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This paper deals with estimating peaked densities over the interval [0,1] using two#

sided power distribution (Kotz, van Dorp, 2004). Such data were encountered in experiments 

determining certainty equivalents of lotteries (Kontek, 2010). This paper summarizes the ba#

sic properties of the two#sided power distribution (TP) and its generalized form (GTP). The 

GTP maximum likelihood estimator, a result not derived by Kotz and van Dorp, is presented. 

The TP and GTP are used to estimate certainty equivalent densities in two data sets from lot#

tery experiments. The obtained results show that even a two#parametric TP distribution pro#

vides more accurate estimates than the smooth three#parametric generalized beta distribution 

GBT (Libby, Novick, 1982) in one of the considered data sets. The three#parametric GTP 

distribution outperforms GBT for these data. The results are, however, the very opposite for 

the second data set, in which the data are greatly scattered. The paper demonstrates that the 

TP and GTP distributions may be extremely useful in estimating peaked densities over the 

interval [0,1] and in studying the relative utility function. 

	

*�'	&�����
�&�����: C01, C13, C14, C16, C21, C51, C81, C91, D03, D81, D87 

+�(�����#	 Density Distribution;	 Maximum Likelihood Estimation; Lottery experiments; 

Relative Utility Function. 
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Peaked data are becoming more and more frequently observed, especially in financial 

applications. Such data may be described using the Laplace distribution, which is an alterna#

tive to smooth distribution functions. Less examined are densities defined over a bounded 

interval. This has mainly been due to the lack of any distribution suited to analyze such cases. 

It was only recently that Kotz and van Dorp (2004) introduced a few types of two#sided pow#

er distribution defined over the interval [0,1]. However, a simple maximum likelihood estima#

tor was present only for its basic form. Every other type required a recursive optimization 

procedure. 

Peaked data over the interval [0,1] were encountered in experiments determining cer#

tainty equivalents of lotteries (Kontek, 2010). The densities were estimated using beta BT and 

generalized beta GBT (Libby, Novick, 1982) distributions. The obtained results showed that 

such smooth functions may not be appropriate in all cases and that the use of a peaked distri#

bution may give better results. The aim of this paper is therefore to present the application of 

a two#sided power distribution TP and its generalized form GTP in the considered cases. The 

maximum likelihood estimator for GTP, a result not derived by Kotz and van Dorp, is pre#

sented beforehand. 

The basic TP and GTP properties are first summarized in Points 2 and 3. The TP and 

GTP maximum likelihood estimators for unimodal densities are presented in Point 4. The 

derivation of TP and GTP maximum likelihood estimators is demonstrated in Point 5, where 

non#unimodal densities are also analyzed. Point 6 demonstrates the use of TP and GTP maxi#

mum likelihood estimators for two data sets considered previously by Kontek. Point 7 sum#

marizes the paper and concludes that the TP and GTP distributions may be extremely useful 

in estimating peaked densities over the interval [0,1] and in researching the relative utility 

function. 

-,	���%������	�
	���� ����	�����	������!"����	

-,�, The two#sided power distribution TP presented here is the Standard Two#Sided 

Power (STSP) distribution as considered by Kotz and van Dorp (2004). It has two parameters: 
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The TP simplifies to a uniform distribution for γ = 1, a triangular distribution for γ = 2, 

a power distribution for λ = 1, and a reflected power distribution for λ = 0. Sample TP shapes 

are presented in Figure 2.1. The function is unimodal for γ > 1, uniform for γ = 1, and U#

shaped for γ < 1. Please note that there are some minor errors in the figures presented by Kotz 

and van Dorp (2004) as well in the textual description (pp. 71#72). 

.��"��	-,�, Sample shapes of two#sided power distribution. On the left  λ = 0.25, in the middle λ = 0.5, 

on the right λ = 0.75. The value of γ parameter is equal to the density at λ.  

