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ABSTRACT

Dwivedi and Srivastava (1984, DS) studied the exact finite sample prop-

erties of Nagar’s (1962) double k-class estimator as continuous functions of

its two characterizing scalars k1 and k2, and provided guidelines for their

choice in empirical work. In this note we show that the empirical guidelines

provided by DS are not entirely valid since they did not explore the com-

plete range of the relevant parameter space in their numerical evaluations.

We find that the optimal values of k2 leading to unbiased and mean squared

error (MSE) minimizing double k-class estimators are not symmetric with

respect to the sign of the product ρω12, where ρ is the correlation coefficient

between the structural and reduced form errors, and w12 is the covariance

between the unrestricted reduced form errors. Specifically, when ρω12 is pos-

itive, the optimal value of k2 is generally positive and greater than k1, which

partly explains the superior performance of Zellner’s (1998) Bayesian Method

of Moments (BMOM) and Extended MELO estimators reported in Tsurumi

(1990).
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1 Introduction

In an important paper, Dwivedi and Srivastava (1984, hereafter DS) studied

the exact finite sample properties of Nagar’s (1962) double k-class estimator.

After deriving the first two moments of the estimator as continuous functions

of the two characterizing scalars k1 and k2, they found that k2 can be chosen

such that a double k-class estimator is unbiased for a given k1. DS also ana-

lyzed a result originally derived by Srivastava, Agnihotri and Dwivedi (1980)

that it is always possible to choose k2 such that a double k-class estima-

tor has smaller mean squared error (MSE) than that of a k-class estimator.

Through some numerical evaluations, DS provided guidelines on the choices

of k1 and k2 for empirical work. They found that the value of k2 which char-

acterizes an unbiased double k-class estimator for a given k1 between −1 and

1 is smaller than the value of k1 and declines as the prespecified value of k1

increases. Most of the time, this value of k2 was found to be negative. They

also concluded that the MSE minimizing value of k∗ is negative in majority

of the cases and is larger in absolute value than the associated value of k1.
1

The main purpose of this note is to show that the empirical guidelines

provided by DS are not entirely valid since they did not explore the whole

range of the relevant parameter space in their numerical evaluations. DS

adopted their model specifications from Sawa (1972) that were originally

used to study the properties of single k-class estimators. We find that the

optimal values of k2 leading to unbiased and MSE minimizing double k-class

estimators are not symmetric with respect to the sign of the product ρω12,

1See also Srivastava (1990) for a comprehensive survey on the properties of double
k-class estimators.
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where ρ is the correlation between the disturbances of the structural and the

reduced form equations, and ω12 is the covariance between the unrestricted

reduced form errors. For the single k-class estimator this asymmetry is not

an issue. In all the specifications considered by DS, the implied value of ρ

is −0.514 and ρω12 is always negative. In addition we also derive a simple

expression for the optimal value of k2 such that a double k-class estimator

has the smallest MSE for a given k1. We find that when ρω12 is positive, the

optimal value of k2 is generally positive and greater than k1.

2 Finite sample moments

Using the notations in DS, let us consider the following structural model:

y1 = βy2 +X1γ + u, (1)

where y1 and y2 are T ×1 vectors of observations on the included endogenous

variables; X1 is a T×l matrix of observations on l (< Λ) exogenous variables;

u is a T × 1 vector of disturbances with zero mean and finite variance of σ2.

It is assumed that the structural equation is identified and the reduced form

of the system is written as

( y1 y2 ) = X1( π11 π21 ) +X2( π12 π22 ) + ( v1 v2 ), (2)

where X = ( X1 X2 ) is a T × Λ matrix with full column rank of obser-

vations on Λ exogenous variables in the system with X 0

1
X2 = 0. The rows

of ( v1 v2 ) are assumed to be independently and identically distributed as

N(0, Ω), where Ω is pds and Ω =

Ã
ω11 ω12
ω21 ω22

!
.
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A double k-class estimator for the structural coefficient β, with charac-

terizing scalars k1 and k2, can be expressed as

bβDKC = bβKC + (k1 − k2)(y
0

2
Ay2)

−1y0
2
Py1, (3)

where bβKC is the k-class estimator of β with characterizing scalar k1,

P = I −X(X 0X)−1X 0 = I −X1(X
0

1
X1)

−1X 0

1
−X2(X

0

2
X2)

−1X 0

2
, and

A = (1− k1)[I −X1(X
0

1
X1)

−1X 0

1
] + k1X2(X

0

2
X2)

−1X 0

2
.

