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1 Introduction

The idea of purification, i.e., elimination of randomness, is important in game theory

and statistical decision theory. Theorem 4 of Dvoretzky et al. (1951a) (DWW Theorem

henceforth), which is a generalization of the celebrated theorem of Lyapunov for vector

measures, plays a central role. In particular, it says that corresponding to any mixed

strategy with finite actions, there exists a pure strategy with identical integrals with

respect to a finite set of atomless measures on a measurable space. Here the pure strategy

is called a purification of the mixed strategy.

The applications of DWW Theorem to purification problems are also investigated

in Dvoretzky et al. (1950, 1951b). In particular, the purification results for statistical

decision procedures, and for mixed strategies in two person zero-sum games with finite

actions are established. The relevance of DWW Theorem to purification results in finite-

player games with finite actions and with diffused, incomplete information is suggested

by Radner and Rosenthal (1982) and Milgrom and Weber (1985).1 In these games, each

equilibrium in mixed strategy has a payoff equivalent or distribution equivalent purifi-

cation. A unified approach by applying DWW Theorem to purification problems in

games with finite players is presented in Khan et al. (2006). More precisely, Khan et al.

establish a stronger purification result that, in the above games with diffused and in-

complete information, any mixed strategy (not necessarily an equilibrium) has a strong

purification (see Definition 4 below). In addition, Khan et al. establish the existence of

purification for any mixed-strategy Nash equilibrium in a large non-anonymous game as

in Schmeidler (1973), and the existence of symmetrization for an equilibrium distribution

in a large anonymous game as in Mas-Colell (1984) and Khan and Sun (1991).

DWW Theorem has been generalized in several ways. Edwards (1987) shows that

DWW Theorem still holds for a countable infinite action space without any additional

assumptions; see also Khan and Rath (2009) for an elementary proof. In the context

of an uncountable action space, Loeb and Sun (2006) show a generalization of DWW

Theorem by working with atomless Loeb measure spaces instead of atomless measure

spaces.2 Moreover, a more general version of DWW Theorem is presented in Podczeck

(2009a) and Loeb and Sun (2009), where atomless Loeb measure spaces are replaced by

saturated probability spaces (see Section 2.1 below).

The concept of saturated probability space is introduced by Hoover and Keisler (1984).

Loosely speaking, a measure space is saturated if its σ-algebra restricted to any set with

positive measure is never countably generated modulo all the null subsets (see Definition

2 below). In comparison, the σ-algebra on the usual Lebesgue unit interval is countably

generated (modulo the null sets). Saturated probability spaces could serve as a substi-

1See Radner and Rosenthal (1982, Footnote 3) and Milgrom and Weber (1985, Section 5).
2For the construction of Loeb measure spaces, see Loeb and Wolff (2000).
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tute for Lebesgue spaces in situations where the latter fails to work. Keisler and Sun

(2009) investigate several properties which are valid on any saturated probability space

but invalid on any non-saturated probability space. As a result, such a property can be

used to characterize the saturation property of probability spaces. These properties, for

instance, include various regularity properties on distributions of correspondences de-

fined on a probability space (such as convexity, closedness, compactness, preservation of

upper semi-continuity), and the existence of pure strategy equilibria in games with many

players. Recently, there has been a growing literature on applications of saturated prob-

ability space in economic theory, see Khan et al. (2005), Loeb and Sun (2009), Noguchi

(2009), Podczeck (2009a,b), Sun and Yannelis (2009), etc.

In this paper, we present a general purification theorem on saturated probability

spaces (see Theorem 1 below), which provides a far reaching generalization of the earlier

purification results. In particular, it generalizes the results of Loeb and Sun (2006, 2009)

and Podczeck (2009a) in the following two ways. First, we work with a general Polish

(complete separable metric) action space instead of a compact metric space. Second, we

require the payoff functions to be jointly measurable, while in Loeb and Sun (2006, 2009)

and Podczeck (2009a), the payoff functions should satisfy a more restrictive condition,

the Carathéodory condition (see Section 3 below).

Our proof is built heavily on the exact law of large numbers (ELLN for brevity) sys-

tematically studied in Sun (1998, 2006) (see also Subsection 2.2 below). This ELLN ap-

proach is different from the techniques used in Loeb and Sun (2006, 2009) and Podczeck

(2009a). In particular, Loeb and Sun (2006) make use of the nonstandard analysis.

Loeb and Sun (2009) apply techniques of Hoover and Keisler (1984) that certain proper-

ties can be transferred from one saturated probability space to another. And in Podczeck

(2009a), the main result is proved through establishing new results in functional analysis.

It is worthwhile to note that in Loeb and Sun (2006, 2009), Podczeck (2009a), the proofs

of their purification theorems depend on the setting that the action space is a compact

metric space and the payoff functions satisfy the Carathéodory condition. Thus, their

methods cannot be applied to the setting of our main result, Theorem 1, directly.

One advantage of this ELLN approach is that one can simultaneously obtain MANY

required purification mappings. Specifically, these purification mappings can be indexed

by a full subset in an atomless probability space. In comparison, note that in the earlier

purification results only the existence of SOME purification mapping has been estab-

lished. The relevance of the ELLN to the ex post Nash equilibrium of a large game with

idiosyncratic uncertainty is already considered in Theorem 7 of Khan and Sun (2002,

p. 1792). Further results on ex post Nash equilibrium in large games are established

in Khan et al. (2005) and Sun (2007a).

Finally, as an application of Theorem 1, following Khan et al. (2006), we study in

Section 4 the problem of purification for mixed strategies in game theoretic models as
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in Milgrom and Weber (1985). We show that every mixed strategy has many strong

purifications in such a finite-player game with a general Polish action space (not neces-

sarily compact), and with a diffused, conditionally independent incomplete information

structure, and even with discontinuous payoff functions.

