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Abstract

This paper considers cooperative game theoretic settings in which forming coalitions

can act as Stackelberg leaders. We de�ne a value function which modi�es the 
-value

function by letting members of deviating coalitions �move �rst� in choosing a coordinated

strategy. We accordingly de�ne the �-core, and characterize the �-core allocations of a

cartel formation game and of a public goods economy.

Keywords: Core, Cooperative Games, Oligopoly, Public Goods.

1 Introduction

The traditional representation of cooperative games with transferable utility is based on a

�characteristic� function, specifying for each coalition the amount of utility that its members

can ensure themselves in the underlying normal form game. This formulation is meant to

isolate coalitional decisions, abstracting from the strategic complexity of the cooperation

process. However, unless the payo¤s of the members of a coalition and of its complement

are independent (orthogonal games) or opposite (constant sum games), the characteristic

function fails to be well de�ned1. Indeed, this is the case of many meaningful strategic

situations, in which the payo¤ of each player may generally depend on the strategies of all

�This paper is published as Iowa State Economic Report, Iowa State University, June 1998.
yCorresponding author, Department of Economics, London School of Economics, Houghton Street WC2A

2AE, London; Phone:+44-171-9557418, Fax: +44-171-5860009, E-mail: MARINIM@LSE.AC.UK and Univer-

sity of Urbino, Via Sa¢ 2, Urbino, Phone: +722-327117.
1 In Shubik (1982) terminology, the game is not a c-game.
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players in the game. In such cases, the characteristic function can still be well de�ned by

introducing some assumptions on the strategies of players in the complementary coalitions

(the �outside players�).

One way to deal with this problem, �rst proposed by von Neumann-Morgenstern (1944)

and considered by Aumann (1967), is to assume that outside players coordinate their strate-

gies to minimize the aggregate payo¤ of the forming coalition. A temporal structure is

implicitly introduced in the players� choice of strategies. In the so called �-core, the forming

coalition acts as a leader, and chooses its best strategies, given the minimizing behaviour of

outside players; in the �-core, conversely, it behaves as a follower, and maximizes its payo¤

given the coordinated strategies of outside players. Since in both cases deviations are very

costly, � and �-core are usually very large. Moreover, still ful�lling a rationality require-

ment in constant sum games, � and �-assumptions do not seem justi�able in most economic

settings2.

An alternative approach proposed by Aumann (1959) extends Nash Equilibrium �passive�

expectations to the cooperative framework. The concept of strong equilibrium de�ned by

the author assumes that deviating coalitions take as given the strategies of outside players.

Being immune from the deviations of any coalition, thus including the grand coalition and

every individual player, strong equilibria are both Nash equilibria and e¢cient strategies.

However, since in games with positive externalities the e¢cient strategies of excluded players

make coalitional deviations �too� pro�table, strong equilibria do not exist for many economic

problems.

In the contest of some recent economic applications, a di¤erent approach has proved useful

in ensuring a non-empty core without making use of extreme assumptions on the behaviour

of outside players such as the � and � conjectures. This approach, named 
-approach by

Chander-Tulkens (1997), assumes that outside players neither jointly minimize the payo¤

of a deviating coalition (as in the � and �-core), nor keep their strategies �xed (as in the

Strong Nash Equilibrium), but they rather maximize their own utility as singletons. Here, the

behaviour of deviating players and which of outside players is implicitly assumed to develope

in two stages. In the �rst stage, similarly to the � game by Hart and Kurtz (1983),3 a

2 Indeed, in costant sum games, the �-core coincides with the modi�ed characteristic function proposed by

Harsanyi (1959), assigning to each coalition the solution of the variable threats Nash bargaining problem with

the respective complementary coalition.
3The � game is indeed a strategic coalition formation game with �xed payo¤ division, in which the strategies

consist of the choice of a coalition. Despite the di¤erent nature of the two games, there is an analogy concerning

the coalition structure induced by a deviation from the grand coalition. In the � game, any deviation from

the the grand coalition�s strategy pro�le induces a coalition structure in which the deviating coalition stay
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coalition forms and the excluded players split up as singletons; in the second stage, members

of the deviating coalition and excluded players simultaneously choose their strategies in the

underlying normal form game, given the speci�c coalition structure originated in the �rst

stage. Consequently, the strategy pro�le induced by the deviation of a coalition S � N is

the Nash equilibrium among S and each individual player in NnS.
In this paper we modify the 
-assumption by removing this two stage structure and

reintroducing the temporal sequence in the choice of players� strategies in the underlying

normal form game, typical of the � and �-core. We assume that the formation of a coalition

and the choice of a coordinated strategy by its members in the underlying game are two

simultaneous events, that can be thought of as a unique action. When a set of players

form a coalition, at the same time they choose a coordinated strategy, taking as given the

