical, 

essentially for two reasons, which feed back to and influence each other. First, because 

city size distribution defines the resulting economic landscape – it may be more 

concentrated or dispersed, or biased towards an excessive number of large or small 

centres, with cities which are similar or very different in size – and all of this impacts 

directly on the spatial distribution of income, on public investment in infrastructure of 

various kinds in certain areas, and on imbalances between territories in general. And 

what politician would dare to say these subjects do not interest him? And second, 

because this size distribution is susceptible to change over time, according to certain, 

essentially economic, incentives. 

 Historically, the Pareto distribution has generated more works and greater 

acceptance; the density function of this power law is given by: 

b
x

a
xSizeP =≥ )( ,    (1) 

where a  is a constant, 0>b  is the Pareto exponent and x  is the number of inhabitants 

of each urban centre. Considering the rank r  (1 for the most populous centre, 2 for the 

second, and so on) of the N  cities we can obtain the well-known expression  

xbtconsr lntanln −= ,    (2)  

which relates the logarithm of rank with the logarithm of the size of the cities if they 

follow a Pareto distribution. In the case that 1=b , we obtain the well-known Zipf’s law 
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or rank-size rule (see surveys on this subject by Cheshire, 1999, and Gabaix and 

Ioannides, 2004). 

 Zipf’s law is relevant fundamentally for three reasons. One, it is applied to other 

quantifiable phenomena with a fairly close fit, such as the flow rate of rivers, the 

number of times the same word appears in a text, or the intensity of earthquakes (Zipf, 

1949; Krugman, 1996a). Two, if we consider the 135 Metropolitan Statistical Areas 

(MSAs) existing in the USA in 1991, the Pareto exponent is 1.005 (Krugman, 1996b, 

also shown in Gabaix, 1999), meaning that this law is fulfilled almost exactly. And 

three, there is a degree of consensus which holds that the urban structure arising from 

the fulfilment of the law defines a balanced hierarchy, in which cities of all sizes are 

well represented. In summary, the Pareto distribution, and a particular case of it such as 

Zipf’s law, are certainly useful for explaining the behaviour of urban areas, especially 

the largest ones (upper tail distribution). 

 However, the description of Pareto’s law has some substantial faults. On one 

hand, in a rank-size plot Pareto’s distribution has a vertical asymptote in 0=x , which 

lacks verisimilitude. On the other hand, the Zipf plot (relating rln  with xln  on 

Cartesian axes) deviates from a straight line with a negative slope as predicted by (2) 

when, again, all urban areas are included, or the population cut-off is low enough.  

 In this order of things, the contribution of Eeckhout (2004) arrives, essentially 

proposing three ideas. One, that when all urban centres are taken, without any size 

restriction, Pareto’s distribution falters and the best representation of the data is a 

lognormal function. Two, as a theoretical result: if the underlying distribution is 

lognormal, which generates a concave Zipf plot, the Pareto exponent decreases with 

sample size, meaning that a sample size can be found which verifies Zipf’s law exactly. 

These first two contributions clearly show the importance of taking all cities, as to do 
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otherwise can lead to skewed or spurious results. And three, the data for all US cities in 

1990 and 2000 support the hypothesis of lognormality and the fulfilment of Gibrat’s 

law, or the law of proportionate growth, something which was already anticipated from 

a theoretical viewpoint by Gibrat (1931) and Kalecki (1945). 

 Briefly, the two distributions most used in the economic literature have been 

Pareto’s, and, more recently, the lognormal
1
. However, in a rather odd publishing 

medium for an economist or geographer, a physics journal, Malacarne et al. (2001) 

show that when all cities are taken, the so-called q -exponential distribution presents a 

very close fit to the data. As far as we know, the only other work to test this statement is 

that of Soo (2007), who, taking the largest cities of Malaysia (over 10,000 inhabitants) 

obtains negative results regarding the features of the q -exponential, leading us to think, 

as with the lognormal, that this distribution is especially suitable when no truncation 

point is defined. 

Recently much more complete databases have been constructed, which enable us 

to bring more statistical information to bear on the problem dealt with in this work. 

Specifically, González-Val (2010) considers all the population centres in the USA 

during the entire 20th century; González-Val et al. (2010) do the same for Spain and 

Italy, as well as for the USA. If these data are used to represent the logarithm of the rank 

against the logarithm of city size, a clear deviation from linearity can be observed in all 

cases, opening the way for the consideration of non-Pareto distributions. What we want 

to emphasise is that, except for Eeckhout (2004), no previous studies consider the entire 

distribution of cities, as all of them impose a truncation point, either explicitly by taking 

                                                 
1 Even more recently distributions have been proposed in the literature which are a combination of both 

(Giesen et al., 2009, and Ioannides and Skouras, 2009).  
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cities above a minimum population threshold, or implicitly by working with MSAs
2
. 

This is usually due to a practical reason of data availability. 

In this context, the aims of this article are as follows. First, to test the features of 

the q -exponential for describing city size distribution over a long period (a hundred 

years), for various urban structures (those of Spain, Italy and the USA) and considering 

all centres (about 8,000 for the Mediterranean countries for the whole century and from 

10,600 to over 19,000 for the USA depending on the year). Second, to carry out the 

same exercise for the lognormal. And third, to weigh up the advantages and 

disadvantages of both distributions, q -exponential and lognormal, and to determine if 

they can be substituted for each other or if they are complementary in nature, and under 

what circumstances. As can be seen below, these three aims will lead to a simple 

contribution regarding estimation methods and to some developments of theoretical 

statistics, not at all complex, justifying and explaining the differences which arise 

between the q -exponential and lognormal distributions. In any case, as far as we know 

this is the first time that these matters have been subjected to empirical testing with such 

a large database.  