-,-, The TP has an extremely interesting feature in that its mode is given by the λ pa#

rameter: 

 ( )Mode TP ; , ,r λ γ λ=    (2.2) 

and the value at the mode by the γ parameter 

 ( )TP ; , .r λ λ γ γ= =  (2.3) 

This makes this distribution unique in that its parameters may be easily determined from its 

shape. 

-,/, The mean value of TP is equal to: 

 ( ) ( )1 1
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 (2.4) 

-,0, The Cumulative TP distribution is defined as: 
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which allows, after inverting, the quantiles to be determined: 
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In the special case where q = 0.5, the median is given by: 
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-,1, The variance of TP is given by: 

 ( ) ( ) ( )
( ) ( )2

2 1 1
Variance TP ; , .
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/,	���%������	�
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/,�, The generalized two#sided power distribution GTP presented here is the General#

ized Standard Two#Sided Power (GSTSP) distribution as considered by Kotz and van Dorp 

and is a special case of the Uneven Standard Two#Sided Power (USTSP) distribution. It has 

three parameters and is defined by:  
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where 

 
( )

.
1

γ δ
φ

λδ λ γ
=

+ −
 (3.2) 

The function is unimodal for γ > 1 and δ > 1, J#shaped for γ > 1 and δ < 1, inverse J#

shaped for γ < 1 and δ > 1, uniform from 0 to λ for γ = 1, uniform from λ to 1 for δ = 1, U#

shaped with anti#mode at λ for γ < 1 and δ < 1, is power distribution for λ = 1, and is a re#

flected power distribution for λ = 0.  

.��"��	/,�, Sample shapes of generalized two#sided power GTP distribution. On the left λ = 0.25, in 

the middle λ = 0.5, and on the right λ = 0.75.  

All but the first shapes are referred to as non#unimodal throughout the paper. Some 
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sample shapes are given in Figure 3.1. Only unimodal curves are presented as they are of 

most interest in this paper and in practical applications. 

An important case (as will be discussed in 6.3) is when either γ or δ assumes an infi#

nite value. The GTP then reduces to a bounded TP distribution defined over the interval [λ, 1] 

or [0, λ] respectively. 

/,-, The GTP mode is given by its λ parameter: 

 ( )Mode GTP ; , , ,r λ γ δ λ=    (3.3) 

and the value at the mode is given by:  

 ( )GTP ; , , .r λ λ γ δ φ= =  (3.4) 

/,/, The mean value of GTP is equal to: 
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 (3.5) 

/,0, The Cumulative GTP is defined as: 
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which allows, after inverting, the distribution quantile to be calculated: 
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In the special case where q = 0.5, the median is given by:  
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/,1, The GTP variance is given by: 



 6 

 

( )
( )

( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 3 4

2

2

2 2

2

2 2

22 2

Variance GTP ; , , ,

where

1 2 ,

2 1 2 1 2 ,

2 1 2 1 3 3 ,

2 1 1 3 2 ,

2 1 ,

,

1 2 1 2 1 .

F A B C D E
r

G

A

B

C

D

E

F

G

λ λ λ λ
λ γ δ

γ γ γ

γ γ γ δ

γ γ γ γδ δ

γ γ δ γ γ γ δ δ

γ δ γ γ δ

γ δ

γ γ δ δ γ λ δ λ

+ + + +
=  

= + +

= − + + − + −

= + + − + − +

 = − + − − + + − + 

 = − + + + 
=

= + + + + − −  

 (3.9) 

Equation (3.9) has an unpleasant form but is given here as variance is an important 

measure of risk in many financial applications. Besides, it is required in the density#based 

mean regression approach (Kontek, 2010). 