(non-cooperative) reaction of the excluded players as singletons. In this respect, deviating

coalitions possess a �rst mover advantage with respect to the outside players. We thus

associate with the deviation of every coalition S the Stackelberg equilibrium in which S acts

as leader and players in NnS play (individually) as followers.
According to this assumption, we de�ne a modi�ed version of the 
-core, denoted �-core.

We then show how some recent applications of the 
-core to oligopolistic markets and public

goods production problems are a¤ected by our assumption. For the linear oligopoly case, we

prove that, although the 
-core is very large, the only allocation in the �-core is the equal

split allocation. For the linear-quadratic oligopoly, conversely, we show that, di¤erently from

the 
-core, the �-core is empty. For the case of public goods production, we consider a simple

economy with one public and one private good, and we discuss the validity of Chander and

Tulkens (1997) result of non-emptiness of the 
-core. We consider the case of symmetric

agents, and show that if preferences are linear in the public good, then the allocation the

authors propose belongs to the �-core. However, if preferences are strictly concave, the �-core

is shown to be empty for the speci�c case of quadratic utility and quadratic cost.

2 The general set-up

Let � = (fXi; uigi2N ; fXSgS�N ) be a strategic form game, where N is the (�nite) players

set, Xi is the strategy set of player i, and XS is the strategy set of a coalition of players S.
4

Let P (N) be the set of all possible partitions � of the players set N ; let X� denote the set

together and the outside players split up.
4Note that, in general, XS may not coincide with the set

Q

i2S

Xj .
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Q
T2�

XT , for any � 2 P (N). The set X � S
�2P (N)

X� is the set of all possible outcomes (in

terms of strategies) of the game �. The function ui : X ! R+ represents players� preferences.

We restrict our attention to transferable utility functions ui:

De�nition 1 A Nash Equilibrium of � is a strategy pro�le x such that, for all i 2 N , xi 2 Xi
and, for all xi 2 Xi, ui (x) � ui (xi; x�i).

2.1 The value function under the 
-assumption

The 
-assumption postulates that the worth of a coalition is the aggregate utility of its

members in the Nash equilibrium between that coalition (acting as a single player) and the

outside players (acting as singletons). The value function v
(S) is de�ned for all S � N by:

v
(S) =
X

i2S

ui

�
x̂S ; fx̂jg

j2NnS

�
(1)

where,

x̂S = argmax
xS2XS

X

i2S

ui

�
xS ; fx̂jg

j2NnS

�
(2)

and, 8j 2 NnS,
x̂j = argmax

xj2Xj

uj

�
x̂S ; fx̂kgk2(NnS)nfjg ; xj

�
: (3)

De�nition 2 The joint strategy bx 2 XN is in the 
-core, if there exists no coalition S such

that v
 (S) >
P
i2S

ui (bx).

2.2 The value function under the �-assumption

The new value function we introduce is based on the assumption that deviating coalitions

exploit a �rst-mover advantage. As under the 
-assumption, when a coalition S forms,

players in NnS split up as singletons. Di¤erently from the 
 case, the members of S choose

a coordinated strategy as leaders, thus anticipating the reaction of the players in NnS, who
simultaneously choose their best response as singletons. The strategy pro�le associated to the

deviation of a coalition S is the Stackelberg equilibrium of the game in which S is the leader

and the players in NnS are, individually, the followers. We denote this strategy pro�le as a
partial equilibrium with respect to S. Formally, this is the strategy pro�le ~x (S) = (~xS ; xj(~xS))

such that

~xS = argmax
xS2XS

X

i2S

ui

�
xS ; fxj(xS)g

j2NnS

�
(4)
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and, 8j 2 NnS,

xj(xS) = argmax
xj2Xj

uj

�
xS ; fxk(xS)gk2(NnS)nfjg ; xj

�
: (5)

We �rst establish su¢cient condition for the existence of ~x (S).