 This paper offers three main contributions. First, it proposes a simple new way 

to estimate the parameters of the q -exponential distribution, improving on that hitherto 

used in the literature. Second, it explains the advantages and disadvantages associated 

with two traditional graphic methods (Zipf plots and cumulative density functions) in 

discriminating between density functions, and applies them to q -exponential and 

lognormal distributions. Last, it concludes that both distributions are suitable for 

                                                 
2 In the USA, classification as an MSA requires a city of at least 50,000 inhabitants or the presence of an 

urban area of at least 50,000 inhabitants and a total metropolitan population of a minimum of 100,000 

inhabitants (75,000 in New England), according to the official definition. Other countries follow similar 

criteria, although the minimum population threshold needed to be considered a metropolitan area may 

vary. 
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describing city size distributions with precision, and that the relationship between them 

is basically of complementarity. 

The article is organised as follows. The second section defines and characterises 

the q -exponential distribution; the third summarises and explains the databases used; 

the fourth is the longest, comparing and contrasting the q -exponential and lognormal as 

potentially valid functions for describing city size distribution; the fifth shows how both 

distributions are more complementary than interchangeable; finally, we end with the 

conclusions.  

2. On the q -exponential distribution 

The probability density function (pdf) of the q -exponential is given by: 
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where 0>a  and 1>q are parameters and x  denotes the population of urban centres. 

The expression of the corresponding cumulative distribution function (cdf) is: 
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and that of the rank of cities according to population is 
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where 00 >r  is a new constant equivalent to the sample size. In the case that 1→q , 

ax
aexf

−→)(  and ax
erxr
−→ 0)( , which justifies the name q -exponential.  
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This distribution was used profusely by Tsallis (1988) and his group of collaborators in 

physics literature, arguing for its theoretical applicability to systems with long-range 

interactions, and the cited work by Malacarne et al (2001) can be included in this line of 

argument. However, the q -exponential is a particular case of the distribution known as 

generalised type II Pareto, which has been considered in various earlier works (for 

example, Hosking and Wallis, 1987, Grimshaw, 1993 and Choulakian and Stephens, 

2001). Rank compared to size, according to (5), is a decreasing function (something 

which by definition should always happen), strictly convex, and for 0=x  reaching a 

finite value, 0r , in this aspect improving the behaviour of the Pareto distribution.  

3. The databases 

We use population data for cities in three countries: the USA, Spain and Italy. 

Analysing the evolution of the urban structure of the USA is extremely interesting, as it 

is a relatively young country with highly mobile inhabitants. On the other hand, we 

have the European countries, with a much older urban structure and inhabitants who are 

more resistant to moving; concretely, Cheshire and Magrini (2006) estimate that 

mobility in the USA is fifteen times higher than in Europe.  

Considering these two types of country gives us information on different urban 

behaviours, as while the urban structure of Spain and Italy is already consolidated and it 

is rare that new cities appear (urban growth is produced by increasing populations in the 

already existing cities), in the USA urban growth has a double dimension: cities grow 

not only in size but in number, with potentially different effects on city size distribution. 

Thus, the population in cities (incorporated places) goes from less than half the total 

population of the USA in 1900 (46.99%) to 61.49% in 2000, while the number of cities 

increases by 82.11%, going from 10,596 in 1900 to 19,296 in 2000. 
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The data we use for the USA are the same as used by González-Val (2010) and 

González-Val et al. (2010). Our database, using the original documents of the annual 

census published by the US Census Bureau, www.census.gov, consists of the available 

data for all incorporated places without any size restriction for each decade of the 20th 

century. The US Census Bureau uses the generic term ‘incorporated place’ to refer to 

the governmental unit incorporated under state law as a city, town (except in the states 

of New England, New York and Wisconsin), borough (except in Alaska and New 

York), or village, with legally established limits, powers and functions.  

The number of cities (in brackets) for each period is: 1900 (10,596 cities), 1910 

(14,135), 1920 (15,481), 1930 (16,475), 1940 (16,729), 1950 (17,113), 1960 (18,051), 

1970 (18,488), 1980 (18,923), 1990 (19,120) and 2000 (19,296).  

Two clarifications should be made. First, this excludes all the cities in Alaska, 

Hawaii and Puerto Rico for each decade, as these states were annexed in the 20th 

century (Alaska and Hawaii in 1959, and the special case of Puerto Rico, which was 

annexed in 1952 as an associated free state) and data does not exist for all the periods. 

Their inclusion would produce geographical inconsistency in the samples, which would 

not be geographically homogeneous and thus could not be compared. And second, for 

the same reason we exclude all unincorporated places (designating population centres 

which are not part of an incorporated place, but are locally identified by a name), which 

began to be accounted for from 1950. However, these settlements did exist before, so 

their inclusion would again lead to a problem of inconsistency in the sample. In any 

case, their elimination is not important quantitatively, as there were only 1,430 

unincorporated places in 1950, representing 2.36% of the total US population; in 2000 

these figures would be 5,366 and 11.27%. 
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For Spain and Italy the geographical unit of reference is the municipality, and 

the data come from the official statistics services. In Italy, this is the Servizio Biblioteca 

e Servizi all’utenza de la Direzione Centrale per la Diffusione della Cultura e 

dell’informazione Statistica, part of the Istituto Nazionale di Statistica, www.istat.it, and 

for Spain, the census are offered by the Instituto Nacional de Estadística, INE, 

www.ine.es. The resident population for each municipality is used.  