0,	4�)��"�	'��������	����������	
��	��	���	2��	������!"�����	

0,�, Although Kotz and van Dorp provided a maximum likelihood estimator for the TP 

distribution, they did not present a similar solution for GTP. Instead, they proposed a recur#

sive maximum likelihood procedure for the more general Uneven Standard Two#Sided 

(USTSP) distribution. It appears, however, that such a solution does exist for GTP. The only 

restriction is that this simple and straightforward estimator only concerns unimodal densities, 

which in any case, seem to be the only interesting ones in most practical applications. The 

solution for non#unimodal densities is also present but requires solving a nonlinear equation, 

and more detailed considerations.  

At this point, the maximum likelihood estimators for TP and GTP in the case of uni#

modal densities are demonstrated without giving any details of how they were derived. These 

are provided in Point 5, together with the non#unimodal density analysis.  

0,-, An important feature of both TP and GTP likelihood functions is that they may 

have multiple maxima. That these local maxima only appear at the sample points assists in 

finding the global maximum. Importantly, the likelihood values at these points can be calcu#

lated quite simply by using a formula and do not require any optimization algorithm. This 

produces a very different approach than that commonly used for smooth distributions.  

The estimation procedure is based on checking the values of the likelihood function at 
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the sample points and selecting the greatest value. Knowing the point at which the likelihood 

function achieves its maximum allows the sought parameters to be derived, once again, by 

using a formula without recourse to any optimization algorithm.  

0,/, The maximum likelihood estimator in the case of TP is presented in a slightly dif#

ferent manner than that adopted by Kotz and van Dorp. The estimator of the λ parameter is: 

 ˆ ,krλ =  (4.1) 

where rk denotes the value of the k
th

 point from the ordered sample at which the log#likelihood 

function defined as:  

 ln ,k k

k

s
LogL w s s

w

 
= − +  

 
 (4.2) 
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4
. In (4.2), s denotes the sample count, and 
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where ri denotes the value of the i
th

 point from the ordered sample. Once the point k is deter#

mined, the maximum likelihood estimator of γ is given by: 

 ˆ ,
k

s

w
γ =  (4.6) 

where wk is calculated at point k.  

0,0, In the case of GTP, the maximum likelihood estimators of the λ parameter is also 

given by (4.1), i.e. it is the value rk of the k
th

 point from the ordered sample at which the log#

likelihood function, defined as: 

 ( )( )ln 2 ln 1 1 ,k k k k k kLogL w s s r w r w− + = + − + − −  
 (4.7) 

achieves its maximum. In (4.7), s, wk, kw−  and kw+  are defined as above. Once the point k is 

                                                 
4
 NB: Kotz and van Dorp do not provide this form and a different expression, viz. kw

e
−

is maximized. 



 8 

determined, the maximum likelihood estimators of  γ and δ are given by: 
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1 k k k
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 (4.8) 

and 

 ˆ ,

1

k k k
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r w w
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r

δ
− +

+

=

+
−

 (4.9) 

where the values of kw− , kw+  and rk are calculated at the point k. As mentioned, this result for 

GTP was not provided by Kotz and van Dorp. 

1,	����������	�
	4�)��"�	'��������	����������	
��	��	���	2��	

1,�, Point 5 is devoted solely to the derivation of the maximum likelihood estimators 

for TP and GTP together with an analysis of non#unimodal densities. This is a quite technical 

and detailed subject and may therefore be skipped by readers more interested in practical es#

timation results. 

1,-, The derivation of the maximum likelihood estimator for TP will be presented first. 