For every coalition S � N and strategy pro�le xS 2 XS , we de�ne the restriction

� (NnS; xS) of the game � to the set of players NnS, given the �xed pro�le xS .

Proposition 1 Let � be a strategic form game. For every S � N and xS 2 XS, let the game
� (NnS; xS) possess a unique Nash Equilibrium. For every S � N , let XS be compact. Let
each player�s payo¤ be continuous in every other player�s strategy. Then, for every S � N ,
there exists a partial equilibrium of � with respect to S. Moreover, if payo¤s are strictly

concave in each players strategy, such a partial equilibrium is unique.

Proof. By condition (5), the strategy pro�le fxj(xS)gj2NnS is the unique Nash equilibrium
of � (NnS; xS). By the closedness of the Nash equilibrium correspondence (see, for instance,

Fudenberg and Tirole (1991), pag.30), members of S maximize a continuous function over a

compact set (condition (4)); thus, by Weiestrass Theorem, a maximum exists. Uniqueness

comes as a straightforward consequence of the strict concavity of the leader�s maximization

problem.

We can thus de�ne the value function v�(S) as follows:

v�(S) =
X

i2S

ui

�
exS ; fxj(exS)gj2NnS

�
: (6)

De�nition 3 The joint strategy ex 2 XN is in the �-core, if there exists no coalition S such

that v� (S) >
P
i2S

ui (ex).

In the next to sections we apply the concept of �-core to two widely studied economic

problems: cartel formation in oligopolies and resource allocation in economies with public

goods.

3 Cartel formation in oligopoly

In recent years there has been a renewed interest in the application of cooperative solution

concepts to the problem of cartel formation under oligopoly [see, for a survey, Bloch (1997)].

A speci�c use of the 
-core is contained, for instance, in Rajan (1989). The author shows

that in a symmetric Cournot oligopoly with linear demand and quadratic costs, for a number
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of �rms n � 3, �rms never chose to stay separate (i.e., giving rise to the coalition structure
f1; 1; :::; 1g); moreover, it is proved that, for n � 4, the 
-core is non empty.

In what follows, after a short description of the Cournot setting, we �rst show that, in

a symmetric oligopoly with linear demand and linear costs, the 
-core strictly includes the

equal split allocation for any number of �rms. For the same model speci�cation we then

prove that the equal split allocation is the unique allocation contained in the �-core. Finally,

we show that, when costs are quadratic, the �-core can be empty.

3.1 The Cournot setting

Let �i (y; yi) = p (y) yi � Ci (yi) be the pro�t function of every �rm i 2 N = f1; 2; :::; ng,
where yi is the output of a �rm, y =

nP
i=1
yi the total output, p (y) the usual inverse demand

function and Ci (yi) the cost function of every �rm. Let also Ci (:) = Cj (:), for every i, j in

N .

We introduce the following standard assumptions:

A.1 The function �i (:) is twice continuously di¤erentiable;

A.2 For every �rm i, the capacity constraint yi <1 determines the maximum production

level;

A.3 p00 (:) yi + p
0 (:) < 0 and p0 (:)� C 00

i < 0.

Consistently with Section 2, we now de�ne the normal form game, denoted as �1, associ-

ated to our problem. Each player (�rm) strategy set is:

Xi = fyi 2 R+ : yi � yig � Yi: (7)

Players� preferences are linear in pro�t and, for every coalition S, the strategy set is repre-

sented by:

XS �
(
(yS ; tS) : yS 2

Y

i2S

Yi; and tS = (t1; :::; ts); such that
X

i2S

ti = 0

)
(8)

where tS is a vector of transfers.