We also define the following:

m = 1

2
(T − l), n = 1

2
(T − Λ), δ = 1

2ω22
π0
22
X 0

2
X2π22, and for non-negative

integers a, b, c, and d,

φ(a; b) = e−δ
∞X

j=0

Γ(m− n+ j − a)

Γ(m− n+ j + b)
·
δj

j!
, (4)

ψd(a; b; c)
−1≤k1<1

= e−δ
∞X

α=0

∞X

j=0

(dα+ 1)kα
1

Γ(m+ j − a− 1)Γ(n+ α+ b)

Γ(m+ j + α+ c)Γ(n)
·
δj

j!
. (5)

DS obtained the exact analytical expressions for mean and MSE of the

double k-class estimator of β. When −1 ≤ k1 < 1 and 2m ≥ 1, the bias of

the double k-class estimator of β is given by

E(bβDKC)− β = (β −
ω12

ω22
)(δψ

0
(1; 0; 1)− 1) + (k1 − k2)

ω12

ω22
ψ
0
(1; 1; 1). (6)

When −1 ≤ k1 < 1 and 2m ≥ 3, the MSE of the double k-class estimator of

β is given by

E(bβDKC − β)
2 = (β −

ω12

ω22
)2 + (k1 − k2)

2(
ω12

ω22
)2ψ

1
(1; 2; 2)

+
ω11.2

2ω22
[(1− k2)

2ψ
1
(0; 1; 1) + (m− n)ψ

1
(0; 0; 1) + δψ

1
(1; 0; 2)]

+δ(β −
ω12

ω22
)2[
1

2
ψ
1
(0; 0; 1) + δψ

1
(1; 0; 2)− 2ψ

0
(1; 0; 1)]

+2
ω12

ω22
(β −

ω12

ω22
)(k1 − k2)[δψ1(1; 1; 2)− ψ0(1; 1; 1)], (7)
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where ω11.2 = ω11 − ω
2

12
/ω22. The bias and MSE are similarly defined when

k1 is set at unity.

From (6) and (7), DS derived two interesting results. First, for a given

k1, the double k-class estimator is unbiased if the value of k2 is set as

ku = k1 +
ω22

ω12
(β −

ω12

ω22
)[
δψ

0
(1; 0; 1)− 1

ψ
0
(1; 1; 1)

] if − 1 ≤ k1 < 1, (8)

= 1 +
ω22

ω12
(β −

ω12

ω22
)[
δφ(0; 1)− 1

nφ(1; 0)
] if k1 = 1. (9)

Second, the MSE of the double k-class estimator is less than that of k-

class estimator with −1 ≤ k1 < 1 if the value of k2 is between k1 and k
∗,

with k∗ defined as

k∗ = k1 + {[(1− k1)
ω11.2

ω22
ψ
1
(0; 1; 1)

+2
ω12

ω22
(β −

ω12

ω22
)[δψ

1
(1; 1; 2)− ψ

0
(1; 1; 1)]]

/[(
ω12

ω22
)2ψ

1
(1; 2; 2) +

ω11.2

2ω22
ψ
1
(0; 1; 1)]}, (10)

If k1 = 1,

k∗ = 1 + {[
ω12

ω22
(β −

ω12

ω22
)(δφ(1; 1)− φ(1; 0))]

/[
ω11.2

2ω22
φ(2; 0) + (n+ 1)(

ω12

ω22
)2φ(1; 0)]}. (11)