This is a different derivation than that presented by Kotz and van Dorp, but it follows their 

line of reasoning. Let us consider the likelihood function in the interval between points k and 

k + 1 from the ordered sample. According to (2.1), this may be expressed as: 
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= +

= −∏  The interval between the lower bound of the distribu#

tion (i.e. the value 0) and the first sample point may be also considered. In this case, k = 0, 

0 1,P− =  and ( )0

1

1 .
s

i

i

P r+

=

= −∏  Similarly, for the interval between the last sample point and the 

upper bound of the distribution (i.e. the value 1), k = s, 
1

,
s

s i

i

P r−

=

=∏  and 1.sP+ =  Taking the 

logarithm of (5.1) results in the log#likelihood function: 

 ( )( ) ( ) ( ) ( )ln 1 ln ln 1 ln ln 1 .k k kLogL s P k P s kγ γ λ γ λ− + = + − − + − − − −   (5.2) 

The second derivative of (5.2) with respect to λ is:  
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 ( )
( )

2

22 2
1 ,

1

kd LogL k s k

d
γ

λ λ λ

 −
= − + 

−  
 (5.3) 

which is always positive for γ > 1. It follows that, in the case of unimodal densities, the log#

likelihood function is always convex between the points k and k+1 and it reaches its maxi#

mum value at one of these points. Moving from one interval to another, however, changes the 

log#likelihood function (5.2) as it depends on k. The corollary of this is that the log#likelihood 

function is not differentiable at the sample points, and local maxima may appear there. It is 

therefore sufficient to check the values of the log#likelihood function at the sample points to 

find its global maximum. This can be done as follows.  

The maximum value of the log#likelihood function at point k can be found by deter#

mining its first derivative with respect to γ and comparing the result to 0: 

 ( ) ( )ln ln ln ln 1 0,k
k k k k

d LogL s
P k r P s k r

dγ γ
− += + − + − − − =  (5.4) 

where λ has been substituted with rk. Equation (5.4) may be represented in a simpler form 

using (4.3) – (4.5): 

 0.k
k

d LogL s
w

dγ γ
= − =  (5.5) 

Solving (5.5) leads to the maximum likelihood estimator of γ (4.6). Substituting this 

result into the log#likelihood function (5.2) and rearranging yields the form (4.2), which does 

not depend on the distribution parameters and is therefore easy to maximize.  

1,/, The procedure for GTP is similar. According to (3.1) and (3.2), the likelihood 

function may be expressed as: 

 
( ) ( )
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.
1 1

s

k k
k s kk

P P
L

δγ
γ δ

λδ λ γ λ λ

−−− +

−

    
=        + − −    

 (5.6) 

Taking the logarithm of (5.6) yields the log#likelihood function: 

 
( ){ }

( )( ) ( ) ( ) ( )

ln ln ln 1

1 ln ln 1 ln ln 1 .

k

k k

LogL s

P k P s k

γ δ λδ λ γ

γ λ δ λ− +

= + − + − +  

 − − + − − − − 
 (5.7) 

Its second derivative with respect to λ is: 

 
( ) ( ) ( )

( )
( )
( )

22

2 22 2

1 1
,

1 1

k
k s k sd LogL

d

γ δ γ δ
λ λ λ λδ λ γ

− − − −
= + +

− + −  
 (5.8) 

which is always positive for γ > 1 and δ > 1. Applying the reasoning presented in point 5.2 for 
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TP, it is sufficient to check the values of the log#likelihood function at the sample points in 

order to find its global maximum. These can be found as follows.  

The first derivatives of the log#likelihood function (5.7) with respect to γ and δ are 

compared to 0: 

 
( )

0,
1

k k
k

k k

d LogL s r
w

d r r

δ
γ γ δ γ

−= − =
+ −  

 (5.9) 

 
( )

1
0,

1

k k
k

k k

d LogL r
s w

d r rδ δ δ γ
+

 
= − − = 

+ − 
 (5.10) 

where (4.4) and (4.5) were used to simplify the results. Solving the set of equations (5.9) and 

(5.10) results in the maximum likelihood estimators of γ (4.8) and δ (4.9). It is worth noting 

that the second pair of solutions also exist, with the roots in the denominators being negative. 

This pair, however, leads to very high values of γ of δ and distributions which do not fit the 

data. Substituting the estimated values (4.8) and (4.9) into the log#likelihood function (5.7) 

results in the form (4.7) which does not depend on the distribution parameters and is used for 

maximization.  