We take the data of the census for each decade of the 20th century. For Italy we 

take data for the following years (the number of municipalities for each year is shown in 

brackets): 1901 (7,711), 1911 (7,711), 1921 (8,100), 1931 (8,100), 1936 (8,100), 1951 

(8,100), 1961 (8,100), 1971 (8,100), 1981 (8,100), 1991 (8,100) and 2001 (8,100). 

There is no census in Italy for 1940, due to its participation in the Second World War, 

so the data for 1936 is used. For Spain, the following years are considered: 1900 (7,800 

municipalities), 1910 (7,806), 1920 (7,812), 1930 (7,875), 1940 (7,896), 1950 (7,901), 

1960 (7,910), 1970 (7,956), 1981 (8,034), 1991 (8,077) and 2001 (8,077).  

4. Lognormal versus q -exponential. The substitution approach 

4.1. Estimation methods 

4.1.1. Estimation of the lognormal 

The probability density function (pdf) of the lognormal is given by: 
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where μ  and σ  are the mean and variance of xln , which in this case denotes the 

natural logarithm of the population of the urban centres. The expression of the 

corresponding cumulative distribution function (cdf) is: 
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where erf  denotes the error function associated with the normal distribution. The 

expression of the rank of cities according to population is 
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Maximum Likelihood (ML) is often used to estimate if data follow a lognormal 

distribution, although this method has not been applied as frequently for the population 

of urban centres as it has been in other fields
3
. ML estimators are expressed simply in 

terms of population data: 
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where N  is the sample size. That is, the estimated mean and variance are exactly those 

of the data. Later, we estimate 0r  by OLS taking into account the estimated cdf  and the 

equation (8). 

 The estimates of these parameters for our data are very significant in the three 

countries and for all years. This information is shown in Table 1. The estimations of 0̂r  

are directly related to sample size, as we already know; those of μ̂  are very stable over 

time for all three countries, while as one would expect, the values of 
2σ̂  increase 

slightly over time for the three areas. 
2

R , corresponding to the OLS estimation of 0r  

applying equation (8), shows that the degree of fit is very good.  

4.1.2. Estimation of the q -exponential  

                                                 
3 We recall that Eeckhout (2004) is the first to propose lognormality for city size distribution. 
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In their original article, Malacarne et al. (2001) begin with what they call the q -

logarithmic function )(ln xq , which in econometrics can be understood as a Box-Cox 

transformation. They show that if (and only if) the value of q  used in this function 

coincides with the value of q  of the expression of rank )(xr  given by (5), then 

))((ln xrq  is linear in x  and can be represented as a straight line. That is, the value of q  

which we want to find must be known beforehand, which is a problem both 

conceptually and operationally. Elsewhere, Soo (2007) estimates (5) giving values to q  

one decimal at a time, choosing the one which minimises the sum of the residues and, 

once this q̂  is determined, the values of a  and 0r  are obtained by non-linear estimation; 

this is a solution to the problem which could be improved upon, as it also involves 

proposing arbitrary initial values for the parameter which it seeks to estimate.  

Meanwhile, the distribution of the q -exponential is estimated by ML in various 

works, or, more correctly, the generalised Pareto distribution (on this subject, see the 

references cited in the second section). In all of these the number of observations used is 

not high. In our case the sample size is more than 8,000 for Spain and Italy, and goes 

from 10,600 to nearly 20,000 in the USA, and this means that using ML presents 

serious difficulties. Indeed, to see their origins for large sample sizes, the first order 

conditions for maximising joint verisimilitude are: 
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It can be deduced at first sight that the second equation in (10) is especially difficult to 

resolve, as the root must be found to a very high degree equation. 



 11

 Given the great difficulty of using ML on one hand, and the problems of 

estimating the parameters of interest presented in the preceding works on the other, we 

have opted to begin by estimating the parameters of (5) using non-linear methods, 

without setting the values of any of them beforehand. However, this non-linear 

estimation requires some initial values for the parameters, which will be seen to be 

fundamental for the algorithm to converge on a reasonable number of iterations. 

 We have developed a novel method for finding these initial values. The 

procedure is as follows. Let p  be a new exogenous parameter which may take the value 

of q . Let 
q

pq

−
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=
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The problem is thus reduced to estimating the values of 321 ,, λλλ . We have carried out 

linear regressions of p
r

−1 on the variables 2, xx  with our rank data for values of p  

which make the value of 3λ  very close to zero, and so that the values of the parameters 

obtained make sense. This procedure has been shown to be very effective for obtaining 

the initial values of the parameters. Later, we carried out a simultaneous estimation by 

ordinary nonlinear least-squares (Bates and Watts, 1988) of the three parameters aqr ,,0  

of specification (5), using the initial values obtained by the earlier procedure. The 

estimated parameters, shown in Table 2, are very significant in all the cases. The 

estimates of q̂  present a clear tendency to increase over time in all three countries; 

those of â  have this characteristic only in Spain and Italy, and after the mid-century 

point. The fit is also very good, and almost always very slightly better (we are talking 

about differences of thousandths or even ten thousandths for Italy) than that obtained in 

Table 1 with the lognormal distribution. 