Using (7), we further find that for a given k1, the value of k2 that results

in the double k-class estimator with the minimum MSE is given by

k∗∗ =
1

2
(k1 + k

∗). (12)

Even though (12) was not explicitly derived in DS, the above expression for

the optimal k2 is not surprising since the MSE of double k-class estimator is

quadratic in k2.
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3 Numerical evaluations

In order to get a feel about the magnitude and even the signs of ku and

k∗, DS tabulated the values of ku and k
∗ for selected values of k1 and δ

(k1 = 0,±0.2,±0.6,±1 and δ = 1, 10, 25, 50, 100). Following Sawa (1972)

and Srivastava et al.(1980), Dwivedi and Srivastava (1984) set

β = 1,
ω12

ω22
= 0.4,

ω11.2

ω22
= 1, (13)

and considered the following three cases:

Case I. Λ = 5, l = 2, and T = 10, 20, 30, 50

Case II. Λ = 10, l = 3, and T = 20, 30, 50

Case III. Λ = 15, l = 5, and T = 20, 30, 50

For the sake of brevity, we only report results which corresponds to Case

III in DS (i.e., Λ = 15, l = 5) with T = 50.2 Our Specification 1 has the

same setup as in DS, and we try to duplicate the tabulated values of ku and

k∗ in DS. In this specification, as in all the specifications considered by DS,

the implied value of ρ is -0.514 and ρω12/ω22 = −0.2056.3 Since ω22 > 0,

the implied ρω12 is always negative in their setup. We then consider several

alternative values of the parameters defined in (13) to demonstrate our point.

In Specification 2, we set β = −1, other parameters being the same. These

parameter values imply ρ = 0.814 and ρω12/ω22 = 0.3256. In Specification 3,

we set ω12/ω22 = −0.4, other things being the same as in Specification 1. This

leads to an implied ρ value of -0.814 and ρω12/ω22 = 0.3256. In Specification

2Numerical calculations are done using GAUSS for Windows Version 3.2.35 on a Pen-
tium II 450MHz PC.

3ρ is derived using the following relationships: β − ω12/ω22 = −ρ
p
σ2/ω22, and

σ2/ω22 = (ω11 − 2βω12 + β
2ω22)/ω22 = ω11.2/ω22 + (β − ω12/ω22)

2.
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4, we further set ω12/ω22 = 1.6 yielding ρ = 0.514 and ρω12/ω22 = 0.8224.

The results from our numerical evaluations are collected in Tables 1, 2 and

3. We will first discuss results in Tables 1 and 2.

Based on our extensive experiments with the specifications considered in

DS, we found that there are substantial computational errors in the numerical

evaluations reported by DS. In their Table 1 reporting values of ku, only the

results when δ = 1 and 10 have acceptable levels of accuracy. As δ gets

larger (viz. δ = 25, 50, 100), their results became increasingly imprecise, and

clearly unacceptable. This is seen if one compares ku values in their Table 1

(last panel of Case III, m = 22.5, n = 17.5) with those in our Table 1 (first

panel). More strikingly, the values of k∗ reported in Table 2 of DS seem to be

erroneous for all values of δ they considered. This is revealed by comparing

the k∗ values in their Table 2 (last panel of Case III, m = 22.5, n = 17.5)

with those in our Table 2 (first panel). For instance, DS reported that for

our Specification 1, when k1 = 0, δ = 100, the value of k
∗ is −1071.807, while

it is −2.732 according to our calculation.

Overall we find that the value of k∗ is of the similar magnitude as ku.

It does not exhibit the tremendous variation as reported in DS. Also as a

result of improved precision in our calculations, we find that the value of ku

changes monotonically as δ increases for a given −1 < k1 < 1. Interestingly,

when k1 is set equal to 1, we find that the value of ku is independent of δ.
4

Results from Specification 2 show that the optimal values of ku and k
∗ may

be all positive and greater than k1, invalidating the major conclusion in DS

4We had difficulty in obtaining reliable results for specifications with k1 = −1 when
δ = 1. Further investigation of these weak instrument situations is beyond the scope of this
note. However, specifications with other values of k1demonstrate the inherent monotonic
trend.
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that they take large negative values for most of the time and are less than k2.