1,0, It is interesting (albeit from a theoretical rather than a practical point of view) to 

determine the maximum likelihood estimator for non#unimodal densities. In this case the sec#

ond derivative of the log#likelihood function may assume a negative value. This would indi#

cate that the log#likelihood function is concave and its maximum may be located between 

points k and k + 1. The TP estimator will be considered first.  

1,0,�, In order to find a maximum the first derivative of the log#likelihood function 

(5.2) with respect to λ is compared to 0: 

 ( )1 0,
1

kd LogL s k k

d
γ

λ λ λ
− = − − = − 

 (5.11) 

which results in: 

 ˆ .
k

s
λ =  (5.12) 

Equation (5.12) determines the value of λ at which the log#likelihood function (5.2) 

achieves its maximum. It can easily be checked whether this value is located between points k 

and k + 1. If not, then the log#likelihood function achieves the maximum either at point k or at 

point k + 1, as in the case of unimodal densities.  

If the value of λ determined by (5.12) is located inside the considered interval, then the 
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log#likelihood value may be calculated as follows. First, we define ,kw  ,kw−  and kw+  more gen#

erally than (4.3), (4.4), and (4.5) as functions of λ within the interval [k, k + 1] rather than the 

values at point k: 

 ( ) ( ) ( ) ,
k k k

w w wλ λ λ− +
= +  (5.13) 

 ( ) 1ln ,

k

i

i

kk

r

w λ
λ

− =

 
 
 = −
 
  

∏
 (5.14) 

 ( )
( )

( )
1

1

ln .
1

s

i

i k

s kk

r

w λ
λ

+ = +
−

 
− 

 = −
 −
  

∏
 (5.15) 

Clearly (5.13) # (5.15) result in the same value as (4.3) # (4.5) for krλ = , i.e. at the bound of 

the considered interval [k, k + 1]. Repeating the steps presented in point 5.2. yields the log#

likelihood value (5.16), which has a very similar form to (4.2): 

 ( )
( )

ln .k k

k

s
LogL w s s

w
λ

λ

 
= − +   

 
 (5.16) 

The only difference is that wk is now determined for 
k

s
λ =  using (5.13), rather than for krλ =  

using (4.3).  

1,0,-, The procedure presented above must be repeated for all the intervals [k, k + 1] in 

order to find the global maximum of the log#likelihood function. Very similarly to unimodal 

densities, the maximum likelihood estimator of γ is then given by: 

 
( )

ˆ ,

k

s

w
γ

λ
=  (5.17) 

which is calculated using (5.13) for the determined values of λ and k. 

1,1,	The case of the GTP is more complex.		

1,1,�,	The first derivative of the log#likelihood function (5.7) with respect to λ is com#

pared to 0: 

 
( ) ( ) ( )

( ) ( )
1 1 1

0,
1 1

k
k s kd LogL

d

λ γ λδ λ γ λδ

λ λ λ γ λδ

− + − − − + −      = =
− − +  

 (5.18) 

which results in two solutions: 
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( )

,
k

k s k

γ
λ

γ δ
=

+ −
 (5.19) 

 
1

.
γ

λ
γ δ
−

=
−

 (5.20) 

Here, determining whether the obtained values of λ are located within the considered interval 

[k, k + 1] is not possible as it was in the case of TP, because γ and δ are not known. One pos#

sibility is therefore to maximize the log#likelihood function (5.7) and to check the obtained 

value of λ. Such a procedure, however, is not so convenient because (5.7) has 3 parameters.  