The rest of this paper is organized as follows. We present basic results about saturated

probability spaces and the ELLN in Section 2. The main result, Theorem 1, is presented

and discussed in Section 3. Section 4 deals with the problem of purification for mixed

strategies in finite-player games with incomplete information as in Milgrom and Weber

(1985). The proofs of the key results are relegated to Appendix.

2 Saturation and the ELLN

In this section, we introduce basic results about saturated probability spaces in Subsec-

tion 2.1, about the ELLN in Subsection 2.2. Subsection 2.3 deals with one relationship

between the saturation property and the existence of rich Fubini extension based on a

probability space.

For a Polish (complete separable metric) space X , denote its Borel σ-algebra by BX ,

and by M(X) the space of all Borel probability measures associated with the topology

of weak convergence. Given any Borel probability measure γ ∈ M(X), its support is

written as supp γ. It is well-known that, for any measure-valued mapping f from (I, I, λ)

to M(X), the I-measurability of f with respect to the weak topology is equivalent to the

I-measurability of the function f(·)(B) for all B ∈ BX . For any I-measurable mapping

g : I → X , the induced distribution is defined as λg−1 by letting λg−1(B) := λ[g−1(B)]

for all B ∈ BX .

Given two probability spaces based on I, say (I, I, λ) and (I, I ′, λ′), we call the

former is an extension of the latter if I ′ is a sub σ-algebra of I, and the restriction of λ

to I ′ coincides with λ′. Throughout this paper, we call a set is countable if it is finite or

countably infinite. Let N be the set of all the natural numbers.

2.1 Saturated Probability Space

We present the definition of saturated probability spaces introduced by Hoover and Keisler

(1984).

Definition 1 A probability space (I, I, λ) is said to be saturated if for any two Polish

spaces X and Y , any Borel probability measure τ ∈ M(X×Y ) with marginal probability

measure τX on X, and any measurable mapping g from (I, I, λ) to X with distribution

τX , there exists a measurable mapping h : (I, I, λ) → Y such that the measurable mapping

(g, h) : (I, I, λ) → X × Y has distribution τ .
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Given a probability space (I, I, λ), for any subset S ∈ I with λ(S) > 0, denote

by (S, IS , λS) the probability space restricted to S. Here IS := {S ∩ S ′ : S ′ ∈ I}

and λS is the probability measure re-scaled from the restriction of λ to IS. As shown

in Hoover and Keisler (1984, Corollary 4.5), there is an equivalent definition for the

saturated probability space.

Definition 2 We call a probability space (I, I, λ) saturated if it is nowhere countably

generated, i.e., for any subset S ∈ I with λ(S) > 0, the restricted probability space

(S, IS, λS) is not countably generated (modulo all the null subsets).3

Here a probability space is said to be countably generated if its σ-algebra can be

generated by a countable number of subsets (modulo all the null subsets). It is not

countably generated if the σ-algebra I can not be generated by any countable number of

subsets (modulo all the null subsets).4

By Definition 2, a saturated probability space is an atomless probability space. Sup-

pose (I, I, λ) is a saturated probability space, so is the restricted probability space

(S, IS, λS) for any subset S ∈ I with λ(S) > 0. For example, the Lebesgue unit in-

terval, i.e., the interval [0, 1] associated with the the σ-algebra of Lebesgue measurable

sets and the Lebesgue measure, is a countably generated probability space; it is thus

not a saturated probability space. In comparison, any atomless Loeb probability space

is saturated.5 By Maharam’s theorem, a probability space is saturated if and only if its

measure algebra is a countable convex combination of measure algebras of uncountable

powers of the Borel σ-algebra on [0, 1].6

2.2 The Exact Law of Large Numbers (ELLN)

For any two probability spaces (I, I, λ) and (Ω,F , P ), we write I ⊗ F as the usual

product σ-algebra (including all the null subsets) generated by {S × T : S ∈ I, T ∈ F},

and write λ ⊗ P as the product probability measure on I ⊗ F . Given any mapping F

from I × Ω to a Polish space X , for any i ∈ I and ω ∈ Ω, let Fi denote the marginal

mapping F (i, ·) on Ω, and Fω the marginal mapping F (·, ω) on I. As in Sun (1998,

2006), a process F is said to be essentially pairwise independent if for λ-almost all i ∈ I,

Fi and Fi′ are independent for λ-almost all i′ ∈ I.

We shall construct an essentially pairwise independent process as follows. Let [0, 1] be

the unit interval endowed with the Borel σ-algebra B[0,1] and the uniform distribution.

3This condition is originally called “ℵ1-atomless” in Hoover and Keisler (1984), “rich” in an earlier
version of Keisler and Sun (2009), then in Noguchi (2009), “super-atomless” in Podczeck (2009a,b), and
“nowhere countably generatedness” in Loeb and Sun (2009).

4That is, the least cardinality of the collection of subsets that generates I (modulo all the null
subsets) is greater than the cardinality of all the natural numbers, N.

5See Hoover and Keisler (1984).
6See Fajardo and Keisler (2002) for details. And see Maharam (1947) for the Maharam’s theorem.
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For an atomless probability space (I, I, λ), let Ω = [0, 1]I represent the space of all

functions from I to the unit interval [0, 1]. By the Kolmogorov’s extension theorem,

we can consider the continuum product probability space (Ω,F ′, P ′), where F ′ is the

σ-algebra generated by cylinders of the form {ω ∈ Ω : ω(i) ∈ B} for all B ∈ B[0,1], and

P ′ is the continuum product probability measure on (Ω,F ′).