4.2. Comparison in terms of Zipf plots 

In this sub-section we compare both distributions in terms of Zipf plots, i.e., 

double logarithmic graphs of rank compared to population, which are used extensively 

in the specialised literature. 

We will present these graphs in the comparison of the logarithm of the 

theoretical and empirical ranks for the two distributions studied, q -exponential and 

lognormal. In terms of Zipf plots, and in a visual analysis of them, there are various 

cases in which the fit by the q -exponential is apparently better than by the lognormal, 

or where it is not easy to discern the difference. We will show the most representative 

ones. Figure 1 displays the situation for the q -exponential, showing the Zipf plots of 
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the actual data (in black) with the estimated or theoretical q -exponential (blue). Figure 

2 presents the same for the lognormal. 

Beginning with the case of Italy in 1951, visually neither of the two distributions 

seems to give a good fit, while divergence with the theoretical lognormal appears only 

in the upper tail of the distribution. In other periods of the 20th century for Italy the fit 

of the two distributions is similar except in 2001 when the q -exponential apparently 

gives a better description.  

However, in other cases the situation is more favourable to the q -exponential, 

for example in Spain in 1950. In this case the fit given by the q -exponential looks much 

better than that of the lognormal. For Spain, this happens for almost all of the 20th 

century, with 2001 being the year when they both give an apparently similar fit.  

For the case of the USA, there is a gradual improvement in the description by 

the q -exponential until 1950 (when the fit appears to be very good) and then it worsens, 

while the lognormal shows a similar behaviour throughout the 20th century. The year 

2000 in the USA, the same year considered by Eeckhout (2004, 2009) and Levy (2009), 

is an example in which it is not clear which distribution is visually better: the q -

exponential systematically overestimates the size of the largest cities, while the 

lognormal underestimates them.  

In any case, it seems that the lognormal is slightly better suited to the rank of the 

smallest centres, confirming what was already observed in Tables 1 and 2 in reference 

to the estimations of 0r . Another general result is that, for either of the two distributions, 

it can be seen that discrepancies can be found in the Zipf plots between the data and the 

corresponding theoretical distribution, and that this tends to increase clearly and 

systematically with city size. It is not difficult to find a statistical explanation for this 
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fact. Below, the quantities with overbar correspond to the empirical or sample 

distribution, and without overbar, to the theoretical distribution: 

   ( ))(1)( 0 xfdcrxr −= ,      (13) 

( ))(1)( 0 xcdfrxr −= .      (14) 

At origin both cdf s are null, thus 0)0( rr =  and 0)0( rr = . In turn, for an arbitrarily 

large value, infinite, of city population, both cdf s have to be equal to one, so that 

0)()( =∞=∞ rr .   

 If, as the Zipf plot demands, we take logarithms, which is important, and 

evaluate their difference, we obtain the following expression: 
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where the last term in (15) is the fundamental one and deserves our attention. Indeed, 

when x  is very large, the denominator )(1 xcdf−  becomes very small, and when the 

discrepancy in the numerator is divided by it, )()( xfdcxcdf −  is multiplied or amplified 

considerably, so that the contribution of the third term is due to the difference 

)()( xfdcxcdf −  and to this multiplying effect. This is observed in most of the graphs in 

Figures 1 and 2, where the discrepancy increases as x  does, and is an unavoidable 

effect, unless )()( xfdcxcdf −  is practically null, something which happens for the q -

exponential in the case of Spain in 1950 and USA in 1950. The previous observation, as 

far as we know, is new in the literature, and can contribute to clarifying questions 

recently posed in it (Levy, 2009; Eeckhout, 2009), which among other things, deal with 
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the limitations of using only graphic methods to discriminate between distributions, and 

with the statistical implications of taking logarithms (see also Section 5 of this work).  

4.3. Comparison in terms of the cumulative distribution functions 

We devote this sub-section to comparing the distributions in terms of the 

associated cdf s. In principle, we would expect the results to be similar to those of the 

above section, but we will see that this is not exactly true. Figures 3 and 4 show the 

cdf s corresponding to the same cases in which we illustrated the Zipf plots. 

It will be seen that generally, in the graphs shown, the fit in cdf s is apparently 

better for the lognormal than for the q -exponential, when, we recall, in terms of Zipf 

plot, the q -exponential often did better. To explain this apparent paradox it is useful to 

turn once again to the expressions (13) and (14). From these we deduce: 
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We begin reasoning only for the q -exponential distribution. We know that its fit in 

ranks (see Section 4.2) is very good, except for the smallest cities, which means that 

)()( xrxr ≅  for practically all points, so that (16) is now:  
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It is worth studying equation (17) in detail, keeping in mind that it was obtained 

considering that the fit in ranks is almost perfect. The cdf s fit less well as the 

difference 00 rr −  increases, and this gap is not negligible in the q -exponential, as can 

be confirmed by the information given in Table 2 (remember that 0r  is identified with 

the sample size). Also, the discrepancy in cdf s increases with )(1 xcdf− , i.e., it 
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increases as x  decreases, and tends to disappear gradually as x  increases. All this 

shows that in the q -exponential the discrepancy in cdf s is perfectly compatible with an 

almost perfect rank fit, except for the smallest cities; moreover, it is unavoidable if, as in 

reality, 000 ≠− rr . However, the fit by the q -exponential improves for the three 

countries as the 20th century goes on
4
. This is due to the reasons adduced and to the 

estimate of 0r  improving over time. 