These results may be easily explained by (6) and (7). First let us consider the

determinants of the bias for the double k-class estimator. Observe that bβKC

is biased in the direction of ρ, as noted by Mariano (1982). Negative ρ implies

a downward bias, positive ρ implies an upward bias in bβKC. Since for the

single k-class estimator k2 = k1, the first term (β−ω12/ω22)(δψ0(1; 0; 1)− 1)

in (6) represents the bias of bβKC, and is of the same sign as that of ρ. In

order to reduce the bias of the double k-class estimator, the second term

(k1 − k2)(ω12/ω22)ψ0(1; 1; 1) in (6) should have sign opposite to that of ρ.

Since ψ
0
(1; 1; 1) > 0, we require (k1 − k2)ω12 to be of the opposite sign of ρ.

Therefore when ρω12 < 0, i.e., ρ and ω12 are of opposite signs, the value of

ku should be less than k1, as observed by DS. However when ρω12 > 0, the

value of ku should be greater than k1, as shown in our Specification 2.

The dependence of the value of k∗ on the sign of ρω12 can be explained

in a similar way. The first four terms in (7) do not depend on the sign of

ρ or ω12 explicitly. Regarding the last term in (7), note that [δψ
1
(1; 1; 2) −

ψ
0
(1; 1; 1)] is negative and does not change sign for the wide range of values

of δ considered. Thus, in order to make MSE of the double k-class estimator

for a prespecified k1 to be less than that of bβKC, we should choose the value of

k2 such that (ω12/ω22)(β−ω12/ω22)(k1−k2) is negative. Therefore the value

of k∗ should be selected in a similar way as for the value of ku, depending on

the sign of ρω12.

Note that the optimal values of ku (Table 1) and k
∗ (Table 2) under

Specification 3 are exactly the same as that under Specification 2. Also, in

these two specifications, β and ω12/ω22 values are set to be the same but of

8



opposite signs, leaving ρω12/ω22 = 0.3256 in both cases. It implies that ku

and k∗ are symmetric with respect to the signs of (ω12, ρ). The results from

Specification 4 show that both ku and k
∗ move towards 1 as k1 approaches

1. Again from Specifications 3 and 4, we find that the optimal values of ku

and k∗ are greater than k1 when ρω12 > 0, but less than k1 when ρω12 < 0.

Table 3 does not have a counterpart in DS and reports the optimal values

of k2 (k
∗∗) and the resulting mean squared errors (MSEs) of the double

k-class estimator with characterizing scalars k1 and k
∗∗. Comparing MSE

figures under Specifications 2 and 3, we again find that they are symmetric

with respect to the signs of (ω12, ρ). It is shown that the values of k
∗∗ are

much closer to ku than to k
∗, suggesting that unbiasedness is the dominating

criterion in fixing the MSE-minimizing value of k2. When the value of k1 is

set at 1, the value of k∗∗ is very close or equal to 1.

4 Conclusions

There has been a renewed interest in studying the properties of double k-

class estimators. For instance, Zellner (1986, 1998) has shown that the ex-

tended minimum expected loss (ZEM) and the Bayesian Method of Moments

(BMOM) estimators can be conveniently evaluated as double k-class estima-

tors where the values of the two characterizing scalars k1and k2 are uniquely

determined by elegant balanced loss functions involving both ‘goodness of fit’

and ‘precision of estimation’ criteria. An attractive feature of BMOM ap-

proach is that it permits investigators to analyze given data when the form
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of the likelihood function is unknown.5 Tsurumi (1990) compared a number

of Sampling theory and Bayesian estimators, and found that ZEM generally

outperforms others, and is certainly among the top three in all cases.