Next define π to be a process from I × Ω to [0, 1] by letting π(i, ω) := ω(i) for

all (i, ω) ∈ I × Ω. Here the marginal function πi is the i-th coordinate function on

(Ω,F ′, P ′). It is clear that πi induces the uniform distribution on [0, 1] for any i ∈

[0, 1], and πi, πj are independent for i 6= j. Accordingly, the process π is an essentially

pairwise independent process. However, it is well-known that this process π is not I × F ′-

measurable.7 Indeed, the essentially pairwise independence and the joint measurability

of a process with respect to the usual product σ-algebra are never compatible with

each other except for the trivial case that almost all random variables are essentially

constants.8

To overcome the above non-compatibility problem of measurability and indepen-

dence, we next follow Sun (2006) to work with the framework of Fubini extension. It is

an enrichment of the usual product probability space on which the Fubini property is

retained.

Definition 3 Take as given two probability spaces (I, I, λ) and (Ω,F , P ).

(A) A probability space (I × Ω,W, Q) extending the usual product probability space

(I ×Ω, I ⊗F , λ⊗ P ) is said to be a Fubini extension if for any real-valued Q-integrable

function F on (I × Ω,W),

(1) Fi is P -integrable on (Ω,F , P ) for λ-almost all i ∈ I, and Fω is λ-integrable on

(I, I, λ) for P -almost all ω ∈ Ω;

(2)
∫

Ω
Fi dP and

∫

I
Fω dλ are integrable on (I, I, λ) and (Ω,F , P ) respectively, in

addition,
∫

I×Ω
F dQ =

∫

I

(∫

Ω
Fi dP

)

dλ =
∫

Ω

(∫

I
Fω dλ

)

dP .

(B) A Fubini extension (I × Ω,W, Q) is said to be rich if there is a W-measurable

process G from I×Ω to the interval [0, 1], such that G is essentially pairwise independent,

and Gi induces the uniform distribution on [0, 1] for λ-almost all i ∈ I. We say that such

a rich Fubini extension is based on (I, I, λ), and the process G witnesses the richness of

the Fubini extension.

In a Fubini extension (I × Ω,W, Q), note that the marginal probability measures of

Q on (I, I) and (Ω,F) are λ and P respectively. To reflect this property, as in Sun

(2006), we denote the Fubini extension (I ×Ω,W, Q) by (I ×Ω, I ⊠ F , λ⊠P ). Next we

introduce the existence of rich Fubini extension based on a saturated probability space.

7See Doob (1953, p. 67) for the special case that (I, I, λ) is the Lebesgue unit interval.
8See Proposition 2.1 of Sun (2006).
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Lemma 1 Assume that (I, I, λ) is a saturated probability space, then there exists a

probability space (Ω,F , P ) extending (Ω,F ′, P ′), such that there exists a rich Fubini

extension (I×Ω, I ⊠ F , λ⊠P ) on which the process of coordinate functions π is I ⊠ F-

measurable and witnesses the richness of the Fubini extension.

Remark 1 If both (I, I, λ) and (Ω,F , P ) are atomless Loeb probability spaces, their

Loeb product probability space is a rich Fubini extension as shown in Theorem 6.2 of Sun

(1998). Sun (2006, Proposition 5.6) provides another construction, where I = [0, 1]

and (I, I, λ) is a probability space obtained from a hyperfinite Loeb counting space via

a bijection, and (Ω,F , P ) is an extension of the usual continuum product probability

space (Ω,F ′, P ′). Based on the construction of Sun (2006), a new rich Fubini extension

is presented in Sun and Zhang (2009) where (I, I, λ) is a saturated probability space and

an extension of the Lebesgue unit interval. Podczeck (2009b) establishes a more general

result that (I, I, λ) could be any saturated probability space.

Indeed, a rich Fubini extension satisfies the universality property in the sense that

one can construct processes on it with essentially pairwise independent random variables

that have any given variety of distributions on a general Polish space. The following

result is Proposition 5.3 of Sun (2006).

Lemma 2 Given a rich Fubini extension (I × Ω, I ⊠ F , λ⊠ P ) and a Polish space X.

Let f be a measurable mapping from (I, I, λ) to M(X), then there exists an I ⊠ F-

measurable process F : I × Ω → X such that the process F is essentially pairwise

independent and f(i) is the induced distribution by Fi, for λ-almost all i ∈ I.

The following result is a version of the ELLN in terms of sample means, see Corol-

lary 2.10 of Sun (2006). Namely, in the framework of Fubini extension, if a process F is

essentially pairwise independent, then for P -almost every sample function Fω, its mean

is equal to the mean of F .

Lemma 3 Assume that (I × Ω, I ⊠ F , λ ⊠ P ) is a Fubini extension, and F is a real-

valued, essentially pairwise independent, λ⊠ P -integrable process on I × Ω. Then there

exists a P -null subset N ⊆ Ω, such that
∫

I
Fω(i) dλ(i) =

∫

I

∫

Ω
F dP (ω) dλ(i), ∀ω ∈ Ω/N .

The framework of Fubini extension plays a fundamental role to study the ELLN. In-

deed, this framework is “necessary and sufficient” for the ELLN. First, in such a frame-

work, besides the ELLN in sample means as in Lemma 3, one can establish other forms

of ELLN, for example the ELLN in terms of sample distributions or coalitional sample

distributions, even the converse of the ELLN holds as well (see Sun (2006, Section 2.3)).

Second, if a process is essentially pairwise independent and satisfies the property of

coalitional aggregate certainty (i.e., for any S ⊂ I with λ(S) > 0, almost every sample

function restricted to S has the same distribution as the process restricted to S × Ω),

then there exists a Fubini extension in which the process is measurable; see Sun (2007a).
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2.3 Saturation and Rich Fubini Extension

Given a probability space (I, I, λ). Let C be a countably generated sub-σ-algebra of I. A

measurable function f defined on the probability space (I, I, λ) is said to be essentially

C-measurable if there is a C-measurable function g also defined on I such that f(i) = g(i)

for λ-almost all i ∈ I. The following result is Theorem 4.2 of Sun (2006).