 Is a similar situation produced for the lognormal? We will see it is not. We can 

deduce from Table 1 that now 00 rr ≅ , so that (16) is reduced to:  

   ))()((
1

)()(
0

xrxr
r

xcdfxfdc −=− .   (18) 

So that based on (18) we derive that any lack of fit in ranks is directly transferred, in the 

lognormal, to a lack of fit in cdf s. This intuitive result is not found in the q -

exponential for the reasons adduced above. 

4.4. Standard statistical tests 

 The parameters estimated in Section 4.1 for the lognormal and the q -

exponential are worth an independent statistical test to verify the godness of the fit. In 

the above sub-sections we talked about visual criteria (Zipf plots and cdf s) in order to 

discriminate between distributions, which always involves a certain degree of 

subjectivity. Also, the graphic approximation using Zipf plots in Section 4.2 might not 

give us reliable information about the fit: problems with Zipf plots have been shown in 

the literature (Eeckhout, 2009). For this reason, in this sub-section we present statistical 

tests to compare distributions more objectively. For the case of the lognormal the 

Kolmogorov-Smirnov test is standard, but with a number of observations as high as in 

                                                 
4 More details available from the authors on request. 
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our data, this test tends systematically to reject the null hypothesis of lognormality 

unless the fit is perfect. On the other hand, in the case of the q -exponential or 

generalised Pareto a test of this type is not so standard. Consequently, we are looking 

for a test which does not tend to reject the null hypothesis merely because there is a high 

number of observations, and which is equally applicable to both distributions. 

 The Wilcoxon rank-sum test meets both requirements. It tests the hypothesis that 

two independent samples come from populations with the same distribution. Its result is 

not so dependent on the high sample size, and it is the same test regardless of the 

underlying distribution. We carried out the test comparing the empirical and estimated 

ranks in each case. We show the results of these tests in Tables 3 and 4. 

 The results of the Wilcoxon test show that the null hypothesis of the q -

exponential cannot be rejected with a 5% confidence level in any of the periods of the 

20th century in Spain, Italy and the USA. Neither can lognormality be rejected with a 

5% confidence level in any of the periods of the 20th century in Spain and Italy. In the 

USA a temporal evolution can be seen; the first decades reject the lognormal and the 

p -value decreases over time, but from 1930 the p -value begins to increase, until the 

lognormal distribution cannot be rejected at 5% from 1960 onwards. If we take a 

confidence level of 1%, instead of 5%, the null hypothesis would be rejected in the USA 

only for 1920 and 1930. These results are also obtained in González-Val (2010) using 

kernels.  

5. Lognormal and q -exponential. The complementarity approach 

In the above section we have compared the suitability of q -exponential and 

lognormal distributions for our data, studying Zipf plots, cdf s and the Wilcoxon test. 

The main result which we can present now is that neither of the two is clearly better 
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than the other, and that, taking into account the different criteria presented, either the 

lognormal is preferred ( cdf s) or the q -exponential is (statistical tests and sometimes, 

Zipf plots). In any case, the focus of the above section was on comparing both 

distributions in different ways as substitutes for each other. In this section we change 

the focus and will try to show that rather than being rivals, they complement each other.  

 Therefore, we will now examine this complementarity. First, we see that one of 

the main results of Eeckhout (2004) on the concavity of the lognormal Zipf plot can also 

be applied in the case of the q -exponential. Indeed, in this case the expression of rank 

regarding population is given by (5). To express variables in logarithms we call 

xy ln= , so that y
ex = . Thus: 
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So we have: 
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which is the negative of the hazard rate )(yh . Obtaining the second derivative, we have:  
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which is strictly negative for all y , so that )(ln yr  is strictly concave for all the values of 

the variable and the corresponding Zipf plot is concave in turn. In short, this is a 

theoretical result which affirms that if the process generating the underlying data 

follows a q -exponential (or a lognormal as shown by Eeckhout, 2004) the Pareto 
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exponent decreases with the sample size. In other words, it is the first proof of the non-

rivalry or equivalence, at least to this respect, of both distributions. 

 A key point which arises when studying the q -exponential and the lognormal is 

that if we consider city populations in absolute levels, the empirical distribution of 

probability is a decreasing and convex curve like the density function of the q -

exponential, while if the logarithm of population is taken, the empirical distribution of 

probability is a bell curve, like the density function of the lognormal. This result is 

somewhat counterintuitive and merits closer examination.  

  Let us suppose that we order the urban centres from our data from smaller to 

greater populations. A histogram of these creates a decreasing graph as the population 

rises (Figure 5, data from Spain in 1900). As is well known, a histogram values the 

frequencies associated with intervals of a constant width on the x -axis. However, in a 

histogram of the population logarithm (Figure 6, same data) these are also counted in 

frequencies according to intervals of constant width but now in logarithms; but what 

does this mean in levels? Let δ  be this constant width, and the lower and upper ends of 

one of these intervals be jxln  and 1ln +jx  respectively. By definition, δ=−+ jj xx lnln 1  

or, to put it another way, 
δ

exx jj =+1 . Generalising, 
δδδ j

jjj exexexx 1

2

11 === −+ , where 

1x  is the lower end of the first interval, which cannot be zero. This indicates that the 

upper ends of the intervals, in levels, follow a geometric progression of 
δ

e . It should be 

underlined that this reasoning is valid for any numerical variable which is used 

alternatively in levels and in natural logarithms.  