1,1,-, The task can be simplified as follows. Calculating the first derivatives of the 

log#likelihood function (5.7) with respect to γ and δ results in: 

 
( )

( ) 0,
1

k

k

d LogL s
w

d

λδ
λ

γ γ λδ λ γ
−

= − =
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 (5.21) 

 
( )

( )1
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1

k

k

d LogL
s w

d

λ
λ

δ δ λδ λ γ
+ 

= − − = 
+ − 

 (5.22) 

where (5.14) and (5.15) are used to simplify the results (cf. (5.9) and (5.10)). Solving the set 

of equations (5.21) and (5.22) yields estimators of γ and δ as functions of λ (cf.(4.8) and (4.9)) 

 ( )
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1
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γ λ
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and 

 ( )
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1
k k

k

s

w w
w

δ λ
λ λ λ

λ
λ

− +
+

=

+
−

 (5.24) 

1,1,/, Substituting (5.23) and (5.24) to (5.7) yields the log#likelihood function (cf. 

(4.7)) 

 ( ) ( ) ( ) ( ) ( )( )ln 2 ln 1 1 ,k k k k
LogL w s s w wλ λ λ λ λ λ− + = + − + − −  

 (5.25) 

which is a function of only one parameter λ and is therefore much easier to maximize than 

(5.7). As maximizing a function is equivalent to solving its first derivative with respect to 0, 

the presented way of proceeding may be further investigated. 

1,1,0, Returning to the full form of the log#likelihood function by substituting (5.13) # 

(5.15) to (5.25), calculating its first derivative with respect to λ, then putting back (5.13) # 
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(5.15) in order to simplify the result, and comparing it to 0 yields: 

 

( ) ( )
( )

( )
( ) ( )

( ) ( ) ( )

1
0.

1 1

k

k w m w
k m

w wd LogL m k

d w w

λ λ

λ λ λ λ

λ λ λ λ λ λ λ

− +

− +

− +

 + + + −
 − = + − =

− + −
 (5.26) 

Solving (5.26) with respect to λ and leaving all the w(λ) expressions on the right#hand 

side gives the following three nonlinear equations: 

 
( )

( ) ( )

2

2 2
,k

k k

k w

m w k w

λ
λ

λ λ

+

− +=
+

 (5.27) 

 
( ) ( )2 41

,
2 2

k k
s w w

s

λ λ
λ

− +
−

= −  (5.28) 

 
( ) ( )2 41

,
2 2

k k
s w w

s

λ λ
λ

− +
+

= +  (5.29) 

which can be solved numerically with respect to λ. Each equation may have 0, 1 or more solu#

tions.  

1,1,1,	The maximum of the log#likelihood function (5.7) in the considered interval [k, 

k + 1] may be any of λ values determined by solving  (5.27), (5.28), and (5.29). The whole 

maximum likelihood procedure for non#unimodal densities would therefore require the fol#

lowing steps: 

•� Solve (5.27), (5.28), and (5.29) numerically with respect to λ 

•� Check whether any of the resulting λ values are located within the interval [k, k + 1] 

•� Calculate γ and δ for the λ value(s) using (5.23) and (5.24) 

•� Calculate the second derivative of the log#likelihood function using (5.8) and check 

whether this value is negative (a positive value would indicate a minimum of the log#

likelihood function) 

•� If the above conditions are satisfied, then calculate the value of the log#likelihood function 

using (5.25). If any one of them is not satisfied, then the maximum is either at point k or k 

+ 1 as is the case with unimodal densities.  

•� Calculate the log#likelihood value at the bounds of the interval using  (5.25) or (4.7). 

•� Chose the greatest value of the log#likelihood function. 

The described procedure must be repeated for all intervals [k, k + 1] in order to find 
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the global maximum. 

1,1,5,	The procedure described in 5.5.5. may be simplified if solving (5.27) # (5.29) is 

replaced by maximizing (5.25). Such a procedure should be more efficient as fewer equations 

and possible λ values have to be examined. 

1,5, As presented in this Point, both the TP and GTP maximum likelihood estimators 

are fairly easy to calculate for unimodal densities. The procedure for non#unimodal densities 

is not so straightforward but can be easily implemented by a software package.  