Lemma 4 Let F be an essentially pairwise independent process from (I×Ω, I ⊠ F , λ⊠

P ) to a Polish space X , and C a countably generated sub-σ-algebra of I. Then the set

of all ω ∈ Ω such that the function Fω is essentially C-measurable must have probability

zero except for the trivial case that almost all the random variables Fi are constant.

The next result says that, the existence of a rich Fubini extension based on a proba-

bility space is a characterization of the saturation property as in Keisler and Sun (2009).

It is straightforward from Lemmas 1 and 4; see Appendix below for the proof.

Corollary 1 The probability space (I, I, λ) is saturated if and only if there is a rich

Fubini extension based on it.

3 The Purification Theorem

We first present the main result, Theorem 1, in Subsection 3.1, then we discuss it in

Subsection 3.2.

In this section, we fix a saturated probability space (I, I, λ), and a rich Fubini ex-

tension (I ×Ω, I ⊠ F , λ⊠ P ) as in Lemma 1 above. Let X be a Polish space associated

with BX and M(X) as in Section 2. For any I-measurable mapping f from (I, I, λ)

to M(X), let f(i;B) be the value of the probability measure f(i) for any Borel subset

B ⊆ X . Denote by f(i; dx) the integration operator with respect to this probability

measure f(i).

Let H be the collection of real-valued functions φ on the product space I ×X such

that: (1) φ is I ⊗ BX -measurable, and (2) φ is integrally bounded, i.e., there exists

a nonnegative integrable function αφ from (I, I, λ) to R with |φ(i, x)| ≤ αφ(i) for all

(i, x) ∈ I ×X .

3.1 The Main Result

We are ready to introduce our main result, which is a general purification theorem. See

Appendix for the proof.

Theorem 1 Let (I × Ω, I ⊠ F , λ⊠ P ) be a rich Fubini extension based on a saturated

probability space (I, I, λ). Assume X is a Polish space, and D a countable subset of H.
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Then for any I-measurable mapping f : I → M(X), there exists an I ⊠ F-measurable

process F : I × Ω → X with the following properties.

(1) The process F is essentially pairwise independent and the induced distribution on

X of Fi is f(i) for λ-almost all i.

(2) For P -almost all ω ∈ Ω, the mapping Fω : I → X is a purification for f with

respect to D in the sense that for all φ ∈ D,

∫

I

∫

X

φ(i, x) f(i; dx) dλ(i) =

∫

I

φ[i, Fω(i)] dλ(i). (1)

We can interpret Theorem 1 in a decision-making situation. Suppose Ann is the

decision maker with the space of uncertainty, (I, I). She can choose an action from the

space X and her payoff function is taken from D. Assume further that before making an

decision, she has no information about the uncertainty except the distribution λ, which

is a probability measure on (I, I). Her objective is to maximize the expected payoff by

choosing a mixed strategy f : I → M(X). That is, her action is a probability measure

on the action space X when facing the uncertainty i.

In Theorem 1, what is the role played by the probability space (Ω,F , P )? This space

works as a random device for the decision maker. When facing the uncertainty i, Ann can

choose actions with the assistance of this probability space. In particular, she takes the

action Fi(ω) when ω is realized. In this way, she takes a pure strategy Fω : (I, I, λ) → X

when ω is realized. We call F : (I × Ω, I ⊠ F , λ ⊠ P ) → X a behaviorial strategy.9

Assertion (1) in Theorem 1 says that for Fi defined on the probability space (Ω,F , P )

induces the same distribution as f(i) for λ-almost all i. That is, with the assistance of

the random device, the decision maker can implement her mixed strategy f by taking

the behaviorial strategy F .

Next we say something about the property of essentially pairwise independence. Since

(I, I, λ) is interpreted the space of uncertainty, the independence condition could model

the situation that the decision maker takes actions independently when facing different

uncertainty, provided that the information structure is sufficiently “rich”. In the theory

of large games, (I, I, λ) is used to represent the space of names of the players. The

independence property is natural since different players take actions independently.10

Under the assumption that the process F is essentially pairwise independent, by the

ELLN, Assertion (2) in Theorem 1 implies that almost every Fω is a required purification.

More precisely, for almost any ω ∈ Ω, by taking the pure strategy Fω, Ann can earn

the amount of
∫

I
φ[i, Fω(i)] dλ(i), and this amount is exactly the same as what she can

expect by taking the mixed strategy f ,
∫

I

∫

X
φ(i, x) f(i; dx) dλ(i). In other words, the

risk about how much she can earn under different realizations of ω ∈ Ω disappears.

9See Khan et al. (2006), for more discussion about mixed strategies and behaviorial strategies.
10See Khan and Sun (2002) for a survey.
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The next result is a generalization of Khan et al. (2006, Corollary 1), which in turn is a

generalization of the original DWW Theorem in Dvoretzky et al. (1951a). It follows from

Theorem 1 line by line as Loeb and Sun (2006, Corollary 2.4) follows from Loeb and Sun

(2006, Theorem 2.2).

Corollary 2 Let (I × Ω, I ⊠ F , λ⊠ P ) be a rich Fubini extension based on a saturated

probability space (I, I, λ). Let X be a Polish space. For each k in a countable set K, let

µk be a finite signed measure on (I, I) that is absolutely continuous with respect to λ.

For each j in a countable set J , assume that φj ∈ H.

Then for any I-measurable mapping f from I to M(X), there exists an I ⊠ F-

measurable process F : I × Ω → X, such that F is essentially pairwise independent,

the induced distribution of Fi is f(i) for λ-almost all i; and for P -almost all ω ∈ Ω the

sample mapping Fω satisfies the following properties.

1.

∫

I

∫

X

φj(i, a) f(i; dx) dλ(i) =

∫

I

φj[i, Fω(i)] dλ(i), ∀ j ∈ J ;

2.