Proposition 2 There exists a unique Nash equilibrium of the game �1.
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Proof. By A.1, every player�s payo¤ functions is continuous in the strategy pro�le y 2 YN
and, by A.3, strictly concave on yi. By A.2, strategy sets are non empty, compact and convex,

so that existence of a Nash equilibrium follows. Uniqueness is implied by A.3 as follows. Since,

for each �rm, p00yi+p
0 < 0 and p0� C 00i < 0, the function F (yi; y) � p0yi+p�C 0 is decreasing

both in yi and y. In fact,
@F (yi;y)
@yi

= p0� C 00i < 0 and
@F (yi;y)
@y

= p00yi + p
0 < 0 . Suppose now

that there exist two Nash Equilibria y1 and y2 of �1. Suppose also, without loss of generality,

that y1 > y2. At a Nash Equilibrium, p0yi + p� C 0i = 0, so that, if
nP
i=1
y1i >

nP
i=1
y2i , it follows

from A.3 that y1i < y
2
i for every i = 1; ::; n, leading to a contradiction.

3.2 The 
-core

By applying the de�nition of v
 (S) to the Cournot setting introduced above, we obtain the

following expression:

v
 (S) =
X

i2S

�
p (ŷS ; ŷ�S) ŷi � Ci (ŷi) + bti

�
(9)

where

ŷS = arg max
ys2YS

X

i2S

�
p (yS ; ŷ�S) yi � Ci (yi) + bti

�
(10)

and where bti is the equilibrium lump-sum transfer for every i 2 S, and

ŷj = argmax
yj2Yj

p

0
B@yj ; ŷS ; ŷk

k 6=j
k=2S

1
CA yj � Ci (yj) ; 8j 2 NnS: (11)

By A.1, we can di¤erentiate v
 (S) and, by symmetry of players, the strategy pro�le ŷ 2 YN
characterizing v
 (S) is such that, for every i 2 S, ŷi respects:

p (ŷ) + p0 (ŷ) sŷi = C
0
i (ŷi) ; (12)

where s = jSj, while, for every j 2 NnS, ŷj respects:

p (ŷ) + p0 (ŷ) ŷj = C
0
j (ŷj) : (13)

3.3 The �-core

We now apply our equilibrium concept to the oligopolistic setting described above. According

to the general setup, the function v�(S) is as follows:

v�(S) =
X

i2S

h
p
�
~yS ; fyj(~yS)gj2NnS

�
~yi � Ci(~yS) + ~ti

i
(14)
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where

~yS = argmax
yS2Y S

X

i2S

h
p
�
yS ; fyj(yS)gj2NnS

�
yi � Ci(yi) + ~ti

i
(15)

and 8j 2 NnS,

yj(yS) = argmax
yj2Y j

p
�
yS ; fyk(yS)gk2(NnS)nfjg ; yj

�
yj � Cj(yj): (16)

Note �rst that, as
P
i2S

~ti = 0, the function v�(S) is fully de�ned by the choice of a vector ~yS

by the members of S.

Proposition 3 There exists a unique value v� (S) for every S � N:

Proof. We apply Proposition 1. By Proposition 2, there exists a unique Nash equilibrium for

every restricted game �1 (NnS; yS). Continuity of payo¤s follows from A.1 and compactness

of every strategy set from A.2. Moreover, by A.3 payo¤s are strictly concave, so that the

value v� (S) is unique.

According to the above result, under A.1 and symmetry, the FOCs characterizing ey 2 YN
are, for every i 2 S:

p (~y) + p0 (~y) s~yi = C
0
i (~yi) (17)

and, 8j 2 NnS,
p (~y) + p0 (~y) yj (~yS) = C

0
j (yj (~yS)) : (18)

3.4 The linear case

Having de�ned the 
 and �-core for the Cournot setting, we now study the linear case, i.e.

the case in which p (y) = a � by, and, for every i 2 N , Ci (yi) = cyi, with a > c � 0 and

b > 0.

Proposition 4 Under linearity and symmetry, the 
-core of the game �1 is non empty and

strictly includes the equal split allocation.

Proof. Conditions (12) implies that:

v
 (N) =
(a� c)2

(2b)2

and

v
 (S) =
(a� c)2

b2 (n� s+ 2)2

8



where s = jSj and n = jN j :Without loss of generality let us normalize (a�c)
2

b2
= 1, so that the

equal split allocation gives to each player in N a payo¤ of
v
(N)
jN j = 1

4n and v
 (S) =
1

(n�s+2)2
:

Consider now the equal split allocation for a coalition S,
v
(S)
jSj = 1

s(n�s+2)2
. Whatever

distribution of the worth v
 (S) may be chosen by S, at least one player in S must get a

payo¤ not greater than 1
s(n�s+2)2

. This implies that coalition S improves upon the equal

split allocation for N if and only if

1

s (n� s+ 2)2
>
1

4n
:

Straightforward calculations show that the above inequality is satis�ed respectively for:

s > n

s < 2 +
n�

p
n2 + 8n

2
< 1

s > 2 +
n+

p
n2 + 8n

2
> n

and hence, it is never satis�ed for 1 < s � n: It follows that the equal split allocation for N ,
characterized by the strategy vectors

�
by;bt
�
; where by respects (12) and by = (0; 0; :::; 0), belongs

to the 
-core. To see that this allocation is strictly included in the 
-core, note that, since

individual deviations assign to a player just v
 (fig) = 1
(n+1)2

<
v
(N)
jN j = 1

4n , di¤erent and un-

equal allocations belong as well to the 
-core. In particular, any allocation giving to a player i

his worth v
 (fig), and v
(Nnfig)
jN�1j =

v
(N)�v
(fig)
jN�1j to any remaining player, is not objectable.

We now characterize the �-core of the game �1 under linearity and symmetry. The

next proposition shows that, once deviating coalitions are allowed to exploit a �rst mover

advantage, all allocations but the equal split one are blocked.

Proposition 5 In a linear symmetric oligopoly the equal-split allocation is the unique allo-

cation belonging to the �-core.

Proof. As in the proof of Proposition 4, under normalization, we get:

v� (N) =
1

4

and, from condition (17),

v� (S) =
1

4 (n� s+ 1) :

9



Hence, straightforward calculations show that, for every S � N; v�(S)jSj is less than
v�(N)
jN j for

1 < s < n, and equal to
v�(N)
jN j either for s = n or s = 1: It follows that, since in any

deviating coalition S � N at least one player gets a payo¤ less than or equal to
v�(S)
jSj , no

coalition S � N can make all its member better o¤ than in the equal split allocation
v�(N)
jN j ,

which is then in the �-core. To see that the equal-split is the unique allocation in the �-core,

note that any other allocation would require to give to at least one player less than
v�(N)
jN j .

However, such a player could always improve his payo¤ by deviating and, from the result

above, getting a worth equal to v� (fig) = 1
4n .

3.5 The linear-quadratic case

We now consider the case of linear demand function p (y) = a�y and quadratic cost function
Ci (yi) =

y2i
2 . As indicated above, we know from Rajan (1989) that, for n = 2, n = 3 and

n = 4; the 
-core is non empty. We now show that this result does not hold under the �-core

assumption.

By conditions (17) and (18), the following result can be proved.

Proposition 6 Under linear demand and quadratic costs for every �rm, the �-core can be

empty.

Proof. >From �rst order conditions, it is obtained that:

v� (N) =
a2n2

(1 + 2n)2

and

v� (fig) =
a2
�
a2 + 5n� 1

�

(n+ 1) (n+ 5)2
:

Simple calculations show that, for every i 2 N , and for n � 2, v� (fig) > v�(N)
jN j . By e¢ciency

of the equal split solution, in any other e¢cient allocation at least one player would receive

a lower utility. This fact together with the above result that any player can improve upon

the equal split allocation by deviating as singleton, imply that any e¢cient allocation can be

objected by the deviation of a single player. This, in turn, implies that the �-core is empty.

4 The core of a public good economy

In this section we study the �-core of an economy with one private and one public good. We

mostly refer to the work on 
-core by Chander and Tulkens (1997) (C-T hereafter), and show

10



that their results carry over to the �-core if and only if preferences are linear in the public

good.5

4.1 The economy

We consider an economy with one public good q and one private good y. The set of agents

is N = f1; :::; ng; each agent i is endowed with !i units of the private good, and produces
the public good out of the private good with convex cost Ci(qi). For every S � N , we

denote by qS the vector (qi)i2S , and by QS the term
P
i2S

qi; for simplicity, we write q instead

of qN and Q instead of QN . Preferences are represented by a quasilinear utility function

ui (q; yi) � vi (Q) + yi. We denote by �i(Q) � @vi(Q)
@Q

the marginal rate of substitution

between public and private good for player i, and for all coalitions S � N , we let �S(Q)

denote the term
P
i2S

�i(Q).