 This fact explains why taking logarithms gives a bell curve: the first intervals are 

very narrow and there are also very few cases included in them; then, as the intervals 

widen according to the geometric progression, the number of cases in each interval 
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grows considerably, and the graph rises. There will come a moment when, although the 

intervals are very wide, the number of cases will be very small, for obvious reasons (for 

example, very large cities, of more than, let us say, 500,000 inhabitants), so that the 

graph decreases. The process has arrived at a maximum and it is obtained a bell curve. 

 These two results show that the q -exponential and the lognormal are 

complementary, rather than being substitutes for each other. Both give a remarkably 

close fit to the data, and both improve the description of the Pareto distribution when all 

population centres are considered. 

6. Conclusions 

Any phenomenon or, better, quantifiable variable, as long as it takes numerical 

values in principle continuously, can be studied statistically. This statistical point of 

view involves analysis of the distribution of the variable in question. And this can be 

done with any type of data in any discipline, as long as they meet the requirements just 

mentioned. City size distribution is not exempt from this fact and has a wide-ranging 

tradition in the literature of Urban Economics. This paper forms part of this trend.  

But this is not merely a statistical curiosity. There is also Economics or, better, 

the study of city size distribution also has deep economic implications. For example, an 

urban structure of cities of very similar population invites an egalitarian treatment by 

the public bodies in charge of investment in transport infrastructure, education or 

healthcare. However, large differences in size require policies which tend towards 

convergence and strive for territorial cohesion.  

This work has minutely examined a density function which as far as we know is 

new to Urban Economics, the q -exponential. A first contribution involves the 

estimation method of its key parameters. Indeed, rather than taking predetermined 
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values for them, they are approximated by a Taylor series expansion enabling us to 

obtain initial values for later estimation, without restrictions or a priori assumptions, by 

nonlinear least-squares. 

Elsewhere, since the pioneering work of Eeckhout (2004) the risks have been 

demonstrated of considering only the largest centres, i.e., only the upper tail. In turn, if 

the data permit, the analysis of city size distribution should be done as a long-term 

analysis. With both considerations as premises, this article uses census data for the 

entire 20th century, in decades, and all the cities of three countries: the USA (from 

10,600 to 19,300 centres, according to year), Spain (about 8,000 centres) and Italy 

(about 8,000 centres). Using such large databases and such a vast temporal horizon 

undoubtedly adds robustness to the results. 

What are the main results? All of them relate the distribution which since 

Eeckhout (2004) has been postulated as the best for studying city size distributions 

without a truncation point, the lognormal, with the one we present in this paper, the q -

exponential. There are basically three.  

First, the fit of both (lognormal and q -exponential) in terms of ranks in a Zipf 

plot is extremely good, although very slightly better for the latter. However, it is 

statistically demonstrated that this better fit in ranks of the q -exponential unavoidably 

means that, in terms of cumulative density functions, the lognormal is better.  

Second, the Wilcoxon test shows that the null hypothesis of the q -exponential 

cannot be rejected with a 5% confidence level in any of the periods of the 20th century 

in Spain, Italy and the USA. Neither can lognormality be rejected at 5% in any of the 

periods of the 20th century in Spain and Italy; in the USA, only from 1960 onwards. 
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Then, in standard statistical tests, for our sample, both distributions work well, 

especially the q -exponential.  

And third, the relevant question which might be asked by an urban planner, 

economist or geographer studying the complete city size distribution of a given area or 

country is: does this work recommend using the lognormal or the q -exponential? The 

answer is simple. From our point of view they are complementary: if working with 

populations in levels the q -exponential is better; if, as is usual, the size logarithm is 

taken, both are suitable, and the q -exponential may be very slightly better; but it is also 

fair to say that the lognormal offers good features and two additional advantages: 

historically it has been much more used in the literature (not only in Urban Economics 

but in any discipline) and the method of estimating its parameters is simpler, 

conceptually and computationally, than the q -exponential. In any case, it is a question 

which each researcher must answer for himself and on which this work has tried to shed 

some light.  

Finally, we could not end this work without a brief reflection on the theoretical 

growth process underlying the q -exponential distribution. The links between the 

lognormal and the Pareto distribution and Gibrat’s law are well known, and there is 

even a generalised version, the double Pareto lognormal (Reed, 2002; see footnote 1). 