∫

I

f(i;B) dµk(i) = µk[F
−1
ω (B)], for all B ∈ BX and k ∈ K;

3. Fω(i) ∈ supp f(i) for λ-almost all i ∈ I.

In Corollary 2, let J be an empty set, the existence result of the above corollary is a

variation of the DWW theorem on a saturated probability space (I, I, λ) and a general

Polish space X . For another special case, taking J to be empty and the set K contains

only one element with µ1 = λ, the existence result of Corollary 2 is Theorem 3.6 (P6)

of Keisler and Sun (2009).

3.2 Discussion

In this paper, besides establishing the existence result based on saturated probabil-

ity spaces as in Loeb and Sun (2009), Podczeck (2009a), we can simultaneously obtain

MANY required purifications. More precisely, these purifications can be indexed by a

full subset in an atomless probability space (Ω,F , P ).

Recall that the probability space (Ω,F , P ) can represent all the mappings from I to

X (see Subsection 2.2 above). Assume that the measure-valued mapping f in nontrivial,

i.e., it is not the case that f(i) is a Dirac measure onX for λ-almost all i ∈ I. Accordingly,

for the relevant essentially pairwise independent process F , it is not the case that almost

every Fi is essentially a constant. Then there are many different ω ∈ Ω such that Fω

are different measurable mappings over (I, I, λ). Therefore, if f is nontrivial, we can

simultaneously obtain many different purifications for f with respect to D.
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We next compare our general purification result, Theorem 1, with the earlier re-

sults in Loeb and Sun (2006, 2009) and Podczeck (2009a). First, as to the methodol-

ogy, our result relies heavily on the ELLN. In comparison, the purification theorem of

Loeb and Sun (2006) is based on atomless Loeb probability spaces, and the authors make

use of techniques in nonstandard analysis. Loeb and Sun (2009) mainly apply techniques

introduced by Hoover and Keisler (1984) that certain types of results over one saturated

probability space can be transferred to another. Consequently, the existence result of pu-

rifications based on an atomless Loeb probability space, Loeb and Sun (2006, Theorem

2.2), can be transferred to the existence result based on a general saturated probability

space. In Podczeck (2009a), new results on functional analysis are established to prove

the general purification theorem.

Second, in the earlier purification results, i.e., Loeb and Sun (2006, Theorem 2.2) and

(2009, Theorem 2.2), Podczeck (2009a, Theorem 2), the target space X is a compact

metric space. While in our Theorem 1, we take X to be a more general Polish space.

Third, in the earlier results, instead of functions in H, a more restrictive condition

is imposed on the functions over the product I × X . Let H′ denote the collection of

functions considered in Loeb and Sun (2006, 2009) and Podczeck (2009a). Here H′ is

the collection of all the functions φ on I ×X with the following conditions. (1a) φ(·, x)

is I-measurable on I for each x ∈ X , (1b) φ(i, ·) is continuous on X for each i ∈ I,

and (2) φ is bounded by a non-negative λ-integrable function αφ. Here the conditions

(1a) and (1b) are the Carathéodory condition. It is known that any function satisfying

the Carathéodory condition is also jointly measurable. As a result, H′ is a subset of H

(see Lemma 4.51 of Aliprantis and Border (1994)).

It is worthwhile to note that in Loeb and Sun (2006, 2009), Podczeck (2009a), the

proofs of purification theorems therein depend on the setting that the target space is a

compact metric space and the functions satisfy the Carathéodory condition. Thus, their

methods cannot be applied to our setting in Theorem 1 directly.

Finally, together with Lemma 1, it follows from Theorem 1 that the saturation prop-

erty of a probability space implies the existence of purification for any measure-valued

mapping with a general Polish action space. We note that the converse also holds.

Specifically, as illustrated by counterexamples in Loeb and Sun (2009, Remark 2.4)

and Podczeck (2009a, Theorem 3(B)), if a probability space is not saturated, there

exists a measure-valued mapping, a function φ ∈ H, such that the purification does not

exist.11

11For the counterexample in the special setting that the probability space is a Lebesgue space,
see Loeb and Sun (2006, Example 2.7). For a survey about similar counterexamples in the theory
of large games, see Khan and Sun (2002, Section 5).
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4 Finite Games with Incomplete Information

In this section, we apply our Theorem 1 to study the problem of purification for games

with incomplete information as in Milgrom and Weber (1985). A game Γ with incomplete

information consists of a finite set of m players and an information space available to

them. Each player n can take actions from Xn, which is a Polish space for 1 ≤ n ≤ m;

and the Cartesian product Πm
n=1Xn is written as X . For each player n, a measurable

space (In, In) represents the set of possible information for her. The information is

incomplete in the sense that each player does not know the particulars of the other

players’ information. The payoff function of player n is un : I0 × In × X → R, where

I0 = {i0k : k ∈ N} is a countable set representing the common state space which affects

payoffs of all the players. Thus, player n’s payoff function depends on the common states,

her own information and the actions of all the players. Denote by I0 the power set of the

countable set I0. Let (I, I) := (Πm
j=0Ij ,Π

m
j=0Ij) be the product measure space and λ be

a probability measurable on (I, I). The resulting probability space (I, I, λ) constitutes

an information structure of the game. For each player n, assume further that the payoff

function un(i0, in, x) is an In ⊗BX-measurable function for each i0 ∈ I0; in addition, for

all i ∈ I, |un(i0, in, x)| ≤ α(i), where α is a nonnegative integrable function on (I, I, λ).

For 0 ≤ j ≤ m, denote by λj the marginal probability measure of λ on (Ij , Ij).