We make the following assumptions.

A.4: vi (Q) concave, twice di¤erentiable and such that �i(Q) > 0 for all q such that
P
i2N

Ci(qi) �
P
i2N

!i.

A.5: Ci(qi) strictly concave, twice di¤erentiable and such that C
0
i(qi) � 0 for all qi � 0

and C 0i(qi) = 0 for qi = 0.

We associate to this economy the normal form game denoted �2, where strategy sets and

preferences are as follows:

Xi =
�
(qi; yi) 2 R2+ : C (qi) + yi � !i

	
;

XS =

(
(qS ; yS) 2 R2#S+ :

X

i2S

Ci (qi) �
X

i2S

!i �
X

i2S

yi

)
;

ui (x) = vi (Q) + yi:

Proposition 7 (Chander-Tulkens): There exists a unique Nash Equilibrium of the game

�2.

The Nash Equilibrium (�q; �y) = (�q1; :::; �qn; �y1; ::; �yn) of �2 is characterized by the following

FOC�s:

�i
�
�Q
�
= C 0i (�qi) ; 8i 2 N: (19)

5Although C-T�s results are obtained for an economy with pollution, they generalize to public goods

economies under the assumptions made in this paper.
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4.2 The 
-core

Chander an Tulkens propose a speci�c allocation (q�; y�), bearing for an equilibrium inter-

pretation of the economy E, and show by construction that it belongs to the 
-core of the

game �2. We report their result in the following Proposition.

Proposition 8 (Chander-Tulkens): The joint strategy (q�; y�) where:

q� is such that �N (Q
�) = C 0i (q

�
i ) ; for all i 2 N ;

y�i = !i � Ci (�qi)�
�i (Q

�)

�N (Q�)

"
X

i2N

(Ci (q
�
i )� Ci (�qi))

#

is in the 
-core.

In what follows we will refer to (q�; y�) as the C-T allocation.

4.3 The �-core

In this section we analyze the symmetric case (identical players) and we show that under

linear preferences, Proposition 8 carries over to the case of �-core. However, we also show

that, if preferences are strictly concave, the �-core may be empty.

4.3.1 The function v�

By de�nition, any partial equilibrium [(~qS ; ~yS); (qj ; yj) (~qS ; ~yS)] of �2 with respect to S is such

that

~qS 2 arg max
qS ;yS

X

i2S

vi

0
@QS +

X

j2NnS

qj (qS)

1
A+

X

i2S

yi

s.t.
X

i2S

!i �
X

i2S

[Ci (qi) + yi]

and, 8j 2 NnS

qj (qS) = argmax
qj;yj

vj

0
@QS +

X

k2(NnS)nfjg

qj (qS) + qj

1
A+ yj

s.t. !j � Cj (qj) + yj

Proposition 9 For every S � N , there exists a partial equilibrium of �2 with respect to S.

Moreover, all partial equilibria with respect to S are characterized by the same vector ~q.

12



Proof. By Proposition 7, the Nash equilibrium of �2 (NnS; qS) exists and is unique for all
S and qS . By continuity of vi, (A.4), and of Ci (qi), (A.5), Proposition 1 can be applied

here. Moreover, as the maximization problem of S can be written as a function of just qS ,

by concavity of vi and strict convexity of Ci (qi), Proposition 1 can again be applied to show

uniqueness.

4.3.2 Some characterization of the partial equilibria of �2

We now analyze in greater detail the partial equilibria of �2.

We �rst consider the �rst order condition for every player j 2 NnS: by symmetry, we
can write

�j (qj + (n� s� 1)qj +QS)� C 0 (qj) = 0: (20)

By Assumptions 1 and 2 and applying the implicit function theorem to the mapping f (qj ; qS) �
�j ((n� s)qj +QS) � C 0 (qj), we conclude that the function qj (qS) is di¤erentiable. Thus,
totally di¤erentiating the FOC above, we obtain, in equilibrium, the condition

@�j

@q

�
1 + (n� s) @qj

@QS

�
� C 00 (qj)

@qj

@QS
= 0

yielding the reaction function

@qj

@QS
=

@�j
@Q

C 00 (qj)� (n� s) @�j@QS

< 0:

The term
@qj
@QS

gives us the reaction of player j to changes in the vector qS as determined by

the changes in j�s Nash equilibrium strategy in the game �2 (NnS; qS).
Given the reaction function of each outside player j, the maximization problem of coalition

S yields the following FOCs:

�S

�
~Q
��

1 + (n� s) @qj
@QS

�
= C 0 (~qi) , 8i 2 S. (21)

By plugging the expression for
@qj
@QS

into (21), we obtain

�S (QS + (n� s) � qj (qS)) (1� k) = C 0i (qi) (22)

where

0 < (1� k) =
 
(n� s)

@�j
@Q

C 00i (qj)� (n� s)
@�j
@QS

+ 1

!
� 1: (23)

13



Indeed, the presence of the term (1� k) is the only di¤erence between our optimality con-
ditions and the ones obtained by C-T. Comparing the conditions characterizing v
 and v�,

it can be easily checked that the aggregate amount of public good induced by the deviation

of a coalition S under the 
-assumption is greater than or equal to that induced under the

�-assumption.

In order to prepare the analysis of the next section, we establish here some properties of

partial equilibria. We will refer to the original concept of partial equilibrium introduced by

C-T as to the partial equilibria under the 
-assumption.

Lemma 10 The aggregate amount of public good produced in the partial equilibrium with

respect to S is not greater under the �-assumption than under the 
-assumption.

Proof. Let Q� (S) and Q
 (S) be the aggregate levels of public goods in the partial equilib-

rium w.r.t. S under � and 
-assumption, respectively. Suppose that Q� (S) > Q
 (S); then,

by FOC (20), for each player j 2 NnS, q�j (S) � q


j (S). Moreover, as (1� k) � 1, by FOC

(22) for every player i 2 S, q�i (S) � q


i (S). The two inequalities imply a contradiction.

Lemma (10) and Proposition 5 in Chander-Tulkens (1997) imply that the aggregate

amount of public good produced in the partial equilibrium w.r.t. S under the � assump-

tion is not greater than the e¢cient one.

Lemma 11 If preferences are linear in the public good, then:

i) q�i (S) � q�i , 8i 2 N ;
ii) �qi � q

�
i (S), 8i 2 N ;

iii) �qj = q
�
j (S), 8j 2 NnS.

Proof. i): By de�nition of the term (1� k) in condition (23), if preferences are linear then
(1� k) = 1. By condition (22) this implies the following implications for all i 2 S:

C 0i

�
q
�
i (S)

�
= �S < �N = C

0
i (q

�
i ) :

Similarly, for all j 2 NnS, condition (20) implies:

C 0j

�
q
�
j (S)

�
= �j < �N = C

0
j

�
q�j
�
:

The two implications, together with strict convexity of Ci(:) for every i 2 N , imply the result.
ii) and iii): By conditions (22) and (19), for all i 2 S:

C 0i (�qi) = �i < �S = C
0
i

�
q
�
i (S)

�
:

14



By conditions (20) and (19), for all j 2 NnS:

C 0j (�qj) = �j = C
0
j

�
q
�
j (S)

�
:

Again by convexity of cost functions, the results follow.

4.3.3 The robustness of Chander-Tulkens result under linear preferences

We are now able to show that under linear preferences for the public good, Proposition 8 by

C-T generalizes to the �-core.

Proposition 12 If preferences are linear, then the C-T allocation (q�; y�) belongs to the

�-core.

Proof. The proof of Proposition 2 in Chander-Tulkens (1997) can be directly applied using

Lemma (11). Indeed, Lemma (11) establishes all the properties that are needed in the proof

of that proposition.

4.3.4 The �-instability of Chander-Tulkens allocation under non-linear prefer-

ences

Under non linear preferences, C-T�s result requires an additional assumption (Assumption 1�

in their paper) concerning the marginal rate of substitution characterizing respectively a Nash

and an e¢cient allocation. Under this assumption, and using a few properties both of Nash

and partial equilibrium allocations under the 
-assumption, the authors prove Proposition

8 also for the non linear case. Using the notation introduced in the previous sections, such

properties are that q
i (S) � �qi, for all i 2 S, and that q
j (S) � �qj , for all j 2 NnS.
It is easy to check that the �rst property does not longer hold under the �-assumption:

indeed, in C-T�s paper this property is proved through the following chain of implications:

C 0i (q


i (S)) = �S (Q


 (S)) � �S (Q�) � �j
�
�Q
�
= C 0i (�qi) ;

where the inequality �S (Q
�) � �j

�
�Q
�
is indeed Assumption 1�.