What is behind the q -exponential? This is an important question which needs to be 

answered, and thus constitutes an excellent field for future research.  
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Table 1. Values of 0̂r , μ̂  and 2σ̂  for USA. Standard errors in parenthesis. Lognormal 

USA-

lognormal 
0̂r  μ̂  

2σ̂  
2

R  

1900 10374.27 6.648714 1.261147 0.9954 

 (6.871518) (0.0122517) (0.0086632)  

1910 13805.79 6.64682 1.292809 0.9953 

 (8.005956) (0.0108739) (0.007689)  

1920 15126.01 6.674667 1.318693 0.9951 

 (8.510406) (0.0105985) (0.0074943)  

1930 16104.56 6.692269 1.401552 0.9949 

 (8.988392) (0.0109193) (0.0077211)  

1940 16347.44 6.775817 1.431982 0.9954 

 (8.587507) (0.0110714) (0.0078287)  

1950 16771.11 6.837732 1.501686 0.9968 

 (7.3058) (0.0114793) (0.0081171)  

1960 17698.55 6.923707 1.605794 0.9975 

 (6.640407) (0.011952) (0.0084513)  

1970 18153.87 7.004047 1.666934 0.9979 

 (6.081665) (0.0122595) (0.0086688)  

1980 18576.96 7.114369 1.661872 0.9981 

 (5.860968) (0.012081) (0.0085425)  

1990 18799.24 7.0984 1.742746 0.9985 

 (5.308348) (0.0126035) (0.008912)  

2000 18968.83 7.18272 1.782151 0.9986 

 (5.17997) (0.0128295) (0.0090718)  
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Table 1 (continued). Values of 0̂r , μ̂  and 2σ̂  for Spain. Standard errors in parenthesis. 

Lognormal 

Spain-

lognormal 
0̂r  μ̂  

2σ̂  
2

R  

1900 7610.979 6.96552 1.062761 0.9975 

 (4.281377) (0.0120334) (0.0085089)  

1910 7614.829 7.012887 1.079165 0.9975 

 (4.280091) (0.0122144) (0.0086369)  

1920 7621.96 7.025287 1.107306 0.9977 

 (4.174949) (0.0125281) (0.0088587)  

1930 7684.351 7.05515 1.142478 0.9977 

 (4.13726) (0.0128743) (0.0091035)  

1940 7706.974 7.062808 1.181922 0.9975 

 (4.320335) (0.013301) (0.0094052)  

1950 7711.78 7.086039 1.202717 0.9977 

 (4.173386) (0.0135308) (0.0095677)  

1960 7717.208 7.033353 1.272214 0.9976 

 (4.219623) (0.0143045) (0.0101148)  

1970 7791.69 6.82857 1.442019 0.9982 

 (3.71842) (0.0161668) (0.0114316)  

1981 7889.339 6.631256 1.623441 0.9985 

 (3.379101) (0.0181122) (0.0128072)  

1991 7916.954 6.534098 1.714716 0.9985 

 (3.454906) (0.0190795) (0.0134913)  

2001 7892.812 6.540983 1.754564 0.9982 

 (3.772936) (0.0195229) (0.0138048)  
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Table 1 (continued). Values of 0̂r , μ̂  and 2σ̂  for Italy. Standard errors in parenthesis. 

Lognormal 

Italy-lognormal 
0̂r  μ̂  

2σ̂  
2

R  

1901 7676.142 7.78953 0.9154127 0.999 

 (2.753235) (0.0104247) (0.0073713)  

1911 7672.715 7.843163 0.9313805 0.9991 

 (2.648972) (0.0106065) (0.0074999)  

1921 8050.636 7.835906 0.9628311 0.9992 

 (2.598348) (0.0106981) (0.0075647)  

1931 8054.081 7.838977 0.9912791 0.9993 

 (2.38133) (0.0110142) (0.0077882)  

1936 8062.379 7.84206 1.009614 0.9994 

 (2.237987) (0.0112179) (0.0079323)  

1951 8067.352 7.894767 1.049305 0.9994 

 (2.147735) (0.0116589) (0.0082441)  

1961 8056.921 7.84784 1.100507 0.9992 

 (2.463067) (0.0122279) (0.0086464)  

1971 8041.767 7.788053 1.185047 0.9992 

 (2.563667) (0.0131672) (0.0093106)  

1981 8045.297 7.792515 1.245428 0.9994 

 (2.102519) (0.0138381) (0.009785)  

1991 8057.702 7.795891 1.282116 0.9996 

 (1.721827) (0.0142457) (0.0100733)  

2001 8068.104 7.803148 1.306614 0.9997 

 (1.473446) (0.0145179) (0.0102657)  
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Table 2. Values of 0̂r , q̂  and â  for USA. Standard errors in parenthesis. q -exponential 

USA q -

exponential 
0̂r  q̂  â  2

R  

1900 12658.84 1.603419 0.0027559 0.999 

 (12.37365) (0.0032688) (0.0000141)  

1910 16939 1.694559 0.0031086 0.9991 

 (14.08978) (0.0027492) (0.0000133)  

1920 18457.28 1.709492 0.0030609 0.9991 

 (14.15269) (0.0025757) (0.0000122)  

1930 19340.12 1.818757 0.003332 0.999 

 (14.61102) (0.0026694) (0.0000133)  

1940 19454.64 1.8933 0.0032611 0.9991 

 (13.47561) (0.0025121) (0.0000121)  

1950 19241.77 1.975214 0.003091 0.9995 

 (9.194967) (0.0019319) (8.51e-06)  

1960 19785.46 2.144436 0.0031838 0.9997 

 (6.949107) (0.0015544) (6.79e-06)  

1970 19911.43 2.221329 0.0030247 0.9998 

 (5.661598) (0.0013473) (5.45e-06)  

1980 20338.61 2.228124 0.0027042 0.9998 

 (5.206677) (0.00122) (4.41e-06)  

1990 20191.54 2.325746 0.0028769 0.9999 

 (4.104436) (0.001043) (3.98e-06)  

