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GENERAL CLOSED-FORM SOLUTIONS TO THE DYNAMIC

OPTIMIZATION PROBLEM IN INCOMPLETE MARKETS

ABSTRACT. In this paper, we provide general closed-form solutions
to the incomplete-market random-coefficient dynamic optimization problem
without the restrictive assumption of exponential or HARA utility function.
Moreover, we explicitly express the optimal portfolio as a function of the
optimal consumption and show the impact of optimal consumption on the

optimal portfolio.
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1 Introduction

Dynamic optimization has been used extensively in the economic and finan-
cial literature. Examples include incomplete markets, stochastic volatility
and random coefficients models. The contemporary literature usually adopts
random coefficient models ( the parameters of the model are dependent on a
random external economic factor) or non-tradable assets models. Examples
include Musiela and Zariphopoulou (2007), Cvitanic and Zapatero (2004),
Focardi and Fabozzi (2004), Fleming (2004) and Pham (2002).

In order to derive explicit solution to the optimization problem, the previ-
ous studies relied exclusively on exponential or HARA utility functions. This
assumption is restrictive and sometimes unrealistic, since other common and
more appropriate functional forms exist.

In this paper, we relax the exponential or HARA utility assumption. In
doing so, we derive general closed form solutions to the random-coefficient
incomplete-market dynamic optimization problem without imposing restric-
tions on the functional form of utility. Furthermore, we explicitly derive a
functional relationship between the optimal portfolio and optimal consump-

tion and show the impact of consumption on the optimal portfolio.



2 The model

We consider a standard investment-consumption model, which includes a
risky asset, a risk-free asset and a random external economic factor (see, for
example, Fleming (2004)). This implies a two-dimensional standard Brown-
ian motion {(W},W?2), F.},.,.r based on the probability space (€, F, P),

where {F},_,p is the augmentation of filtration. The risk-free asset price

T
r(Ys)ds
process is Sy = etf , where r (Y;) € C? (R) is the rate of return and Y,

is the economic factor.
The risky asset price process is given by

dSs = Sy {p (Vo) dt + o (Y;) dW, }, (1)

where p (Y;) and o (Y;) are the rate of return and the volatility, respectively.

The economic factor process is given by

dY, = b(Y.) dt + pdW! + /1= p2dW® Y, =y, (2)

where |p| < 1 is the correlation factor between the two Brownian motions

and b (Y;) € C! (R) with bounded derivative.



The wealth process is given by

T T
X;’c =z + / {T (Y;) X+ (,U (Ys> -r (Ys> 7TS> - Cs} ds + /71'50 (Y;’) dWslv
t

t 3)

where z is the initial wealth, {m;, 7} _ _ is the portfolio process and {c;, Fs} _ __

T T
is the consumption process, with [ 72ds < oo , [¢sds < oo and ¢ > 0. The
t t

trading strategy (7s,cs) € A (z,y) is admissible (that is, X7¢ > 0).

The investor’s objective is to maximize the expected utility of wealth and
consumption

T
V (t,z,y) = SupE |u1 (X7°) + /U2 (cs)ds | Fe|, (4)

Tt,Ct
t

where V' (.) is the value function, u (.) is a continuous, bounded and strictly

concave utility function.

The value function satisfies the Hamiltonian-Jacobi-Bellman PDE

1
W+T(y)x%+g(y)%+§‘/yy+



Sup {%wfﬁ (y) Ve + [me0 () 0 (y) — ] Ve + po (y) 7V + ug (Ct)} o,

Tt,C

V(T z,y) = u(z), ()

where 0 (Y;) = o1 (Y;) (1 (Y:) — 7 (Y;)) . Hence, the optimal solutions are

‘9 (y> VZE + pvﬂcy
Ve ’

Lemma. We can obtain an exact fixed-coeffiecient Taylor expansion of
uz (¢f) -

Proof. Consider the following Taylor expansion around a

s (cr) = up (@) + 11l (a) (¢ — @) + %UQ (@) (c—a)+R(c),  (8)

where R (¢;) is the remainder. Our objective is to minimize R (¢;)

min {R (z) = (u2 (cr) — [W (a) + 1) (a) (cs — @) + %UQ (@) (¢ — a>2D } |

Ct



The solution yields

R (&) = uy (&) — uj (a) —uy (a) (& — a) =0, (9)

and thus

uy (&) = 5 (a) +us (a) (& — a). (10)

Now since ¢; depends on the value of a, choose a specific value of a = a such

that ¢, = ¢}; hence

uy (¢) = uy () +uy (@) + us (@) (¢f —a).0 (11)

The above equation can be rewritten as

uy (¢}) = by + bac}, (12)

where b; is a constant. Using the same procedure we obtain the following

exact expansion of V, (.)

Vi) =Va(a) + Vig (@) (x — o) + Vi (@) (y — 2) = bg + by + bsy. (13)



Since u, (¢f) =V, (.), we obtain

¢; = (b + bax + bsy) /2. (14)

Substituting (12) — (13) into (6) yields

0 (y) (by + bact) + bsp
by

(15)

This is a general explicit formula that holds for any utility function. More-
over, this formula allows us to determine the impact of consumption on the
portfolio. To show this

87@‘_ -1 _ -1
g = ° (y)b4— o (y)

by the concavity of u. Hence, there is a trade-off between consumption and

investment.
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