5,	����������	�
	'�����(	6��"���	

5,�,	The TP and GTP maximum likelihood estimators are here used in an application 

considered in a previous paper by Kontek (2010). Two data sets are examined.  

Set 1 # the experimental data presented by Traub and Schmidt (2009), whose research 

concerned the relationship between WTP (Willingness to Pay) and WTA (Willingness to Ac#

cept).  

Set 2 # the experimental data of Idzikowska (2009), whose research concerns the ques#

tion of whether the form in which probability is presented has any impact on the shape of the 

probability weighting function.  

5,-, Kontek (2010) proposed a two#stage regression procedure to describe the experi#

mental results. In the first stage, the relative certainty equivalents are determined using the 

transformation: 

 ,
ce A

r
P A

−
=

−
 (6.1) 

where r denotes the relative certainty equivalent, ce denotes the certainty equivalent, P = 

Max(x) = the maximum lottery outcome, and A = Min(x) = the minimum lottery outcome. The 

relationship (6.1) ensures that r assumes values in the range [0, 1]. The densities of the rela#

tive certainty equivalents for given values of probability are then estimated. The remaining 

part of this paper concentrates on these estimation results. 

In the second stage, the obtained densities are used to estimate the relationship be#

tween the relative certainty equivalent and the probability of winning the main prize: 

 ( )1 ,r Q p−=  (6.2) 

where p denotes the probability of winning the prize, and Q denotes a relative utility function 

which has the form of a cumulative density function defined over the range [0,1]. Further de#

tails are available in Kontek (2010).  
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5,/, Although the maximum likelihood estimators for TP and GTP presented in Point 

4 are fairly simple and straightforward, a few practical comments are in order.  

First, the TP and GTP maximum likelihood estimators appear to be computationally 

extremely fast when compared with standard estimators of smooth distributions which require 

running optimization software. The difference may be as much as two orders of magnitude 

when compared with the GBT estimation, The calculation time can be even further reduced 

whenever there is a large sample whose data assume a limited number of values. This is be#

cause it is not necessary to calculate the values of the log#likelihood function (4.2) or (4.7) for 

all the sample points, but only for distinct points. In financial applications, however, the sam#

ple values are usually all different and any attempt to reduce the number of points will only 

lengthen the procedure. 

Second, the procedures presented here only hold for unimodal densities. In any case, 

when γ or δ assumes a value less than 1, the obtained result may not be the maximum likeli#

hood estimator. These cases were simply excluded from further consideration in the practical 

study presented in this Point. This is a sound approach when the researcher has reason to be#

lieve that the sought distribution is unimodal. As stated, γ and δ values less than 1 appeared 

for sample points located away from the mode, and the resulting distributions exhibited a U#

shape pointing to the anti#mode of the density. The log#likelihood function values were low in 

these cases, which made it natural to eliminate such solutions.  

Third, solutions where either γ or δ assumed a value of infinity were also encountered. 

This is a corollary of kw−  or kw+  assuming a value of 0 (cf. (4.8) and (4.9)). Such solutions 

were also excluded from this research. The motivation for excluding such solutions, even if 

they provide the highest likelihood value, may not be all that obvious. However, an infinite 

value for either γ or δ reduces the GTP to a bounded TP defined over part of the interval [0,1] 

and the likelihood function values appear to be incommensurable with distributions defined 

over the entire interval. 

5,0, The TP maximum likelihood estimation results for Set 1 are presented in Figure 

6.1. Each box presents an estimation result for a single probability. As can be seen, the TP, 

which has 2 parameters, performs better than the GBT, which has 3 parameters, in 7 out of 12 

cases. This is indicated by the maximized values of the log#likelihood function. Even without 

checking these values, the TP curves appear to be better suited for such peaked data than a 

smooth distribution.  
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.��"��	5,�, Densities of r for respective probabilities in Set 1. The TP estimation results are marked in 

red and the GBT estimation results are marked with dashed red lines. The tp and gbt names indicate 

the maximized values of the log#likelihood function. The parentheses contain the mode, median and 

mean of the distributions calculated using the formulas given in Point 2 (for TP) and in Kontek (2010) 

for GBT. 