Under �-assumption, the above chain of implications would write

C 0i

�
q
�
i (S)

�
= �S

�
Q� (S)

�
(1� k) � �S (Q�) � �j

�
�Q
�
= C 0i (�qi)

which, as (1� k) < 1 by non-linearity of preferences, may well not be true. Actually, as

Example 1 below shows, linearity turns out to be a necessary condition for C-T result to

carry over under �-assumption. Indeed, as it is proved in Proposition (13), in Example 1 the
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�-core is empty.

Example 1. Let preference be described by the utility function

ui (q; xi) =
�
Q� �Q2

�
+ yi

and let costs be described by the function

C (q) =
q2

2
:

It can be easily checked that Assumption 1� in Chander-Tulkens (1997) is satis�ed if � � 1
2 .

We consider the deviation of a single player i, producing a zero amount of public good. By

showing that, given the reactions of the other players, this strategy represents for him an

improvement upon the allocation proposed by C-T, we show that he can improve upon it

under the �-assumption, as zero production is always a feasible strategy for him. The reaction

of the other (n� 1) players to the �no production� strategy of i is obtained by the FOC

1� 2�qj (n� 1) = qj

yielding

qj =
1

1 + 2� (n� 1)
and

Q =
n� 1

1 + 2� (n� 1) :

By using Samuelson�s e¢ciency condition

n(1� 2�Q�) = Q�

n

we obtain the e¢cient level of public good

Q� =
n2

1 + 2n2�
:

We are then able to compare the utility (u�i ) received by i in the C-T allocation with the

utility u0i that i receives through a (zero production) deviation:

u�i =
n2

1 + 2n2�
� �

�
n2

1 + 2n2�

�2
� 1
2

�
n

1 + 2n2�

�2
;

u0i =
n� 1

1 + 2� (n� 1) � �
�

n� 1
1 + 2� (n� 1)

�2
:
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By straightforward calculations, it turns out that, for n � 2 and � � 0:5,
�
u0i � u�i

�
is

always positive; hence, every player can individually improve upon the C-T allocation, which,

therefore, is not in the �-core. We report in the table below a few numerical values for�
u0i � u�i

�
.

n = 2; � = 0:5
�
u0i � u�i

�
= 0:224

n = 10; � = 0:5
�
u0i � u�i

�
= 0:8

n = 50; � = 0:5
�
u0i � u�i

�
= 0:96

n = 100; � = 0:5
�
u0i � u�i

�
= 0:98

Proposition 13 Let costs and preference be as in Example 1. Then the �-core of the asso-

ciated cooperative game is empty.

Proof. It is shown in Example 1 that any player could improve upon C-T�s solution by

exploiting a �rst mover advantage. By e¢ciency of that solution, for any other e¢cient

solution (q; y), at least one player i would receive a lower utility than in (q�; y�). But as any

player can improve upon (q�; y�) by deviating as singleton, than player i can improve upon

(q; y) in the same way.

5 Concluding remarks

This paper has presented a new solution concept for cooperative games. Our concept modi�es

the 
-core by introducing a temporal structure in the choices of strategies in the underlying

normal form game which is similar to the one adopted in the �-core. At the same time, it

is maintained the 
-assumption that outside players react to a forming coalition by splitting

up into singletons. This approach is meant to account for those cases in which coalitions can

break an agreement and, in so doing, force the outside players to react to their new strategy.

In this paper we have focused our attention on two applications: Cournot oligopolies and

public good provision. Our results on cartel formation show that, in a linear symmetric

oligopoly, considering the �-core restricts the set of core outcomes to the equal split allocation.

Moreover, di¤erently from the 
-core, under quadratic costs the �-core may be empty. In the

second application, Chander and Tulkens (1997) results are shown to be robust against the

temporal structure assumed in the �-core if and only if preferences are linear in the public

good. In the case of non linear preferences, conversely, whenever a coalition can exploit a

�rst mover advantage, the 
-assumption on coalition formation is no longer su¢cient to yield

a non-empty core.
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