Suppose the support of λ0 is the whole set I0. As a result, when the common state i0
is i0k, the conditional probability measure of λ on the space (Πm

j=1Ij,Π
m
j=1Ij) exists and

is denoted by λ(· ; i0k). Moreover, for each player n, let λnk be the marginal probability

measure of λ(· ; i0k) on the measurable space (In, In). Following Milgrom and Weber

(1985), the information structure (I, I, λ) is said to be conditionally independent if,

λ(· ; t0k) = Πm
n=1λnk, ∀ k ∈ K.

A mixed strategy for player n is a measurable mapping from her information space

(In, In) to M(Xn). A pure strategy is an In-measurable mapping from In to Xn, and

it can be regarded as a mixed strategy using Dirac measures. A mixed (pure) strategy

profile h = (h1, · · · , hm) is a tuple of mixed (pure) strategies, in which hn specifies a

mixed (pure) strategy for player n. Given any mixed strategy profile f = (f1, · · · , fm),

the corresponding expected payoff for player n is

Un(f) :=

∫

I

∫

X

un(i0, in, x)f1(i1; dx1) · · ·fn(in; dxn) dλ(i), (2)

where for each i ∈ I, the inner integral on X is the iterated integral on Xn, · · · , X1

respectively. A mixed strategy profile f = (fn, f−n) is called a Nash equilibrium for the

game Γ if for every player n, Un(fn, f−n) ≥ Un(f
′
n, f−n) for any mixed strategy f ′

n of

player n.

The following definition is proposed in Khan et al. (2006).
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Definition 4 A pure strategy profile g = (g1, · · · , gm) is said to be a strong purification

of a mixed strategy profile f = (f1, · · · , fm) = (fn, f−n) if the following four conditions

are satisfied for each player n.

1. Un(f) = Un(g).

2. For any given mixed strategy f̃n of player n, Un(f̃n, f−n) = Un(f̃n, g−n).

3. For each k ∈ K, given i0 = i0k, gn and fn have the same conditional distribution

on Xn, i.e.,
∫

In
fn(in; ·) dλnk(in) = λnkg

−1
n (·).

4. For λn-almost all in ∈ In, gn(in) ∈ supp fn(in).

Item 1 means that the strong purification yields the same expected payoff as the

mixed strategy for all players. Item 2 means that the expected payoff of Player n from

any mixed strategy is always same irrespective of the opponents play being f−n or g−n.

Thus, Items 1 and 2 guarantee that if the mixed strategy f is a Nash equilibrium, so is

its strong purification, which is a pure strategy. See Section 3 of Khan et al. (2006) for

more discussion.

We are now ready to present our main result for this section, which generalizes

Theorem 3.2 of Loeb and Sun (2006). It is about the existence of strong purification for

any mixed strategy profile in the game Γ. This result follows from Corollary 2 almost

in the same way that Theorem 3.2 of Loeb and Sun (2006) follows from Corollary 2.4

of (2006). The proof is relegated to Appendix.

Theorem 2 Assume that (1) the information structure in the game Γ is conditionally

independent, and (2) for each n, (In, In, λn) is a saturated probability space together with

a rich Fubini extension (In ×Ωn, In ⊠Fn, λn ⊠ Pn). Then for any mixed strategy profile

f = (f1, · · · , fm) and for each player n, there exists an In ⊠ Fn-measurable process

F n : In × Ωn → Xn, which is essentially pairwise independent and F n
in

induces the

distribution fn(in) on Xn for λn-almost all in, and (F 1
ω1
, · · · , Fm

ωm
) is a strong purification

of f for Pn-almost all ωn ∈ Ωn, for each n.

If there exists a Nash equilibrium in mixed strategy for the game Γ, it is guar-

anteed by Theorem 2 that there also exists a Nash equilibrium in pure strategy. In

general, as discussed in Subsection 3.2 above, we can simultaneously obtain MANY pure

strategy equilibria if the mixed strategy f is nontrivial. In particular, assume that the

mixed strategy f is a Nash equilibrium for the game Γ, for each player n, and interpret

(Ωn,Fn, Pn) as her random device. Theorem 2 states that for Pn-almost every realization

of ωn ∈ Ωn ∀n, the realized pure strategy profile, (F 1
ω1
, · · · , Fm

ωm
), is also a pure strategy

Nash equilibrium for Γ.

12



Finally, we note that Theorem 2 generalizes the assumptions of compact metric action

spaces and continuous payoff functions in Theorem 3.2 of Loeb and Sun (2006) to a

general setting of Polish action spaces and measurable payoffs respectively. In such a

general or less demanding setting of game theoretic models with incomplete information,

it is stated in our theorem that each mixed strategy has many strong purifications. This

reflects the idea of purification that “when information in games is sufficiently disparate

among the players and when its distribution is sufficiently diffuse, the players might

as well restrict their attention to pure strategies” (see p. 401 of Radner and Rosenthal

(1982)).

5 Appendix: Proofs

Proof of Corollary 1. By Lemma 1, the saturation property implies the existence of

a rich Fubini extension based on a probability space.

Next, we prove the converse. For the rich Fubini extension based on the probability

space (I, I, λ), assume that the process π witnesses the richness. That is, π is an es-

sentially pairwise independent process and the random variable πi induces the uniform

distribution on the interval [0, 1]. Note that this process π is nontrivial. By Lemma 4,

the σ-algebra I can not be countably generated. Otherwise almost all the sample func-

tions are not I-measurable, which contradicts Assertion (1) of Part A in Definition 3.

Analogously, for any subset S ∈ I with λ(S) > 0, notice that the restriction of the

process π to S × Ω is also a nontrivial essentially pairwise independent process, then

IS is not countably generated either. By Definition 2, the probability space (I, I, λ) is

nowhere countably generated, hence it is saturated. �

Proof of Theorem 1. Let us first fix one φ ∈ D. Given the saturated probability space

(I, I, λ), together with the rich Fubini extension (I × Ω, I ⊠ F , P ). Since the measure-

valued mapping f is I-measurable, by Lemma 2, there exists an I ⊠ F-measurable

process F : I × Ω → X , which is essentially pairwise independent and the random

variable Fi induces distribution f(i) for λ-almost all i ∈ I. Thus, we prove Assertion (1)

in the theorem.