Based on finite sample expressions for the first two moments of double

k-class estimators, Dwivedi and Srivastava (1984) concluded that for a given

value of k1, the value of k2 that yields unbiased and minimum MSE double

k-class estimator is smaller than k1, and is generally negative. We find that

their guidelines on the choice of k1and k2 are not entirely valid, and could be

misleading. In their numerical evaluations they did not consider an important

segment of the relevant parameter space. We point out that unlike the single

k-class estimator, the properties of the double k-class estimator are severely

affected by the signs of ρ and ω12. The optimal value of k2 for a given k1

will be quite different depending on the sign of the product of ρ and ω12. DS

inadvertently considered only cases where ρω12 < 0, and found correctly that

optimal values of k2 should be less than the value of k1. We, however, show

that if ρω12 > 0, the optimal values of k2 should be greater than k1 and is

generally positive. By comparing the optimal values of ku and k
∗∗, we also

find that the unbiasedness criterion dominates in determining the optimal

value of k2.

5In a recent paper Zellner and Tobias (2001) extend previous BMOM results to show
how information about a variance parameter and its relation to regression coefficients pro-
duces a rich class of postdata densities for regression parameters that maximizes entrophy.
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Table 1. Values of k2 (ku) leading to an unbiased double k-class estimator

δ

k1 1 10 25 50 100

Specification 1. β = 1, ω12/ω22 = 0.4, ω11.2/ω22 = 1

-1.0 n.a. -4.419 -4.401 -4.385 -4.370
-0.8 -3.935 -3.917 -3.898 -3.882 -3.868
-0.6 -3.433 -3.414 -3.395 -3.379 -3.365
-0.2 -2.429 -2.407 -2.388 -2.373 -2.361
0.0 -1.925 -1.903 -1.883 -1.869 -1.858
0.2 -1.420 -1.397 -1.378 -1.365 -1.356
0.6 -0.404 -0.380 -0.364 -0.355 -0.350
0.8 0.112 0.134 0.145 0.150 0.154
1.0 0.657 0.657 0.657 0.657 0.657

Specification 2. β = -1, ω12/ω22 = 0.4, ω11.2/ω22 = 1

-1.0 n.a. 6.979 6.936 6.898 6.862
-0.8 6.516 6.473 6.430 6.392 6.358
-0.6 6.011 5.966 5.923 5.885 5.853
-0.2 5.000 4.950 4.905 4.870 4.842
0.0 4.492 4.439 4.395 4.361 4.336
0.2 3.981 3.926 3.882 3.852 3.830
0.6 2.944 2.886 2.850 2.829 2.816
0.8 2.404 2.354 2.328 2.316 2.308
1.0 1.800 1.800 1.800 1.800 1.800

Specification 3. β = 1, ω12/ω22 = -0.4, ω11.2/ω22 = 1

-1.0 n.a. 6.979 6.936 6.898 6.862
-0.8 6.516 6.473 6.430 6.392 6.358
-0.6 6.011 5.966 5.923 5.885 5.853
-0.2 5.000 4.950 4.905 4.870 4.842
0.0 4.492 4.439 4.395 4.361 4.336
0.2 3.981 3.926 3.882 3.852 3.830
0.6 2.944 2.886 2.850 2.829 2.816
0.8 2.404 2.354 2.328 2.316 2.308
1.0 1.800 1.800 1.800 1.800 1.800

Specification 4. β = 1, ω12/ω22 = 1.6, ω11.2/ω22 = 1

-1.0 n.a. -0.145 -0.150 -0.154 -0.158
-0.8 -0.016 -0.021 -0.025 -0.029 -0.033
-0.6 0.108 0.104 0.099 0.095 0.091
-0.2 0.357 0.352 0.347 0.343 0.340
0.0 0.481 0.476 0.471 0.467 0.465
0.2 0.605 0.599 0.595 0.591 0.589
0.6 0.851 0.845 0.841 0.839 0.837
0.8 0.972 0.966 0.964 0.962 0.962
1.0 1.086 1.086 1.086 1.086 1.086
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Table 2. Values of k
*