The presented estimations show that the data are positively skewed for low probabili#

ties and negatively skewed for high probabilities 
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5,1, Figure 6.2 presents the estimation results for Set 1 using the GTP maximum like#

lihood estimator. 

.��"��	5,-, Densities of r for respective probabilities in Set 1. The GTP estimation results are marked 

in red and the GBT estimation results are marked with dashed red lines. The gtp and gbt names indi#

cate the maximized values of the log#likelihood function. The parentheses contain the mode, median 

and mean of the distributions calculated using the formulas given in Point 3 (for GTP) and in Kontek 

(2010) for GBT. 
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Here the GTP estimator outperforms GBT in all cases. This shows that GTP is much 

better suited to describe peaked densities than the commonly used smooth distributions.  

The strong correspondence of the mode with the probability value is especially worth 

noting. This shows that the most likely relative certainty equivalent is roughly equal to the 

probability. 

5,5, Figure 6.3 presents the estimation results for Set 2 using the GTP maximum like#

lihood estimator. In this case, however, the GTP performs poorly compared with GBT, with 

only one case out of nine yielding a better result than the GBT. This shows that GTP is not a 

distribution to be used when the data are scattered. 

.��"��	5,/, Densities of r for respective probabilities in Set 2. The GTP estimation results are marked 

in red and the GBT estimation results are marked in dashed red. The gtp and gbt values indicate the 

maximized log#likelihood function. The parentheses contain the mode, median and mean of the distri#

butions. 
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5,7, In the second phase of the regression procedure described in 6.2., the relationship 

between relative certainty equivalents and probabilities is estimated. This is done using the 

density functions shown in Figures 6.1, 6.2, and 6.3. The results are only briefly presented 

here, as the regression procedure digresses from the main subject of this paper. Figure 6.4 

presents the estimation of the relative utility function Q for Set 1 using the GTP densities 

shown in Figure 6.2. The mean, quantile (including median) and mode (maximum likelihood) 

regression estimations are shown on the one graph. As can be seen, the lottery valuations are 

only nonlinear with probability when medians and means are considered. Such nonlinearity is 

not confirmed for modes. The parameters α and β are both equal to 1 in this case, which 

means the relationship is linear. It follows that the most likely lottery valuations are close to 

their expected values, and that the most likely behavior of a group is fully rational. 

 

.��"��	5,0, Estimation results of the relative utility function Q for Set 1. MN – Mean (Least Squares); 

Q1 – Lower Quartile; MED – Median; Q3 – Upper Quartile; ML – Maximum Likelihood (Mode). The 

orange area marks data between the lower and upper quartiles. The functional form of Q is a cumula#

tive beta distribution with parameters α and β. 

7,	8��&�"�����	

This paper presented estimation procedures for peaked densities over the interval 

[0,1]. The two#sided power distribution, TP, and the generalized distribution, GTP (Kotz and 

van Dorp, 2004), were considered for this purpose. The paper presented the TP and GTP 

maximum likelihood estimators. The latter was not derived by Kotz and van Dorp. The ob#

tained estimations demonstrated that GTP outperforms generalized beta distribution GBT 

(Libby, Novick, 1982) in one of the considered data sets. However the results for much scat#
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tered data as present in the second set, are opposite. The obtained densities are then used to 

estimate the relative utility function (Kontek, 2010). The previously presented result that lot#

tery valuations are only nonlinear with probability when means and medians are considered is 

confirmed. Such nonlinearity disappears for modes. The paper demonstrates that TP and GTP 

distributions may be extremely useful in estimating peaked densities over the interval [0,1] 

and in researching the relative utility function. 
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