We next show Assertion (2). Notice that Fi induces the distribution f(i) for λ-almost

all i, it follows that,

∫

X

φ(i, x) f(i; dx) =

∫

Ω

φ[i, F (i, ω)] dP (ω); (3)

then
∫

I

∫

X

φ(i, x) f(i; dx) dλ(i) =

∫

I

∫

Ω

φ[i, F (i, ω)] dP (ω) dλ(i). (4)

13



DefineGφ(i, ω) = φ[i, F (i, ω)]. We next show in two steps thatGφ is a λ⊠P -integrable

function. First, it is an I ⊠ F -measurable function on I×Ω. Towards this end, define H

to be a process from (I × Ω, I ⊠ F) to (I ×X, I ⊗ BX) by letting H(i, ω) = [i, F (i, ω)].

The mapping H is measurable. Indeed, for any Borel subset C ⊆ R, φ−1(C) ∈ I ⊗ BX

because φ is measurable, then H−1[φ−1(C)] is I ⊠ F-measurable. Note that [Gφ]−1(C) =

H−1[φ−1(C)], we thus obtain the I ⊠ F-measurability of Gφ. Second, because φ(i, x) is

bounded by αφ(i) for any x ∈ X , so is Gφ(i, ω) = φ[i, F (i, ω)] for any ω ∈ Ω. Therefore,

we obtain the λ ⊠ P -integrability of Gφ, because the λ-integrable function αφ can also

be viewed as a λ⊠ P -integrable function on I × Ω.

Note that (I × Ω, I ⊠ F , λ⊠ P ) is a Fubini extension of the product space between

(I, I, λ) and (Ω,F , P ), by Assertion (2), Part A of Definition 3,

∫

I

∫

Ω

φ[i, F (i, ω)] dP (ω) dλ(i) =

∫∫

I×Ω

Gφ dλ⊠ P. (5)

Moreover, we claim that Gφ is an essentially pairwise independent process. Given

any Borel subset C in R, φ−1
i (C) ∈ BX due to the measurability of φ(i, ·) for λ-almost

all i ∈ I.12 Then for such an i, F−1
i [φ−1

i (C)] ∈ F since Fi is a F -measurable mapping.

It is clear that [Gφ
i ]

−1(C) = F−1
i [φ−1

i (C)], which implies that Gφ
i is F -measurable for

λ-almost all i ∈ I. Moreover, Gφ
i and Gφ

i′ are pairwise independent if Fi and Fi′ are

independent. Accordingly, the process Gφ is essentially pairwise independent because

the process F satisfies this property.

Now we are ready to apply the ELLN for the essentially pairwise independent process

Gφ. By Lemma 3, there exists a P -null subset Nφ ⊆ Ω, such that for any ω ∈ Ω/Nφ,

∫∫

I×Ω

Gφ dλ⊠ P =

∫

I

Gφ
ω(i) dλ(i) =

∫

I

φ[i, Fω(i)] dλ(i) (6)

Combining the above equations (4)-(6), for any ω ∈ Ω/Nφ,
∫

I

∫

X

φ(i, x) f(i; dx) dλ(i) =

∫

I

φ[i, Fω(i)] dλ(i). (7)

We next fix such a P -null subset for each φ ∈ D. Now we can turn to the countable

subset D of H. Following the above procedure, we can construct a countable number

of P -null subsets Nφ ⊆ Ω, ∀φ ∈ D, such that Equation (7) holds for each φ ∈ D. Let

N1 =
⋃

φ∈D N
φ, it is clear that P (N1) = 0 Hence, by Equation (7), we obtain that for

any φ ∈ D and any ω ∈ Ω/N1,
∫

I

∫

X

φ(i, x) f(i; dx) dλ(i) =

∫

I

φ[i, Fω(i)] dλ(i). (8)

12This follows from the classic Fubini theorem.
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What remains is the measurability of the sample functions Fω for ω /∈ N1. Since F

is an I ⊠ F-measurable process, it is clear that Fω is I−measurable for P -almost all

ω ∈ Ω. That is, there exists a P -null subset N2 ⊆ Ω such that Fω is I-measurable

for each ω /∈ N2. Let N = N1 ∪ N2, then P (N) = 0, and Fω is I-measurable and

Equation (8) holds for any φ ∈ D for any ω ∈ Ω/N . That is, the mapping Fω, for any

ω ∈ Ω/N , is a required purification of the measure-valued one f with respect to φ ∈ D.

Thus we finish the proof of Assertion (2) of the theorem. �

Proof of Theorem 2. The proof is a slight variation of the proof of Loeb and Sun

(2006, Theorem 3.2).

In what follows, for any n, let Πj 6=n denote Π1≤j≤m,j 6=n, which represents the product

over all the indices 1 ≤ j ≤ m except for j = n. For example, X−n = Πj 6=nXj, I−n =

Πj 6=nIj . And for any i = (i0, i1, · · · , im) ∈ I, write i−0 to be (i1, · · · , im) = (in, i−n).

First fix player n. For each k ∈ K, let ηk = λ0({t0k}). It is clear that for each Sn ∈ In,

λn(Sn) =
∑

k∈K ηkλnk(Sn). Thus each λnk is absolutely continuous with respect to λn.