δ

k1 1 10 25 50 100

Specification 1. β = 1, ω12/ω22 = 0.4, ω11.2/ω22 = 1

-1.0 n.a. -6.109 -6.077 -6.047 -6.020
-0.8 -5.494 -5.459 -5.424 -5.392 -5.364
-0.6 -4.847 -4.808 -4.770 -4.736 -4.707
-0.2 -3.549 -3.501 -3.456 -3.420 -3.392
0.0 -2.897 -2.843 -2.796 -2.760 -2.732
0.2 -2.241 -2.181 -2.132 -2.097 -2.072
0.6 -0.908 -0.838 -0.792 -0.764 -0.747
0.8 -0.214 -0.147 -0.110 -0.093 -0.083
1.0 0.936 0.979 0.991 0.995 0.998

Specification 2. β = -1, ω12/ω22 = 0.4, ω11.2/ω22 = 1

-1.0 n.a. 12.983 12.876 12.778 12.687
-0.8 12.033 11.924 11.812 11.712 11.623
-0.6 10.979 10.862 10.746 10.645 10.557
-0.2 8.862 8.726 8.602 8.502 8.422
0.0 7.796 7.650 7.523 7.426 7.353
0.2 6.722 6.566 6.438 6.347 6.281
0.6 4.527 4.355 4.240 4.173 4.131
0.8 3.368 3.206 3.119 3.077 3.053
1.0 1.149 1.049 1.022 1.011 1.006

Specification 3. β = 1, ω12/ω22 = -0.4, ω11.2/ω22 = 1

-1.0 n.a. 12.983 12.876 12.778 12.687
-0.8 12.033 11.924 11.812 11.712 11.623
-0.6 10.979 10.862 10.746 10.645 10.557
-0.2 8.862 8.726 8.602 8.502 8.422
0.0 7.796 7.650 7.523 7.426 7.353
0.2 6.722 6.566 6.438 6.347 6.281
0.6 4.527 4.355 4.240 4.173 4.131
0.8 3.368 3.206 3.119 3.077 3.053
1.0 1.149 1.049 1.022 1.011 1.006

Specification 4. β = 1, ω12/ω22 = 1.6, ω11.2/ω22 = 1

-1.0 n.a. 0.720 0.703 0.687 0.672
-0.8 0.782 0.765 0.747 0.732 0.718
-0.6 0.828 0.810 0.792 0.776 0.763
-0.2 0.917 0.897 0.879 0.865 0.853
0.0 0.961 0.941 0.922 0.909 0.898
0.2 1.005 0.983 0.965 0.952 0.943
0.6 1.085 1.062 1.047 1.038 1.032
0.8 1.117 1.096 1.085 1.079 1.076
1.0 1.017 1.005 1.002 1.001 1.001
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Table 3. Values of k2 (k
**

) with Minimum MSEs in parentheses

δ

k1 1 10 25 50 100

Specification 1. β = 1, ω12/ω22 = 0.4, ω11.2/ω22 = 1

-1.0 n.a. -3.555 (0.094) -3.538 (0.057) -3.524 (0.031) -3.510 (0.015)
-0.8 -3.147 (0.136) -3.130 (0.090) -3.112 (0.053) -3.096 (0.029) -3.082 (0.013)
-0.6 -2.724 (0.135) -2.704 (0.086) -2.685 (0.050) -2.668 (0.026) -2.654 (0.012)
-0.2 -1.875 (0.130) -1.850 (0.077) -1.828 (0.042) -1.810 (0.021) -1.796 (0.010)
0.0 -1.448 (0.128) -1.421 (0.072) -1.398 (0.037) -1.380 (0.019) -1.366 (0.009)
0.2 -1.021 (0.125) -0.991 (0.066) -0.966 (0.033) -0.949 (0.017) -0.936 (0.008)
0.6 -0.154 (0.121) -0.119 (0.054) -0.096 (0.026) -0.082 (0.014) -0.074 (0.007)
0.8 0.293 (0.127) 0.327 (0.051) 0.345 (0.024) 0.354 (0.013) 0.359 (0.007)
1.0 0.968 (0.314) 0.990 (0.075) 0.995 (0.029) 0.998 (0.014) 0.999 (0.007)