2000 20264.44 2.393507 0.0027802 0.9999 

 (3.904862) (0.0010135) (3.62e-06)  
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Table 2 (continued). Values of 0̂r , q̂  and â  for Spain. Standard errors in parenthesis. q -

exponential 

Spain q -

exponential 
0̂r  q̂  â  2

R  

1900 9768.342 1.539363 0.0019318 0.9995 

 (8.919785) (0.0025706) (8.32e-06)  

1910 9737.746 1.569519 0.0019022 0.9995 

 (8.536555) (0.0024854) (7.89e-06)  

1920 9642.943 1.606816 0.0019348 0.9996 

 (7.541392) (0.0022763) (7.27e-06)  

1930 9599.185 1.658583 0.0019577 0.9996 

 (7.225424) (0.0022592) (7.20e-06)  

1940 9545.302 1.698713 0.0020182 0.9996 

 (7.722284) (0.0024931) (8.09e-06)  

1950 9479.403 1.729926 0.0020183 0.9997 

 (6.729436) (0.0022309) (7.19e-06)  

1960 9344.968 1.834201 0.0023419 0.9997 

 (6.30277) (0.0022176) (8.12e-06)  

1970 8881.374 1.99013 0.0030433 0.9998 

 (4.450282) (0.0020147) (8.84e-06)  

1981 8627.245 2.192375 0.0041819 0.9998 

 (3.438239) (0.0018711) (0.0000106)  

1991 8607.263 2.359453 0.0053741 0.9998 

 (3.54808) (0.002003) (0.0000144)  

2001 8644.453 2.478272 0.0061204 0.9997 

 (4.134219) (0.0022863) (0.0000188)  
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Table 2 (continued). Values of 0̂r , q̂  and â  for Italy. Standard errors in parenthesis. q -

exponential 

Italy q -

exponential 
0̂r  q̂  â  2

R  

1901 9217.565 0.9955913 0.0003635 0.9989 

 (8.965359) (0.003305) (2.19e-06)  

1911 9128.744 1.007638 0.0003498 0.9991 

 (8.35108) (0.0031358) (1.98e-06)  

1921 9522.924 1.068256 0.0003819 0.9993 

 (7.643256) (0.0027875) (1.88e-06)  

1931 9404.778 1.108075 0.0003946 0.9994 

 (6.948147) (0.0026432) (1.80e-06)  

1936 9313.638 1.118255 0.0003923 0.9994 

 (6.394332) (0.0025241) (1.69e-06)  

1951 9174.556 1.52508 0.0003806 0.9995 

 (5.479968) (0.0022996) (1.46e-06)  

1961 9114.941 1.224953 0.0004378 0.9995 

 (5.332345) (0.0023121) (1.64e-06)  

1971 9008.062 1.369771 0.000551 0.9996 

 (4.735081) (0.0021592) (1.84e-06)  

1981 8863.086 1.470554 0.0005982 0.9998 

 (3.715982) (0.0018076) (1.62e-06)  

1991 8751.159 1.515978 0.000609 0.9998 

 (3.110422) (0.0015959) (1.43e-06)  

2001 8683.71 1.548455 0.0006143 0.9998 

 (2.853292) (0.0015113) (1.34e-06)  

 

Note: By definition 1ˆ >q . The point estimate for Italy in 1901 does not satisfy this 

restriction by thousandths, although the condition would be met if considering the 

estimation by interval. 
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Table 3. Wilcoxon (Rank-sum test) test for the q -exponential 

USA           

Year 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 

p -value 0.4662 0.4519 0.4360 0.4132 0.4718 0.619 0.7635 0.845 0.8948 0.9829 0.9620 

SPAIN            

Year 1900 1910 1920 1930 1940 1950 1960 1970 1981 1991 2001 

p -value 0.7673 0.7845 0.8252 0.8588 0.8372 0.8817 0.9123 0.9448 0.9973 0.9289 0.8912 

ITALY            

Year 1901 1911 1921 1931 1936 1951 1961 1971 1981 1991 2001 

p -value 0.9077 0.529 0.5615 0.6093 0.6242 0.6619 0.6587 0.7049 0.7869 0.8245 0.8536 

Ho: The city distribution follows a q -exponential         
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Table 4. Wilcoxon (Rank-sum test) test for the lognormal 

 

USA           

Year 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 

p -value 0.0252 0.017 0.0078 0.0088 0.0208 0.0464 0.1281 0.1836 0.2538 0.323 0.4168 

SPAIN            

Year 1900 1910 1920 1930 1940 1950 1960 1970 1981 1991 2001 

p -value 0.5953 0.6144 0.6233 0.6525 0.4909 0.5792 0.6049 0.522 0.5176 0.622 0.7212 

ITALY            

Year 1901 1911 1921 1931 1936 1951 1961 1971 1981 1991 2001 

p -value 0.2081 0.2205 0.2352 0.291 0.2864 0.3118 0.2589 0.272 0.382 0.4671 0.5287 

Ho: The city distribution follows a lognormal         

 

 

 

 



 34 

Figure 1. Empirical and theoretical Zipf plots with the q -exponential. 
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Figure 2. Empirical and theoretical Zipf plots with the lognormal. 
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Figure 3. Empirical and theoretical cdf plots with the q -exponential. 
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Figure 4. Empirical and theoretical cdf plots with the lognormal. 
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Figure 5. Histogram of Spanish cities in 1900. Population in levels 
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Figure 6. Histogram of Spanish cities in 1900. Population in logarithms 
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