Denote by βnk the Radon-Nikodym derivative of λnk with respect to λn. According to

the conditionally independence, we have λ(· ; i0k) = Πm
n=1λnk for each k. For any mixed

strategy profile f = (f1, · · · , fm), player n’s expected payoff Un(f) defined in Equation

(2) can be written as follows,

∑

k∈K

ηk

∫

i−0∈Πm
j=1

Ij

∫

x∈Πm
j=1

Xj

un(i0k, in, x) Π
m
j=1fj(ij ; dxj) Π

m
j=1dλjk(ij). (9)

For the mixed strategy profile f , define

ψf
n(in, xn) =

∑

k∈K

ηkβnk(in)

∫

I−n

∫

X−n

un(i0k, in, xn, x−n)Πj 6=nfj(ij ; dxj)Πj 6=ndλjk(ij).

(10)

Then, by Equation (9) the expected payoff for player n is,

Un(f) =

∫

In

∫

Xn

ψf
n(in, xn)fn(in; dxn)dλn(in). (11)

For each j = 1, · · · , m, denote by γ
fj
jk the induced probability distribution on Xj of

∫

Ij
fj(ij, ·)dλjk(ij). Then, from Equation (10) we obtain that,

ψf
n(in, xn) =

∑

k∈K

ηkβnk(in)

∫

X−n

un(i0k, in, xn, x−n)Πj 6=ndγ
fj
jk(xj). (12)

Equations (11) and (12) imply that, given i0 = i0k, player n’s expected payoff depends

on the actions of the other players only through the induced conditional distributions of

their strategies on their action spaces.
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Recall that α is a λ-integrable function that dominates all the payoff functions. Let

αn be the function from In to R+ such that for each in ∈ In,

αn(in) =
∑

k∈K

ηkβnk(in)

∫

I−n

α(i0k, in, i−n)Πj 6=ndλjk(ij). (13)

It is clear that αn is λn-integrable and that
∫

I
α(i)dλ(i) =

∫

In
αn(in)dλn(in) by the clas-

sical Fubini theorem. Recall that for any x ∈ X and i ∈ I, |un(i0, in, x)| ≤ α(i0, in, i−n).

Consequently, Equations (10) and (13) imply that for any in ∈ In, sn ∈ Xn, |ψ
f
n(in, xn)| ≤

αn(in). Therefore, the function ψf
n is an In ⊗ BXn

-measurable function on In ×Xn.

Given the saturated probability space (In, In, λn), together with the rich Fubini ex-

tension (In × Ωn, In ⊠ Fn, λn ⊠ Pn). We now apply Corollary 2. The function ψf
n here

corresponds to ψj thereof, and λnk for k ∈ K, Xn and fn to ηk, X , and f therein respec-

tively. By Corollary 2, there exists a process F n : In × Ωn → Xn, which is essentially

pairwise independent and F n
in

induces the distribution fn(in) on Xn for λn-almost all

in ∈ In; moreover, there exists a Pn-null subset Mn ⊆ Ωn such that for each ωn /∈ Mn,

the sample mapping F n
ωn

: In → Xn is an In-measurable mapping and satisfies the

following properties.

(i)

∫

In

∫

Xn

ψf
n(in, xn)fn(in; dxn) dλn(in) =

∫

In

ψf
n[in, F

n
ωn
(in)] dλn(in);

(ii) for all Borel set Bn in Xn,

∫

In

fn(in;Bn)dλnk(in) = λnk[F
n
ωn
]−1(Bn) = γfnnk(Bn);

(iii) F n
ωn
(in) ∈ supp fn(in) for λn-almost all in ∈ In.

Similarly, considering the saturated probability spaces (In, In, λn) together with the

rich Fubini extension (Ij × Ωj , I ⊠ F j , Qj), we can apply the above procedure for each

player j = 1, · · · , m. In particular, we can construct F j,Mj , such that F j
ωj

satisfies the

above (i)-(iii) for player j, ∀ωj /∈ Mj . Let ω = (ω1, · · · , ωm) be the sample profile, and

Fω = (F 1
ω1
, · · · , Fm

ωm
) = (F n

ωn
, [Fω]−n).

We next claim that Fω is a strong purification of f , for any sample profile ω with

ωj /∈ Mj for each j; that is, it satisfies Items 1-4 in Definition 4. It is clear that the

Items 3 and 4 are the above Assertions (ii) and (iii) respectively. We only need to prove

Assertions 1 and 2 in the definition.

Towards this end, fix one such sample profile ω, i.e., ωj /∈ Mj , for all j. For any

mixed strategy f̃n of player n, let f̃ = (f̃n, f−n), and F̃ω =
(

f̃n, [Fω]−n

)

. By Equation

(11), the expected payoff of player n with f̃ , Fω and F̃ω are respectively given by

Un(f̃) =

∫

In

∫

Xn

ψf̃
n(in, xn) f̃n(in; dxn) dλn(in), (14)
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Un([Fω]) =

∫

In

ψFω

n [in, F
n
ωn
(in)] dλn(in), (15)

Un(F̃ω) =

∫

In

∫

Xn

ψF̃ω

n (in, xn) f̃n(in; dxn) dλn(in). (16)

Since Assertion (ii) above holds for all players, it is obvious that for j 6= n, γ
fj
jk = γ

F
j
ωj

jk .

By Equation (12), ψf
n only depends on the probability distributions γ

fj
jk, j 6= n. Hence,

we have ψf
n = ψFω

n = ψf̃
n = ψF̃ω

n . By Assertion (i) above, it follows that,

Un(f) =

∫

In

∫

Xn

ψf
n(in, xn)fn(in; dxn)dλn(in) =

∫

In

ψf
n[in, F

n
ωn
(in)] dλn(in)

=

∫

In

ψFω

n [in, F
i
ωn
(in)]dλn(in) = Un(Fω).

We thus prove Item 1. Similarly, Item 2 also holds because,

Un(f̃) =

∫

In

∫

Xn

ψf̃
n(in, an)f̃n(in; dan)dλn(in)

=

∫

In

∫

Xn

ψF̃ω

n (in, an)f̃n(in; dan)dλn(in) = Un(F̃ω). �
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