Specification 2. β = -1, ω12/ω22 = 0.4, ω11.2/ω22 = 1

-1.0 n.a. 5.992 (0.119) 5.938 (0.073) 5.889 (0.042) 5.844 (0.021)
-0.8 5.617 (0.176) 5.562 (0.117) 5.506 (0.071) 5.456 (0.040) 5.411 (0.020)
-0.6 5.190 (0.179) 5.131 (0.115) 5.073 (0.068) 5.022 (0.037) 4.979 (0.018)
-0.2 4.331 (0.187) 4.263 (0.111) 4.201 (0.062) 4.151 (0.033) 4.111 (0.017)
0.0 3.898 (0.194) 3.825 (0.109) 3.761 (0.059) 3.713 (0.032) 3.676 (0.016)
0.2 3.461 (0.204) 3.383 (0.108) 3.319 (0.056) 3.273 (0.030) 3.240 (0.015)
0.6 2.563 (0.253) 2.477 (0.110) 2.420 (0.053) 2.387 (0.028) 2.366 (0.014)
0.8 2.084 (0.325) 2.003 (0.119) 1.960 (0.055) 1.938 (0.029) 1.926 (0.015)
1.0 1.075 (1.249) 1.024 (0.238) 1.011 (0.080) 1.006 (0.035) 1.003 (0.016)

Specification 3. β = 1, ω12/ω22 = -0.4, ω11.2/ω22 = 1
-1.0 n.a. 5.992 (0.119) 5.938 (0.073) 5.889 (0.042) 5.844 (0.021)
-0.8 5.617 (0.176) 5.562 (0.117) 5.506 (0.071) 5.456 (0.040) 5.411 (0.020)
-0.6 5.190 (0.179) 5.131 (0.115) 5.073 (0.068) 5.022 (0.037) 4.979 (0.018)
-0.2 4.331 (0.187) 4.263 (0.111) 4.201 (0.062) 4.151 (0.033) 4.111 (0.017)
0.0 3.898 (0.194) 3.825 (0.109) 3.761 (0.059) 3.713 (0.032) 3.676 (0.016)
0.2 3.461 (0.204) 3.383 (0.108) 3.319 (0.056) 3.273 (0.030) 3.240 (0.015)
0.6 2.563 (0.253) 2.477 (0.110) 2.420 (0.053) 2.387 (0.028) 2.366 (0.014)
0.8 2.084 (0.325) 2.003 (0.119) 1.960 (0.055) 1.938 (0.029) 1.926 (0.015)
1.0 1.075 (1.249) 1.024 (0.238) 1.011 (0.080) 1.006 (0.035) 1.003 (0.016)

Specification 4. β = 1, ω12/ω22 = 1.6, ω11.2/ω22 = 1

-1.0 n.a. -0.140 (0.009) -0.149 (0.008) -0.157 (0.006) -0.164 (0.004)
-0.8 -0.009 (0.011) -0.018 (0.010) -0.026 (0.008) -0.034 (0.007) -0.041 (0.004)
-0.6 0.114 (0.011) 0.105 (0.010) 0.096 (0.009) 0.088 (0.007) 0.081 (0.005)
-0.2 0.359 (0.013) 0.349 (0.012) 0.340 (0.010) 0.332 (0.007) 0.327 (0.005)
0.0 0.481 (0.014) 0.470 (0.013) 0.461 (0.011) 0.454 (0.008) 0.449 (0.005)
0.2 0.602 (0.017) 0.591 (0.015) 0.582 (0.012) 0.576 (0.009) 0.571 (0.005)
0.6 0.842 (0.032) 0.831 (0.024) 0.823 (0.016) 0.819 (0.010) 0.816 (0.006)
0.8 0.959 (0.057) 0.948 (0.034) 0.942 (0.020) 0.940 (0.011) 0.938 (0.006)
1.0 1.008 (0.312) 1.003 (0.074) 1.001 (0.029) 1.001 (0.014) 1.000 (0.007)


